Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 376
Filter
1.
Plants (Basel) ; 13(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339522

ABSTRACT

The short-term effects of UV radiation and low temperature on ultrastructure, photosynthetic activity (measured as the maximal photochemical quantum yield of photosystem II: Fv/Fm), chlorophyll-a (Chl-a) contents, and UV-absorbing compounds on the carpospores of Iridaea cordata from a sub-Antarctic population were investigated. Exposure to both photosynthetically active radiation (PAR) and PAR + UV for 4 h caused ultrastructural modifications in all treatments. Under PAR + UV at 2 °C, a disruption of the chloroplast's internal organization was observed. Plastoglobuli were often found in carpospores exposed to 2 °C. 'Electron dense particles', resembling physodes of brown algae, were detected for the first time in cells exposed to PAR and PAR + UV at 8 °C. Fv/Fm decreased following 4 h exposure at 2 °C under PAR + UV (64%) and PAR (25%). At 8 °C, Fv/Fm declined by 21% only under PAR + UV. The photosynthesis of carpospores previously treated with UV partially recovered after a 4 h exposure under dim light. UV-absorbing compounds were degraded in all radiation and temperature treatments without recovery after a 4 h dim light period. Chl-a did not change, whereas total carotenoids increased under PAR at 8 °C The study indicates that although carpospores of I. cordata exhibit photoprotective mechanisms, UV radiation strongly damages their ultrastructure and physiology, which were exacerbated under low temperatures.

2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125868

ABSTRACT

Efforts are intensifying to identify new biofuel sources in response to the pressing need to mitigate environmental pollutants, such as greenhouse gases, which are key contributors to global warming and various worldwide calamities. Algae and microalgae present themselves as excellent alternatives for solid-gaseous fuel production, given their renewable nature and non-polluting characteristics. However, making biomass production from these organisms economically feasible remains a challenge. This article collates various studies on the use of lignocellulosic waste, transforming it from environmental waste to valuable organic supplements for algae and microalgae cultivation. The focus is on enhancing biomass production and the metabolites derived from these biomasses.


Subject(s)
Biofuels , Biomass , Lignin , Microalgae , Lignin/metabolism , Microalgae/metabolism , Microalgae/growth & development
3.
Braz J Microbiol ; 55(3): 2753-2766, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888693

ABSTRACT

The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.


Subject(s)
Anti-Bacterial Agents , Drug Delivery Systems , Anti-Bacterial Agents/pharmacology , Humans , Bacteria/drug effects , Bacteria/genetics , Biological Products/pharmacology , Biological Products/chemistry , Drug Resistance, Multiple, Bacterial , Animals , Bacterial Infections/drug therapy , Bacterial Infections/microbiology
4.
J Phycol ; 60(4): 797-805, 2024 08.
Article in English | MEDLINE | ID: mdl-38944824

ABSTRACT

Mazzaella, a genus with no genomic resources available, has extensive distribution in the cold waters of the Pacific, where they represent ecologically and economically important species. In this study, we aimed to sequence, assemble, and annotate the complete mitochondrial and chloroplast genomes from two Mazzaella spp. and characterize the intraspecific variation among them. We report for the first time seven whole organellar genomes (mitochondria: OR915856, OR947465, OR947466, OR947467, OR947468, OR947469, OR947470; chloroplast: OR881974, OR909680, OR909681, OR909682, OR909683, OR909684, OR909685) obtained through high-throughput sequencing for six M. laminarioides sampled from three Chilean regions and one M. membranacea. Sequenced Mazzaella mitogenomes have identical gene number, gene order, and genome structure. The same results were observed for assembled plastomes. A total of 52 genes were identified in mitogenomes, and a total of 235 genes were identified in plastomes. Although the M. membranacea plastome included a full-length pbsA gene, in all M. laminarioides samples, the pbsA gene was split in three open reading frames (ORFs). Within M. laminarioides, we observed important plastome lineage-specific variations, such as the pseudogenization of the two hypothetical protein-coding genes, ycf23 and ycf45. Nonsense mutations in the ycf23 and ycf45 genes were only detected in the northern lineage. These results are consistent with phylogenetic reconstructions and divergence time estimation using concatenated coding sequences that not only support the monophyly of M. laminarioides but also underscore that the three M. laminarioides lineages are in an advanced stage of divergence. These new results open the question of the existence of still undisclosed species in M. laminarioides.


Subject(s)
Genome, Chloroplast , Genome, Mitochondrial , Rhodophyta , Rhodophyta/genetics , Rhodophyta/classification , Phylogeny , Chile
5.
Foods ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38928753

ABSTRACT

The heightened interest in healthy dietary practices and the preference for fresh, minimally processed foods with reduced additives have witnessed a significant surge among consumers. Within this context, bioactive compounds have garnered attention as potent agents offering beneficial biological effects when integrated into food formulations. Nevertheless, the efficacy of these bioactive compounds in product development encounters numerous challenges during various processing and storage stages due to their inherent instability. Addressing these limitations necessitates exploring novel technological approaches tailored explicitly to the application of bioactive compounds in food production. These approaches should not only focus on preserving the bioactive compounds within food matrices but also on retaining the sensory attributes (color, taste, and aroma) of the final food products. The impact of microalgae and their bioactive compounds on human health and well-being has been extensively reported in the literature. However, there is still a gap regarding the processing and stability of microalgal bioactive compounds to improve their application in the food industry. The main goal of the present work is to point out how to overcome technological challenges in enhancing the stability of bioactive compounds from microalgae for optimal food applications.

6.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38816216

ABSTRACT

Biocrusts determine soil stability and resiliency, with a special role played by oxygenic photoautotrophic microorganisms in these communities. We evaluated temporal and geographic trends in studies focused on these microorganisms in biocrusts. Two databases were surveyed to obtain scientific articles published from 1998 to 2020 containing the terms 'biocrusts,' 'algae,' and 'cyanobacteria.' Although interest in biocrusts has increased recently, their ecological importance is still little explored. The scientific articles that mentioned a species list of cyanobacteria and/or algae revealed a very heterogeneous geographic distribution of research. Biocrusts have not been explored in many regions and knowledge in the tropics, where these communities showed high species richness, is limited. Geographic gaps were detected and more detailed studies are needed, mainly where biocrust communities are threatened by anthropogenic impacts. Aiming to address these knowledge gaps, we assembled a taxonomic list of all algae and cyanobacteria found in these articles, including information on their occurrence and ecology. This review is an updated global taxonomic survey of biocrusts, which importantly reveals their high species richness of oxygenic photoautotrophic microorganisms. We believe this database will be useful to future research by providing valuable taxonomic and biogeographic information regarding algae and cyanobacteria in biocrusts.


Subject(s)
Cyanobacteria , Soil Microbiology , Cyanobacteria/classification , Cyanobacteria/genetics , Biodiversity , Soil
7.
Article in English | MEDLINE | ID: mdl-38629373

ABSTRACT

BACKGROUND: The decarbonization of road transport is a precondition for achieving carbon neutrality. Battery-electric vehicle technology can make this a reality. In this bias, the objective of the article is to shed light on the ongoing debate about the potentially important role of the adoption of electric vehicles in the transport of microalgae- based products to help them advance to a cleaner life cycle. METHODS: Five routes, including unimodal and multimodal conditions, were defined to assess the carbon emissions of the transport system and, more specifically, of road transport. The headquarters of market-leading microalgae manufacturers were selected as the origin of the routes and, as the destination, regions that sustain them. RESULTS: The results reveal the supremacy of road transport of microalgae-based products using electric vehicles powered by nuclear, hydroelectric, and wind, followed by biomass and photovoltaic energy. They also show that the positive impact of wind, water, and photovoltaic energy on the climate, added to the lower battery charging costs and the greater opportunity to generate revenue from the sale of carbon credits, make their tradeoffs. CONCLUSION: The exquisite results of this study convey key messages to decision-makers and stakeholders about the role of electromobility in building a zero-carbon delivery route.

8.
J Phycol ; 60(3): 778-779, 2024 06.
Article in English | MEDLINE | ID: mdl-38587012

ABSTRACT

A reclassification of Cyanidium chilense under the new genus Cavernulicola was recently proposed together with a new family (Cavernulicolaceae) and a new order (Cavernulicolales). Unfortunately, due to an error in the required citation of the basionym, the name "Cavernulicola chilensis" was invalid and cannot be accepted as the generitype of Cavernulicola. This means that Cavernulicola, Cavernulicolaceae, and Cavernulicolales are likewise invalid names under the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN, Shenzhen Code). In this contribution, each of these names is validated.


Subject(s)
Rhodophyta , Terminology as Topic , Rhodophyta/classification , Rhodophyta/genetics
9.
Mar Environ Res ; 196: 106431, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442590

ABSTRACT

Rhodolith beds are known worldwide to host high biodiversity to several taxa. Despite their importance, few ecological data explored the influence of rhodolith features and environmental variables on associated biodiversity, a gap that has been hampering the mapping of diversity hotspots and priority areas for conservation. In this study, we investigated large-scale spatial variations of rhodolith beds and their associated fauna, using annelid polychaetes as a biological model. We aimed to identify proxies, based on rhodolith features and environmental variables, to detect biodiversity hotspots across Southwestern Atlantic beds, laying the groundwork for mapping priority areas for conservation. With this goal, we sampled a total of 136 rhodolith nodules across seven sites with beds under distinct latitudes, depths, distances from the mainland coast of Brazil, and rhodolith densities. For each nodule sampled, we measured the volume, diameter, and mass of sediment trapped, as well as the attributes of the associated polychaetes (abundance, richness, diversity, and composition). Our results revealed a complex network of collinearities and synergisms between the rhodolith features and the majority of the polychaetes attributes (i.e., abundance, diversity, and composition). Polychaete richness, in contrast, can be explained by the combination of two proxies: (1) rhodolith nodule diameter and (2) distance of the rhodolith bed from the mainland coast. Nearshore rhodolith beds and larger nodules were associated with higher values of richness. Additionally, rhodoliths with a hollow morphology were also associated with higher values of polychaete richness. These results suggest that nearshore rhodolith beds with large and hollow nodules could be priority areas for conservation. However, further multi-taxa studies using our framework are still needed to explore other regions and scales, delineating more comprehensive proxies for predicting ecological patterns of the rhodoliths associated fauna and to identify priorities for conservation across Southwestern Atlantic beds.


Subject(s)
Biodiversity , Ecosystem , Animals , Invertebrates , Brazil
10.
Polymers (Basel) ; 16(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399913

ABSTRACT

There is a growing emphasis on seeking stabilizing agents with minimal transformation, prioritizing environmentally friendly alternatives, and actively contributing to the principles of the circular economy. This research aimed to assess the stability of a novel spray-dried hydrocolloid from high Andean algae when introduced into an aqueous solution. Nostoc sphaericum freshwater algae were subject to atomization, resulting in the production of spray-dried hydrocolloid (SDH). Subsequently, suspension solutions of SDH were meticulously prepared at varying pH levels and gelling temperatures. These solutions were then stored for 20 days to facilitate a comprehensive evaluation of their stability in suspension. The assessment involved a multifaceted approach, encompassing rheological analysis, scrutiny of turbidity, sedimentation assessment, ζ-potential, and measurement of particle size. The findings from these observations revealed that SDH exhibits a dilatant behavior when in solution, signifying an increase in with higher shear rate. Furthermore, it demonstrates commendable stability when stored under ambient conditions. SDH is emerging as a potential alternative stabilizer for use in aqueous solutions due to its easy extraction and application.

11.
Ultrason Sonochem ; 103: 106788, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309048

ABSTRACT

In this study, ultrasound (US) was evaluated for As, Cd, Pb, Mn, Sr and V extraction from seaweed samples. The following parameters of ultrasound-assisted extraction (UAE) using an US bath were: frequency (25 to 130 kHz), amplitude (30 to 100%), temperature (30 to 80 °C), sample mass (50 to 200 mg), extractant concentration (1 to 3 mol L-1 of HNO3) and treatment time (5 to 30 min). Acoustic density and power density distribution were calculated using the calorimetric method and mapping of the acoustic pressure distribution was also evaluated. The optimized UAE conditions were 200 mg of sample in 10 mL of 2 mol L-1 HNO3 and 30 min of sonication in a 25 kHz US bath (37.2 ± 4.0 W L-1) at 70% of amplitude and 70 °C. Analytes were quantified using inductively coupled plasma mass spectrometry and results were compared with values obtained using "silent" conditions (magnetic or mechanical stirring at 500 rpm, and without stirring), and a reference method based on microwave-assisted wet digestion (MAWD). The UAE method demonstrated the best extraction efficiency (higher than 95%) for all analytes, especially for As, Cd and V, with lower standard deviations (up to 5%) and lower blank values in comparison with the silent conditions. The proposed UAE method was more advantageous than the reference method, being faster, simpler, safer, more environmentally friendly, and with higher detectability (lower limits of quantification, from 0.0033 to 1.34 µg g-1). In addition, negligible blank values were obtained for UAE and no interference were observed in the determination step. Furthermore, the optimized UAE method was applied for Antarctic seaweed samples and comparison with results obtained by MAWD was satisfactory. In this sense, UAE is demonstrated to be a suitable option for sample preparation of seaweed samples and further determination of environmentally critical elements avoiding the use of concentrated reagents as in the MAWD reference method.


Subject(s)
Seaweed , Mass Spectrometry/methods , Cadmium , Spectrum Analysis/methods , Vegetables
12.
Harmful Algae ; 132: 102565, 2024 02.
Article in English | MEDLINE | ID: mdl-38331537

ABSTRACT

Benthic dinoflagellates produce potent toxins that may negatively affect humans and the marine biota. Understanding the factors that stimulate their growth is important for management strategies and to reduce their potential negative impacts. Laboratory cultures have been extensively used to study microalgae physiology and characterize life cycles, nutrition, growth rates, among other processes. A systematic review of the literature on the growth parameters of the benthic dinoflagellates Ostreopsis cf. ovata, Prorocentrum lima species complex and Coolia malayensis obtained in laboratory cultures of strains isolated from all over the world was performed. The effects of temperature, light intensity, photoperiod, salinity and culture media on the growth rate of these species were evaluated using multiple regressions and a model selection approach, based on the Akaike Information Criteria (AIC). The potential effects of the initial culture abundance and the media volume used on the growth of the species were also assessed. Data from 50 articles (25 for O. cf. ovata, 21 for P. lima and 6 for C. malayensis), resulting in 399 growth parameter values (growth rate, doubling time and maximum yield) were compiled in a database. The genetic clades of O. cf. ovata and P. lima species complex were also noted. Growth rate was the most frequently reported growth parameter for the three species, and 127 values were retrieved for O. cf. ovata, 90 for P. lima and 56 for C. malayensis. Temperature was the factor that best explained the growth response of P. lima and C. malayensis, whereas for O. cf. ovata, temperature and salinity were equally important. Light intensity and photoperiod were included among the six best models for the studied species but presented a weaker effect on growth. Given the observed and future projected climate change, increasing ocean temperature will promote the growth of these species, likely leading to an expansion of their impacts on ecosystems and human health. The use of common garden experiments using multiple strains from different geographic domains, particularly addressing underrepresented lineages is recommended, as they will provide more balanced insight regarding the species physiological responses to environmental drivers.


Subject(s)
Dinoflagellida , Culture Media , Dinoflagellida/growth & development , Dinoflagellida/physiology , Photoperiod , Salinity , Temperature
13.
Mar Environ Res ; 195: 106349, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237469

ABSTRACT

The knowledge of the long-distance dispersal mechanisms of meiofauna is still limited. Rafting is considered as the main mechanism of dispersal of the meiofauna. The recent events of the Sargassum spp. arrival in the Caribbean provides the opportunity to explore long distance mechanisms. Four samples of floating Sargassum spp. were collected from the water column in Xcalak, Quintana Roo, which arrived at the Reef lagoon and Mangrove fringe. A total of 425 organisms were present, 388 nematodes, 36 tardigrades, and a single acarus. Tardigrades were represented by three species, whereas nematodes were represented by 16 morphotypes. The population of both tardigrades and nematodes was composed of mature and juvenile specimens. One tardigrade was collected during their ecdysis process. Our results suggest that not only the nematodes, but also tardigrades and acari can reach the floating Sargassum spp., maintaining in the algae, growing, and reproducing, while they are transported in the sea. We can conclude that in the Caribbean Sea, the floating Sargassum spp. floating is a dispersal mechanism of nematodes and tardigrades.


Subject(s)
Nematoda , Sargassum , Animals , Caribbean Region , Water , Mexico
14.
Harmful Algae ; 131: 102562, 2024 01.
Article in English | MEDLINE | ID: mdl-38212087

ABSTRACT

Ciguatera Poisoning (CP) is a widespread and complex poisoning syndrome caused by the consumption of fish or invertebrates contaminated with a suite of potent neurotoxins collectively known as ciguatoxins (CTXs), which are produced by certain benthic dinoflagellates species in the genera Gambierdiscus and Fukuyoa. Due to the complex nature of this HAB problem, along with a poor understanding of toxin production and entry in the coral reef food web, the development of monitoring, management, and forecasting approaches for CP has lagged behind those available for other HAB syndromes. Over the past two decades, renewed research on the taxonomy, physiology, and toxicology of CP-causing dinoflagellates has advanced our understanding of the species diversity that exists within these genera, including identification of highly toxic species (so called "superbugs") that likely contribute disproportionately to ciguatoxins entering coral reef food webs. The recent development of approaches for molecular analysis of field samples now provide the means to investigate in situ community composition, enabling characterization of spatio-temporal species dynamics, linkages between toxic species abundance and toxin flux, and the risk of ciguatoxin prevalence in fish. In this study we used species-specific fluorescent in situ hybridization (FISH) probes to investigate Gambierdiscus species composition and dynamics in St. Thomas (USVI) and the Florida Keys (USA) over multiple years (2018-2020). Within each location, samples were collected seasonally from several sites comprising varying depths, habitats, and algal substrates to characterize community structure over small spatial scales and across different host macrophytes. This approach enabled the quantitative determination of communities over spatiotemporal gradients, as well as the selective enumeration of species known to exhibit high toxicity, such as Gambierdiscus silvae. The investigation found differing community structure between St. Thomas and Florida Keys sites, driven in part by differences in the distribution of toxin-producing species G. silvae and G. belizeanus, which were present throughout sampling sites in St. Thomas but scarce or absent in the Florida Keys. This finding is significant given the high toxicity of G. silvae, and may help explain differences in fish toxicity and CP incidence between St. Thomas and Florida. Intrasite comparisons along a depth gradient found higher concentrations of Gambierdiscus spp. at deeper locations. Among the macrophytes sampled, Dictyota may be a likely vector for toxin transfer based on their widespread distribution, apparent colonization by G. silvae, and palatability to at least some herbivore grazers. Given its ubiquity throughout both study regions and sites, this taxa may also serve as a refuge, accumulating high concentrations of Gambierdiscus and other benthic dinoflagellates, which in turn can serve as source populations for highly palatable and ephemeral habitats nearby, such as turf algae. These studies further demonstrate the successful application of FISH probes in examining biogeographic structuring of Gambierdiscus communities, targeting individual toxin-producing species, and characterizing species-level dynamics that are needed to describe and model ecological drivers of species abundance and toxicity.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Dinoflagellida , Ciguatoxins/toxicity , Florida , In Situ Hybridization, Fluorescence , United States Virgin Islands
15.
Recent Pat Biotechnol ; 18(1): 22-51, 2024.
Article in English | MEDLINE | ID: mdl-38205773

ABSTRACT

Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.


Subject(s)
Microalgae , Patents as Topic , Biotechnology , Environment
16.
Microb Pathog ; 186: 106488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061668

ABSTRACT

Trypanosoma cruzi parasite - causal Chagas disease agent - affects about 7 million people; no vaccine is available, and current medications have not been entirely effective. Multidisciplinary efforts are necessary for developing clinical vaccine prototypes. Thus, this research study aims to assess the expressed and whole-cell administration protection of the oral vaccine prototype Tc24:Co1 using Schizochytrium sp. microalga. High recombinant protein expression yields (675 µg/L) of algal culture were obtained. Additionally, Schizochytrium sp.-Tc24:Co1 resulted stable at 4 °C for up to six months and at 25 °C for three months. After receiving four oral doses of the vaccine, the mice showed a significant humoral immune response and a parasitemia reduction associated with a lack of heart inflammatory damage compared with the unvaccinated controls. The Schizochytrium sp.-Tc24:Co1 vaccine demonstrates to be promising as a prototype for further development showing protective effects against a T. cruzi challenge in a mouse model.


Subject(s)
Chagas Disease , Protozoan Vaccines , Trypanosoma cruzi , Humans , Animals , Mice , Chagas Disease/drug therapy , Recombinant Proteins , Disease Models, Animal
17.
Environ Toxicol Chem ; 43(4): 926-937, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38153230

ABSTRACT

Carbofuran is one of the most toxic broad-spectrum pesticides. We evaluated the effects of carbofuran on two species of microalgae, Pseudopediastrum boryanum and Desmodesmus communis, through measurements of cell viability, biomass, chlorophyll content, and the production of reactive oxygen species (ROS). The ability of these algae to remove carbofuran dissolved in the media was also determined. For the evaluations, both microalgae species were exposed to carbofuran (FURADAN 350 SC®) at concentrations of 100, 1000, and 10,000 µg L-1 for 7 days. Algae cell viability and chlorophyll-a concentration were not affected by the presence of carbofuran. Both species grew when exposed to the pesticide; however, the microalgae D. communis grew less than its respective control when exposed to the highest concentration (10,000 µg L-1 of carbofuran), indicating an adverse effect of the pesticide on this species. A significant increase in ROS production was observed in D. communis and P. boryanum when exposed to the highest concentration tested. The microalgae P. boryanum completely removed carbofuran in the media within 2 days, regardless of the concentration, whereas D. communis achieved the same result only after 5 days of exposure. Growth inhibition was observed only until the disappearance of carbofuran from the media. The present study suggests the use of microalgae, mainly P. boryanum, as potential tools for the remediation of environments contaminated by carbofuran because of their resistance to the insecticide and their ability to remove it rapidly from water. Environ Toxicol Chem 2024;43:926-937. © 2023 SETAC.


Subject(s)
Carbofuran , Chlorophyceae , Microalgae , Pesticides , Pesticides/toxicity , Carbofuran/toxicity , Biodegradation, Environmental , Reactive Oxygen Species , Chlorophyll
18.
Food Res Int ; 173(Pt 1): 113314, 2023 11.
Article in English | MEDLINE | ID: mdl-37803625

ABSTRACT

Canned fish is one of the most popular forms of fish consumption due to its high nutritional value, availability, and practicality. However, canning may induce lipid oxidation. Thus, this study provides in-depth information on the impact of high temperatures applied during canning on fish lipids. The thermo-oxidation is evidenced, for example, by the high levels of both primary and secondary oxidation products determined in fish after canning, as well as the presence of harmful compounds such as cholesterol oxides. Given the role of lipid oxidation in canned fish, this study also presents a comprehensive review on using natural antioxidants to control it. The antioxidant properties of common liquid mediums (vegetable oils and sauces) are highlighted. Moreover, adding algae extracts, spices, and condiments to the liquid medium to enhance its antioxidant potential has been considered, while the exploitation of by-products and wastes from the food industry also emerges as a suitable strategy. Besides the promising results, these practices may promote positive impacts on other quality parameters (e.g. water and oil holding capacities, texture, microbiological growth). However, further studies are needed, including research on aspects related to safety, effective concentrations and application methods, without ignoring consumers' sensory acceptance.


Subject(s)
Antioxidants , Seafood , Animals , Oxidation-Reduction , Plant Oils , Fishes
19.
Animals (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37889796

ABSTRACT

This study determined the effect of pelagic Sargassum on in vitro dry matter and organic matter degradation, total gas production (TGP), and protozoa population. The treatments were different levels of Sargassum inclusion on a basal substrate (Stargrass hay; Cynodon nlemfuensis) as follows: T0 (control treatment based on Stargrass hay), T10 (90% Stargrass hay + 10% Sargassum), T20 (80% Stargrass hay + 20% Sargassum), and T30 (70% Stargrass hay + 30% Sargassum). Ruminal fermentation kinetics and protozoa population were determined during 72 h of in vitro incubations. Compared to control, dry matter degradability at 48 and 72 h and organic matter degradability at 24 and 48 h were higher in Sargassum treatments. TGP was lower with T20 at 48 h. The total population of protozoa and the concentration of Entodinium spp. were lower at T20 at 48 h and T30 at 72 h. Cl, S, Ca, K, and Zn (103, 5.97, 88.73, 285.70 g/kg, and 15,900 mg/kg) were high in Sargassum, reaching twice or even nine times higher than the contents in Stargrass (11.37, 1.60, 43.53, 87.73 g/kg, and 866.67 mg/kg). Overall, up to 30% pelagic Sargassum could be included in hay-based substrates from tropical grasses without negative effects on in vitro dry matter and organic matter degradability.

20.
Chemosphere ; 343: 140174, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37741366

ABSTRACT

The concept of sustainability has gained prominence in recent years, enhancing the need to develop products that are less harmful to the environment. Dyes are used by various industrial sectors and have a lot of market value; they are used on a large scale mainly by the textile industry that uses large volumes of water and is one of the main contributors to the contamination of water bodies. Some natural compounds, especially anthraquinones are re-emerging as possible alternatives to synthetic dyes, some of which are known for their toxic and/or mutagenic effects. The BioColour project (https://biocolour.fi/) which is interested in promoting the development of new alternative molecules to synthetic dyes, provided us highly purified anthraquinone dyes dermocybin and dermorubin (>98% purity) extracted from a specie of fungus Cortinarius sanguineus. Dyes were tested for their acute and chronic toxicity using different aquatic organisms. Dermorubin was not toxic to any of the organisms tested for the highest test concentration of 1 mg L-1 and it was the most promising dye. Dermocybin was toxic to Daphnia similis (EC50 = 0.51 mg L-1), Ceriodaphnia dubia (IC10 = 0.13 mg L-1) and Danio rerio embryos (extrapolated LC50 = 2.44 mg L-1). A safety limit, i.e, predicted no-effect concentration (PNEC) of 0.0026 mg L-1 was derived based on the toxicity of dermocybin. The PNEC value can be used to provide hazard information for future application in commercial dyeing processes. Then, we compared the toxicity of dermocybin and dermorubin with ecotoxicity data available in the literature on other anthraquinone dyes of natural and synthetic origin. Some natural dyes can be as toxic as synthetic ones, or more toxic when chronic effects are considered. Despite natural dyes being used since centuries past, there are few ecotoxicological studies available. This study is designed to help develop a more comprehensive understanding of their toxicological properties.


Subject(s)
Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Daphnia , Zebrafish , Coloring Agents/toxicity , Anthraquinones/toxicity , Water
SELECTION OF CITATIONS
SEARCH DETAIL