Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(15): e34903, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170151

ABSTRACT

Improving the number of amino acids and unsaturated fatty acids in the diet is a good way to raise the quality of the meat. Currently, most research on the quality of broiler meat focuses on genetic traits; nevertheless, it is unclear how meat quality is regulated. This experiment was conducted to investigate the effects of different supplemental levels of walnut meal (WM) on growth performance, amino acid and fatty acid composition, microbial composition, and meat quality of white feather broilers. 1 week old white feather broilers (n = 120; Body weight 83.76 ± 2.32 g), were randomly divided into 3 treatments and 4 replicates. Walnut meal of basic diet (CK), 5 %(WM-L) and 10 %(WM-H) were added to the diets of white feather broilers, respectively. The results showed that walnut meal could increase L* 24 h (24 h brightness) of breast muscle of white feathered broilers (p < 0.05). The amount of essential amino acids (e.g., isoleucine, methionine, leucine, tryptophan, and phenylalanine), umami amino taste acids (glutamic acid), and PUFA/SFA (polyunsaturated fatty acid) (n-3PUFA and n-6 PUFA) in breast muscle increased as the dose was increased. Furthermore, walnut meal regulated amino acid flavour metabolism by increasing the relative abundance of Bacteroides, bifidobacterium, and enterococcus faecalis, according to 16S rRNA sequencing and functional prediction analysis. The correlation showed that amino acid and fatty acid composition was one of the key factors affecting pH value, meat color and tenderness of chicken. In conclusion, dietary addition of walnut meal can increase the content of essential amino acids and unsaturated fatty acids and the relative abundance of beneficial bacteria of broilers, which is of great significance for improving meat quality of white feather broilers.

2.
Poult Sci ; 103(5): 103571, 2024 May.
Article in English | MEDLINE | ID: mdl-38428356

ABSTRACT

This study aimed to compare the residue depletion of gamithromycin in yellow-feather and white-feather broilers, using Sanhuang and Arbor Acres chickens as typical examples, respectively. Each breed (54 chickens) received a single subcutaneous dose of gamithromycin at 7.5 mg/kg bodyweight (BW). Tissues, including muscle, skin + fat, liver, kidney, and injection site, were collected at 6 h, 3, 5, 7, 10, 14, 21, 28, and 35 d postdrug administration. Gamithromycin concentrations in these tissues were determined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The kinetics of gamithromycin were analyzed in different tissues using a noncompartmental method in the Phoenix software. Differences were observed in gamithromycin concentrations and kinetic characteristics in both breeds of chickens, with higher residue concentrations and longer residue times found in yellow-feathered broilers. In Sanhuang broilers, the elimination rates of gamithromycin followed this order: injection site > muscle > liver > kidney > skin + fat. The corresponding elimination half-lives (t1/2λzs) in these samples were 1.22, 1.30, 1.71, 2.04, and 2.52 d, respectively. In contrast, in Arbor Acres broilers, a different order was noted: muscle > injection site > kidney > liver > skin + fat, with corresponding t1/2λzs of 1, 1.23, 1.88, 1.93, and 2.21 d, respectively. These differences may be related to variations in pigments in various tissues of chickens of the 2 breeds. However, further investigations are warranted to discern the underlying reasons.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Residues , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/analysis , Drug Residues/analysis , Injections, Subcutaneous/veterinary , Feathers/chemistry , Macrolides/administration & dosage , Macrolides/pharmacokinetics , Macrolides/analysis , Tandem Mass Spectrometry/veterinary , Male
3.
Food Chem X ; 20: 100938, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144857

ABSTRACT

Moringa oleifera addition to animal diets can improve the growth performance, intestinal health, and immunity of animals, without adverse effects. We investigated the effects of Moringa oleifera on the growth performance, meat quality, and intestinal health of broilers. Moringa oleifera and fermented Moringa oleifera could improve the flesh color and breast muscle tenderness of broilers (p < 0.05). The contents of essential amino acids, unsaturated fatty acids, ΣMUFA, P/S and n-3 ratio in breast muscle of broilers were dose-increased, and the effect of fermented Moringa oleifera was better. Moringa oleifera and fermented Moringa oleifera regulated chicken flavor metabolism by increasing the relative abundance and Short-chain fatty acid (SCFA) contents of Bacteroides, Spirillum, and lactic acid bacteria. Overall, supplementation with 1 % fermented Moringa oleifera can significantly increase essential amino acid and unsaturated fatty acid contents in broilers and participate in the synthesis and transformation of amino acids and fatty acids regulated by beneficial bacteria.

4.
Front Vet Sci ; 10: 1218025, 2023.
Article in English | MEDLINE | ID: mdl-37476826

ABSTRACT

Quercetin (QR) is a naturally occurring flavonoid organic compound that has poor solubility in water and highly unstable in alkaline conditions, resulting in limited absorption in poultry. Consequently, in our experiment, QR was employed as a model compound, encapsulated within the caffeic acid graft chitosan copolymer (CA-g-CS) self-assembled micelles to enhance its solubility, stability and exhibit a synergistic antibacterial effect. The optimization of the formula was carried out using a combination of single-factor experimentation and the response surface method. The in vitro release rate and stability of CA-g-CS-loaded QR micelles (CA-g-CS/QR) in various pH media were studied and the pharmacokinetics in white feather broiler chickens was evaluated in vivo. Additionally, the antibacterial activity was investigated using Escherichia coliCMCC44102 and Escherichia coli of chicken origin as the test strain. The results showed the optimized formula for the self-assembled micelles were 4 mL water, 0.02 mg/mL graft copolymer, and 1 mg QR, stirring at room temperature. The encapsulation efficiency was 72.09%. The resulting CA-g-CS/QR was uniform in size with an average diameter of 375.6 ± 5.9 nm. The release pattern was consistent with the Ritger-Peppas model. CA-g-CS/QR also significantly improved the stability of QR in alkaline condition. The relative bioavailability of CA-g-CS/QR was found to be 1.67-fold that of the reference drug, indicating a substantial increase in the absorption of QR in the broiler. Compared to the original drug, the antibacterial activity of CA-g-CS/QR was significantly enhanced, as evidenced by a reduction of half in the MIC and MBC values. These results suggest that CA-g-CS/QR improves the bioavailability and antibacterial activity of QR, making it a promising candidate for clinical use.

5.
Front Vet Sci ; 10: 1335208, 2023.
Article in English | MEDLINE | ID: mdl-38288379

ABSTRACT

White-feather broiler chickens are the dominant species in global poultry meat production. Yet there is growing concern about their health, quality, and growth efficiency. While feed additives, often antibiotics or synthetic chemicals, are used to maintain the health of the animals, drug resistance limits their use. Litsea cubeba (Lour.) Pers., a traditional Chinese herb with antibiotic-like benefits but without the risk of drug resistance, has not yet been explored as an additive to broiler diets. In the present study, broilers of the AA+ hybrid strain were randomly divided into three groups of 16: a control group (regular feed), a low-dose group (1.25 g/kg added L. cubeba extract), and a high-dose group (2.50 g/kg added L. cubeba extract). After 35 days, we found that the extract had no effect on growth. However, gut flora analysis revealed that both doses of the extract had a positive influence on amino acid content and minor unsaturated fatty acids, thus improving the flavor and nutritional value of the meat. These findings suggest that L. cubeba extract, at either dose, could serve as a sustainable alternative to antibiotics, thus reducing the risk of drug resistance while improving meat quality, nutrition, and flavor.

6.
Anim Genet ; 52(4): 532-535, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34028062

ABSTRACT

Slaughter traits are crucial economic traits of chickens. We performed a GWAS to discover critical loci and candidate genes for 21 slaughter traits in an F2 chicken population resulting from crossing Luxi gamecocks and recessive white feather broilers. We found some SNPs and genes which were significantly associated with keel length, head length, body slope length, bilateral leg weight without shin, bilateral foot weight, subcutaneous fat thickness, heart weight, muscular stomach weight and glandular stomach weight. This study provides references for further investigation of slaughter traits and molecular breeding in chicken.


Subject(s)
Chickens/genetics , Genome-Wide Association Study/veterinary , Animals , Chickens/anatomy & histology , Chickens/physiology , Phenotype
7.
J Microbiol Biotechnol ; 25(12): 2082-9, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26370794

ABSTRACT

Avian beta-defensin 9 (AvBD9) is a small cationic peptide consisting of 41 amino acids that plays a crucial rule in innate immunity and acquired immunity in chickens. Owing to its wide antibacterial spectrum, lack of a residue, and failure to induce bacterial drug resistance, AvBD9 is expected to become a substitute for conventional antibiotics in the livestock and poultry industries. Using the preferred codon of Pichia pastoris, the mature AvBD9 peptide was designed and synthesized, based on the sequence from GenBank. The P. pastoris constitutive expression vector pGHKα was used to construct a pGHKα-AvBD9 recombinant plasmid. Restriction enzyme digestion was performed using SacI and BglII to remove the ampicillin resistance gene, and the plasmid was electrotransformed into P. pastoris GS115. High-expression strains with G418 resistance were screened, and the culture supernatant was analyzed by Tricine-SDS-PAGE and western blot assay to identify target bands of about 6 kDa. A concentrate of the supernatant containing AvBD9 was used for determination of antimicrobial activity. The supernatant concentrate was effective against Escherichia coli, Salmonella paratyphi, Salmonella pullorum, Pseudomonas aeruginosa, Enterococcus faecalis, and Enterobacter cloacae. The fermentation product of P. pastoris carrying the recombinant AvBD9 plasmid was adjusted to 1.0 × 10(8) CFU/ml and added to the drinking water of white feather broilers at different concentrations. The daily average weight gain and immune organ indices in broilers older than 7 days were significantly improved by the AvBD9 treatment.


Subject(s)
Anti-Infective Agents/metabolism , Chickens/growth & development , Diet/methods , Gram-Negative Bacteria/drug effects , beta-Defensins/metabolism , Animals , Anti-Infective Agents/administration & dosage , Body Weight , Gene Expression , Microbial Sensitivity Tests , Pichia/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transformation, Genetic , Treatment Outcome , beta-Defensins/administration & dosage , beta-Defensins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL