Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
1.
Article in English | MEDLINE | ID: mdl-39126585

ABSTRACT

Apples are among the most commonly cultivated fruits globally. Approximately 65% of annual apple production is transformed into apple juice concentrate generating a large amount of waste material named apple pomace, which includes seeds, skin, and other components. Disposing of apple by-products directly into the environment constitutes a source of environmental pollution due to its high-water content and easily fermentable nature. Apple pomace is rich in polyphenols that can be utilized as active components in cosmetic, nutraceutical, or pharmaceutical products. The present study aims to describe and compare different physical methods for the extraction of polyphenols from apple pomace. Water was used as the extraction solvent in thermal-stirred extraction (TSE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE). The best extraction conditions were identified in terms of solid to solvent ratio, temperature, power, and time through a kinetic study. The best extraction parameters were compared environmentally on a pilot scale through a life cycle assessment (LCA). All the results demonstrated the MAE is the best technique to extract polyphenol from apple pomace in terms yield and environmental impact proving that it is possible to transform waste into a sustainable source of bioactive ingredients.

2.
Plant Foods Hum Nutr ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001986

ABSTRACT

Apple pomace is the residue left after apples are squeezed. The majority of pomace produced worldwide is produced by the apple manufacturing industry, however, most of the pomace produced by the industry is discarded. Apple pomace contains functional ingredients, such as polyphenols and triterpenoids, and exerts several beneficial effects on human health; however, studies on its cosmetic effects on the skin are lacking. Therefore, herein, we investigated the effects of apple pomace extract (APE) on human skin fibroblasts (HSFs) in vitro. When HSFs were cultured with the extract for 72 h, the number of HSFs increased at concentrations of 10 and 20 µg/mL. Transcriptome analysis and reverse transcription-quantitative PCR results revealed that the extract upregulated the expression of hyaluronan synthase (HAS) 1, HAS2, and HAS3 and downregulated the expression of HYAL1, a gene encoding the hyaluronan-degrading enzyme, in HSFs. Additionally, enzyme-linked immunosorbent assay revealed increased amounts of factors related to skin extracellular matrix, such as type I collagen and hyaluronic acid, secreted in the culture supernatant. The western blotting results suggested that the extract induced extracellular signal-regulated kinase and protein kinase B phosphorylation in HSFs. Additionally, several GO_Terms related to mitosis were detected in the Gene Ontology analysis. This is the first study to show that APE induces the proliferation of HSFs and production of factors related to skin anti-aging.

3.
J Food Sci Technol ; 61(8): 1525-1535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966798

ABSTRACT

Consumer preferences refer to the subjective assessments of products and services expressed by individuals. The objective of this investigation aims to examine the preferences of consumers regarding dahi, followed by the development of a corresponding product. The initial phase of the experimental design involves understanding the interests of consumers and the variables that influence their purchasing intentions through the administration of a questionnaire. The subsequent phase entails the development of dahi in accordance with consumer preferences, followed by an assessment of its nutritional value, sensory acceptability, and storage study. Subsequently, a significant proportion of consumers (91%) expressed an interest for the introduction of a pineapple-flavour (61.5%) spoon-able dahi (77%) containing natural sugar (65%) and packaged in a cup (71.5%) within the market. To adjust the sweetness intensity of monk fruit, a series of preliminary experiments were carried out to regulate the concentration to a level that can be considered sensory acceptable, specifically 05 g/100 ml. Afterwards, dahi was prepared by altering the concentration of FPP (freeze-dried pine-apple pomace powder) within the range of 0.5 to 2.5 g/100 ml. Prepared dahi were further subjected to sensory evaluation and storage study. Based on the obtained results and sensory analyst feedback, we conclude that the dahi formulation TPM2 exhibits considerable organoleptic acceptance and also has the potential for industrial-scale production to cater wider consumer demands. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05919-5.

4.
J Environ Manage ; 366: 121806, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003899

ABSTRACT

The production of lactic acid (LA) through biomass fermentation represents a promising alternative to the chemical synthesis. The use of agri-food by-products as fermentable carbohydrate sources can improve process sustainability by reducing waste and valorizing residual biomass. This study assessed the use of apple and tomato pomaces for producing LA through fermentation using thermotolerant bacteria under aerobic and non-sterile conditions. Three bacteria were evaluated and Heyndrickxia coagulans DSM 2314 was selected for its ability to produce LA from hydrolyzates of apple pomace (APH) and tomato pomace (TPH). The fermentation conditions were optimized to maximize LA production from APH, TPH and a mixture of both hydrolyzates. Therefore, LA productions ranged from 36.98 ± 0.41 to 40.72 ± 0.43 g/L, with yields from 0.86 ± 0.02 to 1.01 ± 0.01 g/g. Yeast extract was necessary as a nitrogen source for fermenting APH, while TPH and the mixture of both hydrolyzates did not require any supplementation. Other nitrogen sources, such as wine lees, urea and NH3Cl, were tested for fermenting APH. However, mixing this hydrolyzate with TPH proved to be the most viable alternative. This study demonstrates the potential for valorizing apple and tomato pomaces into LA under feasible fermentation conditions.


Subject(s)
Fermentation , Lactic Acid , Malus , Solanum lycopersicum , Solanum lycopersicum/metabolism , Lactic Acid/metabolism , Bacteria/metabolism , Biomass
5.
Materials (Basel) ; 17(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38893945

ABSTRACT

This paper presents research results on biocomposites made from a combination of extruded apple pomace (EAP) and potato starch (SP). The aim of this work was to investigate the basic properties of biocomposites obtained from extruded apple pomace reinforced with potato starch. The products were manufactured by hot pressing using a hydraulic press with a mould for producing samples. The prepared biocomposites were subjected to strength tests, surface wettability was determined, and a colour analysis was carried out. A thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and cross-sectioning observed in a scanning electron microscope (SEM) were also performed. The obtained test results showed that the combination of apple pomace (EAP) and starch (SP) enabled the production of compact biocomposite materials. At the same time, it was found that each increase in the share of starch in the mixture for producing biocomposites increased the strength parameters of the obtained materials. With the highest share of starch in the mixture, 40%, and a raw material moisture content of 14%, the material had the best strength parameters and was even characterised by hydrophobic properties. It was also found that materials with a high content of starch are characterised by increased temperature resistance. The analysis of SEM microscopic photos showed well-glued particles of apple pomace, pectin, and gelatinised starch and a smooth external structure of the samples. Research and analyses have shown that apple pomace reinforced only with the addition of starch can be a promising raw material for the production of simple, biodegradable biocomposite materials.

6.
Arch Anim Nutr ; 78(2): 142-158, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38941242

ABSTRACT

Dietary fibre is mainly classified according to its chemical characteristics but structure and particle size of fibre-rich feedstuff can also be decisive for digestion and performance. So far, only few studies investigated this in pigs. This experiment aimed to compare coarse and finely ground dried hemp plants and apple pomace regarding performance and ileal and total tract nutrient digestibility of growing pigs. Coarse or finely ground apple pomace or dried hemp plants were added to the diet of 56 nine weeks old growing pigs (DanBred x Duroc), housed in flat decks with each 2 animals. The growing pigs received the experimental diets for three weeks while performance was recorded. Eight pigs per group were sacrificed and digesta and organ tissue sampled. The stomach health was evaluated by visually scoring of the mucosa integrity. Apparent ileal (AID) and total tract digestibility (ATTD) were calculated using titanium dioxide as marker. Statistical analyses were performed using two-way ANOVA (p < 0.05). The highest feed intake (fibre particle size, p = 0.018) and bodyweight gain (fibre particle size, p = 0.018; fibre source x particle size interaction, p = 0.040), was observed in animals fed finely ground apple pomace, while the feed conversion ratio was 8-12% lower in pigs fed finely ground fibre sources (p = 0.012). No differences in stomach mucosa integrity were detected between the groups. The relative pancreas (p = 0.045), stomach (p < 0.001), and jejunum (p = 0.010) weights were higher in animals fed diets containing apple pomace. In contrast, the relative liver, caecum and colon weights were not affected by fibre source or particle size. The AID of protein and amino acids was not affected, while ATTD was increased by fibre source (hemp vs. apple pomace) reducing faecal nitrogen excretion. The AID of calcium was increased when diets contained apple pomace (p < 0.001), while zinc AID and ATTD were enhanced when diets contained dried hemp (p = 0.016; p = 0.016, respectively). Our results suggest that the structure as well as the chemical characteristics should be considered in a future fibre evaluation system in pigs.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Dietary Fiber , Digestion , Malus , Animals , Animal Feed/analysis , Dietary Fiber/metabolism , Dietary Fiber/analysis , Digestion/physiology , Diet/veterinary , Malus/chemistry , Male , Particle Size , Nutrients/metabolism , Sus scrofa/growth & development , Sus scrofa/physiology , Fermentation , Cannabis/chemistry
7.
Heliyon ; 10(8): e28841, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38665568

ABSTRACT

The search for new sources of fortified components from low-cost and sustainable sources has become a trend in the last decade. Food byproducts containing valuable bioactive compounds such as dietary fiber, protein, and phytochemicals are being used as substrates for obtaining beneficial components that can promote health. Extrusion is an efficient technology for converting food by-products into nutrient-rich food ingredients. The objective of this work was to optimize the extrusion process to obtain the best combination of moisture content (14, 18 and 22%) and screw speed (SS) (120,150 and180 rpm), apple pomace (AP): semi-defatted sesame cake (SDSC) blends (25:75, 50:50 and 75:25 w/w) to fabricate textured functional ingredients (TFI) with high values of expansion ratio (ER), water absorption index (WAI), brightness level, total phenolic compounds (TPC) and antioxidant activity (AA) and lower hardness based on a central composite design. The optimal treatment was determined at 176 rpm SS, 18% moisture content and a ratio of (75:25) AP: SDSC. The desirability value has indicated an appropriate match between the predicted and the observed response. TFI exhibited higher soluble dietary fiber fraction (WAI) values and lower plate count values during 30 days of storage compared to the unprocessed by-product, suggesting that TFI could be successfully used for the manufacture of innovative, high quality products such as porridge, beverages, cookies, soups and others that could provide health benefits based on the values obtained.

8.
Foods ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38472822

ABSTRACT

The food processing industry is growing rapidly and producing large amounts of by-products, such as pomaces, which are considered as no-value waste and cause significant environmental pollution. The main by-products of fruit juice processing companies are apple and carrot pomaces, which can be used to create new functional food products. In the present study, the effects of particle size (PS) on the proximate composition, nutritional properties, and antioxidant activity of apple pomace flour (APF) and carrot pomace flour (CPF) were determined. Four different PS fractions, PS > 1 mm, 1 > PS > 0.71 mm, 0.71 > PS > 0.18 mm, and 0.18 > PS > 0.075 mm were used for the present study. Their vitamin, carotenoid, organic acid, and reducing sugar contents were determined using HPLC. The proximate compositions of each PS fraction of the AP and CP flours were determined using recommended international standard methods. DPPH, FRAP, and Folin-Ciocalteu methods were used to measure their antioxidant activity and total phenolic compounds, respectively. The moisture content (around 12.1 mg/100 g) was similar in all PS fractions and in both flours. The APF had lower protein (4.3-4.6 g/100 g dw) and ash (1.7-2.0 g/100 g dw) contents compared to the CPF, with protein contents ranging from 6.4-6.8 g/100 g dw and ash contents ranging from 5.8-6.1 g/100 g dw. Smaller particles, regardless of flour type, exhibited higher sugar and phenolic contents and antioxidant activity, while vitamins were more abundant in particles larger than 1 mm. In the APF, larger particles had a higher fiber content than smaller particles, while their fat content was the lowest. PS also had an impact on the results of the carotenoid contents. This study underscores the direct impact of PS on the distribution of sugars, crude fiber, fat, carotenoids, vitamins, total phenolic compounds, and antioxidant activity in pomaces.

9.
Int J Biol Macromol ; 263(Pt 1): 130265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368989

ABSTRACT

Transfer molded pulp packaging (TMPP) is a viable alternative to single use plastic packaging. TMPP is typically produced from recycled newspapers, but the availability of this feedstock material is declining. Apple pomace (AP) pulp, primarily composed of cellulose, hemicellulose, lignin, and pectin, can be used as the primary component of TMPP, but its high water retention value (WRV) and separation from other pulps (recycled cardboard (CB) in this study) limits its utilizations in TMPP. A pressing and thermal drying cellulose hornification treatment followed by a repulping step was implemented to reduce pulp WRV and enhance AP and CB fiber entanglements. 11 %, 20 %, and 25 % reductions in WRV were achieved through 1 t-force pressing and drying at 120 °C for 2.5, 15, or 27.5 min, named mild, medium, and strong hornification treatments, respectively. Increased AP and CB fiber entanglements were observed via microscopy with rising hornification drying times. The medium hornification treatment was identified as the optimal treatment for reducing pulp WRV and reducing pulp separation without decreasing pulp sheet tensile strength. This study introduced and validated a novel processing technique for improved functionality of AP-based pulp for packaging applications.


Subject(s)
Lignin , Malus , Cellulose , Desiccation
10.
Antioxidants (Basel) ; 13(2)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38397823

ABSTRACT

Apple pomace (AP) is a bio-waste product of apples that is co-produced as a by-product during apples' processing for making apple-based products, mainly apple juice, cider and vinegar. AP is a rich source of several bioactives that can be valorized as ingredients for developing novel functional foods, supplements and nutraceuticals. Within the present study, food-grade extracts from AP with different tannin contents were found to contain bioactive polar lipids (PLs), phenolics and carotenoids with strong anti-oxidant, antithrombotic and anti-inflammatory properties. The extract from the low-in-tannins AP showed stronger anti-inflammatory potency in human platelets against the potent thrombo-inflammatory mediator platelet-activating factor (PAF), while it also exhibited considerable anti-platelet effects against the standard platelet agonist, adenosine diphosphate (ADP). The infusion of 0.5-1.0 g of this bioactive AP extract as functional ingredients for whole-grain bread-making resulted in the production of novel bio-functional bread products with stronger anti-oxidant, antithrombotic and anti-inflammatory potency against both PAF and ADP in human platelets, compared to the standard non-infused control breads. Structural analysis by LCMS showed that the PL-bioactives from all these sources (AP and the bio-functional breads) are rich in bioactive unsaturated fatty acids (UFA), especially in the omega-9 oleic acid (OA; 18:1n9), the omega-3 alpha linolenic acid (ALA; 18:n3) and the omega-6 linoleic acid (LA; 18:2n6), which further supports their strong anti-inflammatory and antithrombotic properties. All food-grade extracted AP including that infused with AP-bioactives novel functional breads showed higher hydrophilic, lipophilic and total phenolic content, as well as total carotenoid content, and subsequently stronger antioxidant capacity. These results showed the potential of appropriately valorizing AP-extracts in developing novel bio-functional bakery products, as well as in other health-promoting applications. Nevertheless, more studies are needed to fully elucidate and/or validate the anti-inflammatory, antithrombotic and antioxidant potential of novel bio-functional products across the food and cosmetic sectors when infused with these AP bioactives.

11.
Nutrients ; 16(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38257087

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that involves progressive cognitive decline accompanied by synaptic degeneration and impaired neurotransmission. Recent studies revealed that apple pomace, a waste byproduct of the apple processing industry, has beneficial health properties, but its potential to prevent and treat AD has not been determined. Herein, we examined the effects of apple pomace extract on N-methyl-D-aspartate receptor antagonist MK-801-induced memory impairment in mice. Repeated treatment with apple pomace extract for 7 days reversed the MK-801-induced impairment of associative memory and recognition memory. RNA sequencing revealed that repeated treatment with apple pomace extract altered the gene expression profile in the hippocampus of mice. Real-time PCR showed that apple pomace extract induced upregulation of the mRNA expression for Zfp125 and Gstp1. Furthermore, gene sets related to synapse and neurotransmission were upregulated by apple pomace extract. These findings indicate that apple pomace extract may be useful for the prevention and treatment of AD.


Subject(s)
Alzheimer Disease , Malus , Neurodegenerative Diseases , Animals , Mice , Dizocilpine Maleate , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , DNA-Binding Proteins
12.
Food Chem ; 441: 138320, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38199101

ABSTRACT

Polyphenol partitioning during mechanical (cold-pressing) and physiological (digestion) extraction at the individual polyphenol and subclass level was investigated. UHPLC-ESI-QTOF-MS/MS analysis yielded a comprehensive identification of 45 polyphenols whose semi-quantification revealed a hierarchical clustering strongly determined by polyphenol structure and their location within the apple tissue. For instance, pomace retained most flavonols and flavanols (degree of polymerization DP 5-7), which were highly hydrophobic, hydroxylated, or large (>434 Da), and more abundant in peel. In vitro digestion UHPLC-ESI-QTOF-MS/MS analysis of whole apple (and its corresponding matrix-free extract) clustered polyphenols into five main groups according to their interaction with plant cell walls (PCWs) during each digestion phase. This grouping was not reproduced in pomace, which exhibited a greater matrix effect than whole apple during oral and gastric digestion. Nevertheless, the interaction between most polyphenol groups, including dihydrochalcones, flavanols (DP 1-4) and hydroxycinnamic acid derivatives, and pomace PCWs was lost during intestinal digestion.


Subject(s)
Malus , Polyphenols , Polyphenols/analysis , Tandem Mass Spectrometry , Antioxidants/analysis , Plant Extracts/chemistry , Cluster Analysis
13.
Environ Sci Pollut Res Int ; 31(12): 17932-17950, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37458891

ABSTRACT

Apple pomace, a byproduct of apple processing industry, possesses nutritional components which are of great interests for health aspects. Apple pomace is a good source of dietary fiber, minerals, carbohydrates, phenolic, and antioxidant compounds. These bioactive compounds can be extracted by different extraction techniques which have been comprehensively described in this review article. Furthermore, the incorporation of apple pomace as functional ingredients in different food products like bakery items, extrusion-based snacks, meat, dairy, and confectionary products to improve the commercial value and health benefits has been discussed briefly. This review article can be a helpful tool for industrialists, innovative researchers, and waste management authorities to manage the apple waste in an appropriate and sustainable way.


Subject(s)
Malus , Malus/metabolism , Functional Food , Antioxidants/metabolism , Minerals , Dietary Fiber
14.
J Sci Food Agric ; 104(3): 1713-1722, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851851

ABSTRACT

BACKGROUND: This study aimed to determine the effect of various amounts of dried apple pomace (AP) powder and calcium ions on selected physicochemical properties of restructured freeze-dried snacks in comparison with products obtained with low-methoxyl pectin (LMP). The material was prepared using frozen carrot, orange concentrate, ginger, water, and various concentrations of AP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). The reference samples were without additives, and with 0.5 or 1.5% of LMP combined with 0.01% of calcium lactate. RESULTS: The material was studied in terms of water content and activity, hygroscopic properties, structure, texture, color, and polyphenol content (TPC), and antioxidant activity. The addition of AP resulted in reducing water activity and porosity. As a consequence of the increasing density of the structure, the reduction of hygroscopic properties by up to 16% followed the increasing amount of AP. Apple pomace and calcium ions strengthened the structure. The addition of 3% and 5% of AP gave a hardening effect close to or better than 0.5% LMP. Because of the pigment dilution, LMP caused significantly greater total color change than AP. The incorporation of AP also increased TPC and enhanced antioxidant activity in comparison with the reference materials by up to 18%. CONCLUSION: The results showed that dried AP powder can be applied successfully as an additive enhancing stability, texture and bioactive compound content, thus fortifying the physicochemical properties of restructured freeze-dried fruit and vegetable snacks. © 2023 Society of Chemical Industry.


Subject(s)
Citrus sinensis , Daucus carota , Malus , Zingiber officinale , Malus/chemistry , Antioxidants/analysis , Powders , Calcium , Snacks , Polyphenols/analysis , Water , Ions
15.
AMB Express ; 13(1): 138, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38055129

ABSTRACT

Butanol-producing strains Clostridium sp. UCM B-7570 and C. acetobutylicum UCM B-7407 were used for research from "Collection of strains of microorganisms and plant lines for food and agricultural biotechnology" of the Institute of Food Biotechnology and Genomics of the National Academy of Sciences of Ukraine, glycerol (BASF, Germany) and apple pomace (total moisture 4%) after apple juice production. The aim of this work was to study the possibility of using apple pomace by domestic butanol-producing strains of Clostridium sp. UCM B-7570 and C. acetobutylicum UCM B-7407 as a substrate. Producers were cultured on medium with different concentrations of apple pomace, glycerol was used for the inoculation. The presence of ethanol, acetone, and butanol in the culture liquid was determined using a gas chromatograph. It was determined that a significant part of the macrocomponent composition of the extracts can be used in bioconversion by producing strains of the genus Clostridium. It was determined that the highest concentration of butanol (10 g/dm3) was at a concentration of 120 g/dm3 in the extracts. The obtained data showed the possibility of using apple pomace as a substrate in biobutanol technology.

16.
Heliyon ; 9(9): e19770, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809461

ABSTRACT

In apple processing, waste material known as apple pomace amounts to 45% of production volumes. When this residue is stored in open-air for its stabilization and potential uses, Volatile Organic Compounds (VOCs) are produced, resulting in environmental and odor pollution, and must be managed to avoid their impact. This work aims to study the emission of VOCs utilizing TD-GC/MS and its relationship with changes in physico-chemical (moisture, pH, proteins, among others) and biological (bacteria and fungi using Illumina MiSeq) parameters under three environmental conditions: open-air (outdoors), under-roof (indoors) and oxygen-free. The 8-month study results showed a gradual increase in odorous VOCs and microbial diversity, a product of chemical and biological transformation processes in the samples. A 30% increase in odorant compounds responsible for the unpleasant smell was observed, especially esters, aldehydes and hydrocarbons in samples stored in oxygen-free and Open-air conditions. Increases in VOCs over time were associated with changes in physico-chemical and biological parameters, as well as fluctuations in environmental variables (temperature, relative humidity, and precipitation). The results of this research allow establishing a relationship between storage conditions and the production of VOCs. In addition, recommendations for waste storage time are provided for the most common uses of apple pomace based on the physico-chemical parameters observed, in order to avoid the generation of odorous compounds. Of all storage methods analyzed, under-roof is the most adequate in practice. This study's findings are pertinent for managing agribusiness waste and its potential environmental pollution.

17.
Heliyon ; 9(7): e17736, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449143

ABSTRACT

Biomass resulting from food production represents valuable material to recover different biomolecules. In our study, we used apple pomace to obtain pectin, which is traditionally extracted using mineral acids. Our hypothesis consisted of carrying out extractions with organic acids, assisted by ultrasound, by varying processing parameters including time, temperature, and type of acid. The analytical determinations of galacturonic acid content, methoxylation and esterification degree, ζ-potential and extraction yield were used as pectin quality indicators. Pectins extracted using treatment conditions with better performance were assessed biologically in vitro for their potential to be used in biomedical applications. Overall, the extracted pectin presented a galacturonic acid content, methoxylation and esterification degree ranged from 19.7 to 67%, 26.8-41.4% and 58-65.2% respectively, and were negatively charged (-24.1 to -13.2 mV). It was found that factors of time and temperature greatly influenced the response variables excepting the esterification degree, while the acid type influenced the ζ-potential, methoxylation and esterification degrees. Additionally, it was seen that the longer extraction time (50 min) and higher temperature (50 °C) exhibited the better extraction yield (∼10.9%). Finally, the selected pectin showed high cytocompatibility up to 500 µg/mL of concentration when seeded with Neonatal Normal Human Dermal Fibroblasts.

18.
Foods ; 12(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37174394

ABSTRACT

Despite having high polyphenolic phytochemicals and functional components, apple pomace (AP) is often discarded in landfills, leading to pollution. The study aimed to find a sustainable application for AP in Greek yogurt fortified with AP syrup (APS). Physicochemical characteristics and antioxidant properties were analyzed for APS (APS0.00, APS1.25, APS2.50, APS3.75, APS5.00). As the AP content in the syrup increased, moisture content, titratable acidity, and viscosity significantly increased (p < 0.05). The total polyphenols and flavonoid content of APS increased with increasing AP content. In Greek yogurt fortified with APS (APY), reducing sugar content (0.55 mg/mL to 0.71 mg/mL) significantly increased with fermentation time and AP content, whereas pH level (6.85 to 4.28) decreased. The antioxidant activities by DPPH radical scavenging activity, ABTS radical scavenging activity, ferric reducing antioxidant power, and reducing power were also significantly increased with the AP content and fermentation time. In the consumer acceptance test of APY, APY1.25 had significantly high scores in overall acceptance, taste acceptance, and aftertaste acceptance with purchase intent (p < 0.05). The Greek yogurt fortified with APS as functional food had improved antioxidant properties and consumer acceptance, suggesting the possibility of developing sustainable AP products.

19.
Front Vet Sci ; 10: 1095160, 2023.
Article in English | MEDLINE | ID: mdl-37077951

ABSTRACT

Antibiotics and zinc oxide restrictions encourage the search for alternatives to combat intestinal pathogens, including enterotoxigenic Escherichia coli (ETEC), a major cause of postweaning diarrhea (PWD) in pigs. PWD causes important economic losses for conventional and organic farming. This study investigated the effect of dietary supplementation with garlic and apple pomace or blackcurrant on infection indicators and the fecal microbiota of organic-raised piglets challenged with ETEC-F18. For 21 days, 32 piglets (7-weeks-old) were randomly assigned to one of four groups: non-challenge (NC); ETEC-challenged (PC); ETEC-challenged receiving garlic and apple pomace (3 + 3%; GA); ETEC-challenged receiving garlic and blackcurrant (3 + 3%; GB). ETEC-F18 was administered (8 mL; 109 CFU/ml) on days 1 and 2 postweaning. The 1st week, PC had lower average daily gain than those in the NC, GA, and GB groups (P < 0.05). NC pigs showed neither ETEC-F18 shedding nor signs of diarrhea. The PC group had higher diarrhea incidence and lower fecal dry matter than NC (≈5-10 days; 95% sEBCI). The GA and GB groups showed reduced ETEC-F18 and fedA gene shedding, higher fecal dry matter, and lower diarrhea incidence than the PC (≈5-9 days; 95% sEBCI). The NC, GA, and GB had normal hematology values during most of the study, whereas the PC had increased (P < 0.05) red blood cells, hemoglobin, and hematocrit on day 7. Haptoglobin and pig-MAP increased in all groups, peaking on day 7, but PC showed the greatest increase (P < 0.05). The fecal microbiota of PC pigs had reduced α-diversity (day 7; P < 0.05) and higher volatility (days 3-14; P < 0.05). Escherichia, Campylobacter, and Erysipelothrix were more abundant in the PC than in the NC, GB, and GA groups (log2FC > 2; P < 0.05), whereas Catenibacterium, Dialister, and Mitsoukella were more abundant in the NC, GB, and GA than in the PC group (log2FC > 2; P < 0.05). Prevotella and Lactobacillus were more abundant in the GB group (log2FC > 2, P < 0.05). In conclusion, dietary supplementation of GA and GB limited ETEC proliferation, reduced PWD, and beneficially impacted the fecal microbiota's diversity, composition, and stability.

20.
Appl Microbiol Biotechnol ; 107(11): 3579-3591, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37115252

ABSTRACT

2'-Fucosyllactose (2'-FL) is known for its ability to provide various health benefits to infants, such as gut maturation, pathogen resistance, improved immunity, and nervous system development. However, the production of 2'-FL using α-L-fucosidases is hindered by the lack of low-cost natural fucosyl donors and high-efficiency α-L-fucosidases. In this work, a recombinant xyloglucanase from Rhizomucor miehei (RmXEG12A) was applied to produce xyloglucan-oligosaccharide (XyG-oligos) from apple pomace. Then, an α-L-fucosidase gene (PbFucB) was screened from the genomic DNA of Pedobacter sp. CAU209 and expressed in Escherichia coli. The capability of purified PbFucB to catalyze XyG-oligos and lactose to synthesize 2'-FL was further evaluated. The deduced amino acid sequence of PbFucB shared the highest identity (38.4%) with that of other reported α-L-fucosidases. PbFucB showed the highest activity at pH 5.5 and 35 °C. It catalyzed the hydrolysis of 4-nitrophenyl-α-L-fucopyranoside (pNP-Fuc, 20.3 U mg-1), 2'-FL (8.06 U mg-1), and XyG-oligos (0.43 U mg-1). Furthermore, PbFucB demonstrated a high enzymatic conversion rate in 2'-FL synthesis with pNP-Fuc or apple pomace-derived XyG-oligos as donors and lactose as acceptor. Under the optimized conditions, PbFucB converted 50% of pNP-Fuc or 31% of the L-fucosyl residue in XyG-oligos into 2'-FL. This work elucidated an α-L-fucosidase that mediates the fucosylation of lactose and provided an efficient enzymatic strategy to synthesize 2'-FL either from artificial pNP-Fuc or natural apple pomace-derived XyG-oligos. KEY POINTS: • Xyloglucan-oligosaccharide (XyG-oligos) was produced from apple pomace by a xyloglucanase from Rhizomucor miehei. • An α-L-fucosidase (PbFucB) from Pedobacter sp. CAU209 shared the highest identity (38.4%) with reported α-L-fucosidases. •PbFucB synthesized 2'-FL using apple pomace-derived XyG-oligos and lactose with a conversion ratio of 31%.


Subject(s)
Malus , Pedobacter , Infant , Humans , alpha-L-Fucosidase/genetics , alpha-L-Fucosidase/metabolism , Malus/metabolism , Lactose/metabolism , Oligosaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL