Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39110411

ABSTRACT

Speech perception requires the binding of spatiotemporally disjoint auditory-visual cues. The corresponding brain network-level information processing can be characterized by two complementary mechanisms: functional segregation which refers to the localization of processing in either isolated or distributed modules across the brain, and integration which pertains to cooperation among relevant functional modules. Here, we demonstrate using functional magnetic resonance imaging recordings that subjective perceptual experience of multisensory speech stimuli, real and illusory, are represented in differential states of segregation-integration. We controlled the inter-subject variability of illusory/cross-modal perception parametrically, by introducing temporal lags in the incongruent auditory-visual articulations of speech sounds within the McGurk paradigm. The states of segregation-integration balance were captured using two alternative computational approaches. First, the module responsible for cross-modal binding of sensory signals defined as the perceptual binding network (PBN) was identified using standardized parametric statistical approaches and their temporal correlations with all other brain areas were computed. With increasing illusory perception, the majority of the nodes of PBN showed decreased cooperation with the rest of the brain, reflecting states of high segregation but reduced global integration. Second, using graph theoretic measures, the altered patterns of segregation-integration were cross-validated.


Subject(s)
Brain , Magnetic Resonance Imaging , Speech Perception , Visual Perception , Humans , Brain/physiology , Brain/diagnostic imaging , Male , Female , Adult , Young Adult , Speech Perception/physiology , Visual Perception/physiology , Brain Mapping , Acoustic Stimulation , Nerve Net/physiology , Nerve Net/diagnostic imaging , Photic Stimulation/methods , Illusions/physiology , Neural Pathways/physiology , Auditory Perception/physiology
2.
Alzheimers Dement (Amst) ; 15(3): e12455, 2023.
Article in English | MEDLINE | ID: mdl-37424962

ABSTRACT

Introduction: Harmonization protocols that address batch effects and cross-site methodological differences in multi-center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. Methods: We implemented an automatic processing pipeline incorporating electrode layout integrations, patient-control normalizations, and multi-metric EEG source space connectomics analyses. Results: Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z-score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long-range connections, and diminished short-range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. Discussion: Harmonized multi-metric analysis of EEG source space connectivity can address data heterogeneities in multi-centric studies, representing a powerful tool for accurately characterizing dementia.

3.
Basic Clin Neurosci ; 14(6): 753-771, 2023.
Article in English | MEDLINE | ID: mdl-39070192

ABSTRACT

Introduction: Coronavirus-2019 (COVID-19) spreads rapidly worldwide and causes severe acute respiratory syndrome. The current study aims to evaluate the relationship between the whole-brain functional connections in a resting state and cognitive impairments in patients with COVID-19 compared to the healthy control group. Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) and Montreal cognitive assessment (MoCA) data were obtained from 29 patients of the acute stage of COVID-19 on the third day of admission and 20 healthy controls. Cross-correlation of the mean resting-state signals was determined in the voxels of 23 independent components (IC) of brain neural circuits. To assess cognitive function and neuropsychological status, MoCA was performed on all participants. The relationship between rs-fMRI information, neuropsychological status, and paraclinical data was analyzed. Results: The COVID-19 group got a lower mean MoCA score and showed a significant reduction in the functional connectivity of the IC14 (P<0.001) and IC38 (P<0.001) regions compared to the controls. The increase in functional connectivity was observed in the COVID-19 group compared to the controls at baseline in the default mode network (DMN) IC00 (P<0.001) and dorsal attention network (DAN) IC08 (P<0.001) regions. Furthermore, the alternation of functional connectivity in the mentioned ICs was significantly correlated with the mean MoCA scores and inflammatory parameters, i.e. erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). Conclusion: Functional connectivity abnormalities in four brain neural circuits are associated with cognitive impairment and increased inflammatory markers in patients with COVID-19. Highlights: The patients with coronavirus-2019 (COVID-19) got a lower mean Montreal cognitive assessment (MoCA) score.The patients with COVID-19 showed significant reduction in the functional connectivity of the IC14 and IC38 regions.The patients with COVID-19 showed significant increase of functional connectivity in the default mode network (DMN) IC00 and dorsal attention network (DAN) IC08 regions.Alternation of functional connectivity was significantly correlated with the mean MoCA scores and ESR and CRP. Plain Language Summary: The researcher aimed at assessing cognitive impairments and investigating the whole-brain functional connectivity using resting state fMRI in patients with COVID-19 compared with healthy control group. The result showed That COVID-19 group got a lower mean cognitive score and showed a significant reduction in the functional connectivity of the IC14 and IC38 regions of brain compared with controls. Also, the increase of functional connectivity was observed in the COVID-19 group compared with controls at baseline in the default mode network (DMN) and dorsal attention network (DAN) regions of brain. Moreover, Functional connectivity abnormalities in four brain neural circuits associated with cognitive impairment and increased inflammatory markers in patients with COVID-19.

4.
Front Aging Neurosci ; 14: 1109485, 2022.
Article in English | MEDLINE | ID: mdl-36688167

ABSTRACT

Objectives: The abnormal functional connectivity (FC) pattern of default mode network (DMN) may be key markers for early identification of various cognitive disorders. However, the whole-brain FC changes of DMN in delayed neurocognitive recovery (DNR) are still unclear. Our study was aimed at exploring the whole-brain FC patterns of all regions in DMN and the potential features as biomarkers for the prediction of DNR using machine-learning algorithms. Methods: Resting-state functional magnetic resonance imaging (fMRI) was conducted before surgery on 74 patients undergoing non-cardiac surgery. Seed-based whole-brain FC with 18 core regions located in the DMN was performed, and FC features that were statistically different between the DNR and non-DNR patients after false discovery correction were extracted. Afterward, based on the extracted FC features, machine-learning algorithms such as support vector machine, logistic regression, decision tree, and random forest were established to recognize DNR. The machine learning experiment procedure mainly included three following steps: feature standardization, parameter adjustment, and performance comparison. Finally, independent testing was conducted to validate the established prediction model. The algorithm performance was evaluated by a permutation test. Results: We found significantly decreased DMN connectivity with the brain regions involved in visual processing in DNR patients than in non-DNR patients. The best result was obtained from the random forest algorithm based on the 20 decision trees (estimators). The random forest model achieved the accuracy, sensitivity, and specificity of 84.0, 63.1, and 89.5%, respectively. The area under the receiver operating characteristic curve of the classifier reached 86.4%. The feature that contributed the most to the random forest model was the FC between the left retrosplenial cortex/posterior cingulate cortex and left precuneus. Conclusion: The decreased FC of DMN with regions involved in visual processing might be effective markers for the prediction of DNR and could provide new insights into the neural mechanisms of DNR. Clinical Trial Registration: : Chinese Clinical Trial Registry, ChiCTR-DCD-15006096.

5.
Neuroimage ; 245: 118735, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34813972

ABSTRACT

Information encoding has received a wide neuroscientific attention, but the underlying rapid spatiotemporal brain dynamics remain largely unknown. Here, we investigated the rapid brain mechanisms for encoding of sounds forming a complex temporal sequence. Specifically, we used magnetoencephalography (MEG) to record the brain activity of 68 participants while they listened to a highly structured musical prelude. Functional connectivity analyses performed using phase synchronisation and graph theoretical measures showed a large network of brain areas recruited during encoding of sounds, comprising primary and secondary auditory cortices, frontal operculum, insula, hippocampus and basal ganglia. Moreover, our results highlighted the rapid transition of brain activity from primary auditory cortex to higher order association areas including insula and superior temporal pole within a whole-brain network, occurring during the first 220 ms of the encoding process. Further, we discovered that individual differences along cognitive abilities and musicianship modulated the degree centrality of the brain areas implicated in the encoding process. Indeed, participants with higher musical expertise presented a stronger centrality of superior temporal gyrus and insula, while individuals with high working memory abilities showed a stronger centrality of frontal operculum. In conclusion, our study revealed the rapid unfolding of brain network dynamics responsible for the encoding of sounds and their relationship with individual differences, showing a complex picture which extends beyond the well-known involvement of auditory areas. Indeed, our results expanded our understanding of the general mechanisms underlying auditory pattern encoding in the human brain.


Subject(s)
Auditory Perception/physiology , Brain Mapping/methods , Magnetoencephalography , Memory, Short-Term/physiology , Music , Adolescent , Adult , Female , Humans , Male
6.
Neuroimage ; 243: 118531, 2021 11.
Article in English | MEDLINE | ID: mdl-34469816

ABSTRACT

Despite substantial progress in the quest of demystifying the brain basis of creativity, several questions remain open. One such issue concerns the relationship between two latent cognitive modes during creative thinking, i.e., deliberate goal-directed cognition and spontaneous thought generation. Although an interplay between deliberate and spontaneous thinking is often implicated in the creativity literature (e.g., dual-process models), a bottom-up data-driven validation of the cognitive processes associated with creative thinking is still lacking. Here, we attempted to capture the latent modes of creative thinking by utilizing a data-driven approach on a novel continuous multitask paradigm (CMP) that widely sampled a hypothetical two-dimensional cognitive plane of deliberate and spontaneous thinking in a single fMRI session. The CMP consisted of eight task blocks ranging from undirected mind wandering to goal-directed working memory task, while also included two widely-used creativity tasks, i.e., alternate uses task (AUT) and remote association task (RAT). Using eigen-connectivity (EC) analysis on the multitask whole-brain functional connectivity (FC) patterns, we embedded the multitask FCs into a low-dimensional latent space. The first two latent components, as revealed by the EC analysis, broadly mapped onto the two cognitive modes of deliberate and spontaneous thinking, respectively. Further, in this low-dimensional space, both creativity tasks were located in the upper right corner of high deliberate and spontaneous thinking (creative cognitive space). Neuroanatomically, the creative cognitive space was represented by not only increased intra-network connectivity within executive control and default mode network, but also by higher coupling between the two canonical brain networks. Further, individual differences reflected in the low-dimensional connectivity embeddings were related to differences in deliberate and spontaneous thinking abilities. Altogether, using a continuous multitask paradigm and a data-driven approach, we provide initial empirical evidence for the contribution of both deliberate and spontaneous modes of cognition during creative thinking.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Creativity , Thinking/physiology , Adult , Cognition/physiology , Executive Function , Humans , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Young Adult
7.
Neuroimage ; 227: 117632, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33316392

ABSTRACT

Creative thinking is a hallmark of human cognition, which enables us to generate novel and useful ideas. Nevertheless, its emergence within the macro-scale neurocognitive circuitry remains largely unknown. Using resting-state fMRI data from two large population samples (SWU: n = 931; HCP: n = 1001) and a novel "travelling pattern prediction analysis", here we identified the modularized functional connectivity patterns linked to creative thinking ability, which concurrently explained individual variability across ordinary cognitive abilities such as episodic memory, working memory and relational processing. Further interrogation of this neural pattern with graph theoretical tools revealed both hub-like brain structures and globally-efficient information transfer paths that together may facilitate higher creative thinking ability through the convergence of distinct cognitive operations. Collectively, our results provide reliable evidence for the hypothesized emergence of creative thinking from core cognitive components through neural integration, and thus allude to a significant theoretical advancement in the study of creativity.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Creativity , Nerve Net/diagnostic imaging , Thinking/physiology , Adult , Brain/physiology , Connectome , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/physiology
8.
Schizophr Bull ; 45(2): 484-494, 2019 03 07.
Article in English | MEDLINE | ID: mdl-29939349

ABSTRACT

Schizophrenia is genetic in origin and associated with a fecundity disadvantage. The deficits in schizophrenia have been attributed to variation related to the human capacity for language or brain laterality. How sex influences the relative connectivity of the 2 hemispheres is a route to understanding these 2 functions. Using resting-state functional magnetic resonance imaging (fMRI) we searched for sex- and hemisphere-specific changes in whole-brain functional-connectivity in multi-site datasets (altogether 672 subjects including 286 patients, all right-handed) in the first-episode schizophrenia (illness duration ≤ 1 year, mostly drug naive) and in chronic stages of schizophrenia (illness duration > 1 year), respectively. We used meta-analyses to integrate data from different sources concerning individuals at the same illness stage. We found first-episode male patients are predominantly left-lateralized in aberrant connectivity with a focus on Broca's area. Female patients show a lesser degree of lateralization than males, but to the right particularly in orbital frontal cortex. In the chronic stage, the focus of aberrant connectivity shifted from anterior to posterior structures with prominent involvement of the thalamus and pre- and post-central gyri bilaterally and in both sexes. While the "deviant connectivity" is right-sided in both the first-episode and the chronic stages in females, in males there is a shift between stages from the left to the right hemisphere. We hypothesized that the pathophysiology of schizophrenia may lie in the interaction between sex and lateralization, ie, in genetic mechanisms located on the X and Y chromosomes, intrinsic to the evolution of language.


Subject(s)
Connectome , Functional Laterality/physiology , Language , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Sex Characteristics , Thalamus/physiopathology , Adult , Broca Area/diagnostic imaging , Broca Area/physiopathology , Chronic Disease , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/diagnostic imaging , Psychotic Disorders , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
9.
Front Hum Neurosci ; 12: 164, 2018.
Article in English | MEDLINE | ID: mdl-29740305

ABSTRACT

Mounting studies have demonstrated that brain functions are determined by its external functional connectivity patterns. However, how to characterize the voxel-wise similarity of whole brain functional connectivity pattern is still largely unknown. In this study, we introduced a new method called functional connectivity homogeneity (FcHo) to delineate the voxel-wise similarity of whole brain functional connectivity patterns. FcHo was defined by measuring the whole brain functional connectivity patterns similarity of a given voxel with its nearest 26 neighbors using Kendall's coefficient concordance (KCC). The robustness of this method was tested in four independent datasets selected from a large repository of MRI. Furthermore, FcHo mapping results were further validated using the nearest 18 and six neighbors and intra-subject reproducibility with each subject scanned two times. We also compared FcHo distribution patterns with local regional homogeneity (ReHo) to identify the similarity and differences of the two methods. Finally, FcHo method was used to identify the differences of whole brain functional connectivity patterns between professional Chinese chess players and novices to test its application. FcHo mapping consistently revealed that the high FcHo was mainly distributed in association cortex including parietal lobe, frontal lobe, occipital lobe and default mode network (DMN) related areas, whereas the low FcHo was mainly found in unimodal cortex including primary visual cortex, sensorimotor cortex, paracentral lobule and supplementary motor area. These results were further supported by analyses of the nearest 18 and six neighbors and intra-subject similarity. Moreover, FcHo showed both similar and different whole brain distribution patterns compared to ReHo. Finally, we demonstrated that FcHo can effectively identify the whole brain functional connectivity pattern differences between professional Chinese chess players and novices. Our findings indicated that FcHo is a reliable method to delineate the whole brain functional connectivity pattern similarity and may provide a new way to study the functional organization and to reveal neuropathological basis for brain disorders.

10.
J Affect Disord ; 218: 346-352, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28499208

ABSTRACT

BACKGROUND: there has been a recent increase in the use of connectome-based multivariate pattern analysis (MVPA) of resting-state functional magnetic resonance imaging (fMRI) data aimed at distinguishing patients with major depressive disorder (MDD) from healthy controls (HCs). However, the validity of this method needs to be confirmed in independent samples. METHOD: we used resting-state fMRI to explore whole-brain functional connectivity (FC) patterns characteristic of MDD and to confirm the effectiveness of MVPA in distinguishing MDD versus HC groups in two independent samples. The first sample set included 29 MDD patients and 33 HCs and second sample set included 46 MDD patients and 57 HCs. RESULTS: for the first sample, we obtained a correct classification rate of 91.9% with a sensitivity of 89.6% and specificity of 93.9%. For the second sample, we observed a correct classification rate of 86.4% with a sensitivity of 84.8% and specificity of 87.7%. With both samples, we found that the majority of consensus FCs used for MDD identification were located in the salience network, default mode network, the cerebellum, visual cortical areas, and the affective network. LIMITATION: we did not analyze potential structural differences between the groups. CONCLUSION: results suggest that whole-brain FC patterns can be used to differentiate depressed patients from HCs and provide evidence for the potential use of connectome-based MVPA as a complementary tool in the clinical diagnosis of MDD.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Magnetic Resonance Imaging/methods , Rest , Adult , Cerebellum/diagnostic imaging , Female , Humans , Male , Multivariate Analysis , Sensitivity and Specificity , Visual Cortex/diagnostic imaging
11.
Schizophr Bull ; 43(2): 436-448, 2017 03 01.
Article in English | MEDLINE | ID: mdl-27445261

ABSTRACT

Published reports of functional abnormalities in schizophrenia remain divergent due to lack of staging point-of-view and whole-brain analysis. To identify key functional-connectivity differences of first-episode (FE) and chronic patients from controls using resting-state functional MRI, and determine changes that are specifically associated with disease onset, a clinical staging model is adopted. We analyze functional-connectivity differences in prodromal, FE (mostly drug naïve), and chronic patients from their matched controls from 6 independent datasets involving a total of 789 participants (343 patients). Brain-wide functional-connectivity analysis was performed in different datasets and the results from the datasets of the same stage were then integrated by meta-analysis, with Bonferroni correction for multiple comparisons. Prodromal patients differed from controls in their pattern of functional-connectivity involving the inferior frontal gyri (Broca's area). In FE patients, 90% of the functional-connectivity changes involved the frontal lobes, mostly the inferior frontal gyrus including Broca's area, and these changes were correlated with delusions/blunted affect. For chronic patients, functional-connectivity differences extended to wider areas of the brain, including reduced thalamo-frontal connectivity, and increased thalamo-temporal and thalamo-sensorimoter connectivity that were correlated with the positive, negative, and general symptoms, respectively. Thalamic changes became prominent at the chronic stage. These results provide evidence for distinct patterns of functional-dysconnectivity across FE and chronic stages of schizophrenia. Importantly, abnormalities in the frontal language networks appear early, at the time of disease onset. The identification of stage-specific pathological processes may help to understand the disease course of schizophrenia and identify neurobiological markers crucial for early diagnosis.


Subject(s)
Cerebral Cortex/physiopathology , Connectome/methods , Prodromal Symptoms , Schizophrenia/physiopathology , Thalamus/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Chronic Disease , Disease Progression , Female , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Risk , Schizophrenia/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
12.
Hum Brain Mapp ; 37(4): 1459-73, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26800659

ABSTRACT

Generalized anxiety disorder (GAD) and panic disorder (PD) are most common anxiety disorders with high lifetime prevalence while the pathophysiology and disease-specific alterations still remain largely unclear. Few studies have taken a whole-brain perspective in the functional connectivity (FC) analysis of these two disorders in resting state. It limits the ability to identify regionally and psychopathologically specific network abnormalities with their subsequent use as diagnostic marker and novel treatment strategy. The whole brain FC using a novel FC metric was compared, that is, scaled correlation, which they demonstrated to be a reliable FC statistics, but have higher statistical power in two-sample t-test of whole brain FC analysis. About 21 GAD and 18 PD patients were compared with 22 matched control subjects during resting-state, respectively. It was found that GAD patients demonstrated increased FC between hippocampus/parahippocampus and fusiform gyrus among the most significantly changed FC, while PD was mainly associated with greater FC between somatosensory cortex and thalamus. Besides such regional specificity, it was observed that psychopathological specificity in that the disrupted FC pattern in PD and GAD correlated with their respective symptom severity. The findings suggested that the increased FC between hippocampus/parahippocampus and fusiform gyrus in GAD were mainly associated with a fear generalization related neural circuit, while the greater FC between somatosensory cortex and thalamus in PD were more likely linked to interoceptive processing. Due to the observed regional and psychopathological specificity, their findings bear important clinical implications for the potential treatment strategy.


Subject(s)
Anxiety Disorders/physiopathology , Brain/physiopathology , Magnetic Resonance Imaging , Nerve Net/physiopathology , Panic Disorder/physiopathology , Rest , Adult , Anxiety Disorders/diagnostic imaging , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/diagnostic imaging , Panic Disorder/diagnostic imaging
13.
Neuroimage Clin ; 2: 790-6, 2013.
Article in English | MEDLINE | ID: mdl-24179829

ABSTRACT

Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n = 25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject's connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic-cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior.

SELECTION OF CITATIONS
SEARCH DETAIL