Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.891
Filter
1.
J Colloid Interface Sci ; 677(Pt B): 352-364, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39151228

ABSTRACT

HYPOTHESIS: Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS: We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS: We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.

2.
Food Chem ; 462: 140939, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208731

ABSTRACT

Phoxim, extensively utilized in agriculture as an organothiophosphate insecticide, has the potential to cause neurotoxicity and pose human health hazards. In this study, an electrochemical enzyme biosensor based on Ti3C2 MXene/MoS2@AuNPs/AChE was constructed for the sensitive detection of phoxim. The two-dimensional multilayer structure of Ti3C2 MXene provides a robust framework for MoS2, leading to an expansion of the specific surface area and effectively preventing re-stacking of Ti3C2 MXene. Additionally, the synergistic effect of self-reduced grown AuNPs with MoS2 further improves the electrical conductivity of the composites, while the robust framework provides a favorable microenvironment for immobilization of enzyme molecules. Ti3C2 MXene/MoS2@AuNPs electrochemical enzyme sensor showed a significant response to phoxim in the range of 1 × 10-13 M to 1 × 10-7 M with a detection limit of 5.29 × 10-15 M. Moreover, the sensor demonstrated excellent repeatability, reproducibility, and stability, thereby showing its promising potential for real sample detection.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Fruit , Gold , Metal Nanoparticles , Nanocomposites , Organothiophosphorus Compounds , Titanium , Gold/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Nanocomposites/chemistry , Fruit/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/instrumentation , Organothiophosphorus Compounds/analysis , Titanium/chemistry , Limit of Detection , Food Contamination/analysis , Molybdenum/chemistry , Insecticides/analysis , Insecticides/chemistry , Pesticide Residues/analysis , Pesticide Residues/chemistry
3.
Food Chem ; 462: 140922, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213967

ABSTRACT

Rapid screening for foodborne pathogens is crucial for food safety. A rapid and one-step electrochemical sensor has been developed for the detection of Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Salmonella typhimurium (S. typhimurium). Through the construction of aptamer/two-dimensional carboxylated Ti3C2Tx (2D C-Ti3C2Tx)/two-dimensional Zn-MOF (2D Zn-MOF) composites, the recognition elements, signal tags, and signal amplifiers are integrated on the electrode surface. Pathogens are selectively captured using the aptamer, which increases the impedance of the electrode surface,leads to a decrease in the 2D Zn-MOF current. Bacteria can be rapidly quantified using a one-step detection method and the replacement of aptamers. The detection limits for E. coli, S. aureus, and S. typhimurium are 6, 5, and 5 CFU·mL-1, respectively. The sensor demonstrated reliable detection capabilities in real-sample testing. Therefore, the one-step sensor based on the 2D Zn-MOF and 2D C-Ti3C2Tx has significant application value in the detection of foodborne pathogens.


Subject(s)
Electrochemical Techniques , Escherichia coli , Salmonella typhimurium , Staphylococcus aureus , Zinc , Staphylococcus aureus/isolation & purification , Salmonella typhimurium/isolation & purification , Zinc/analysis , Escherichia coli/isolation & purification , Electrochemical Techniques/instrumentation , Biosensing Techniques/instrumentation , Metal-Organic Frameworks/chemistry , Food Microbiology , Titanium/chemistry , Limit of Detection , Electrodes , Food Contamination/analysis
4.
Biosens Bioelectron ; 267: 116836, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39368295

ABSTRACT

In recent years, detection technology has made remarkable progress in the field of food safety, in vitro diagnosis, and environment monitoring under the impetus of trace substances detection requirements. However, in sharp contrast to the rapid development of detection technology, its marketization process is relatively lagging behind. One possible approach is to integrate novel sensing strategies with mature commercial devices, such as personal glucose meters (PGMs) and pregnancy test strips (PTS) to speed up their marketization process. In this review, we systematically summarized design principle, evolution, and application progress for the integration of novel sensing strategies with commercial devices PGMs and PTS. Meanwhile, key factors and difficulties for the integration novel sensing strategies with commercial devices were emphasized. More importantly, the future of prospects and remaining challenges were discussed.

5.
Elife ; 132024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360803

ABSTRACT

γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential 'cell non-autonomous' regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.


Subject(s)
Amyloid Precursor Protein Secretases , Brain , Fluorescence Resonance Energy Transfer , Animals , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/genetics , Brain/metabolism , Mice , Fluorescence Resonance Energy Transfer/methods , Neurons/metabolism , Biosensing Techniques/methods , Microscopy, Confocal
6.
J Agric Food Chem ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39378372

ABSTRACT

Raspberry ketone (RK), a natural product derived from raspberry fruit, is commonly utilized as a flavoring agent in foods and as an active component for weight loss. Metabolic engineering has enabled microorganisms to produce RK more efficiently and cost-effectively. However, the biosynthesis of RK is hindered by an unbalanced synthetic pathway and a deficiency of precursors, including tyrosine and malonyl-CoA. In this study, we constructed and optimized the RK synthetic pathway in Escherichia coli using a static metabolic engineering strategy to enhance the biosynthesis of tyrosine from glucose, thereby achieving the de novo production of RK. Additionally, the synthetic and consumption pathways of malonyl-CoA were dynamically regulated by p-coumaric acid-responsive biosensor to balance the metabolic flux distribution between cell growth and RK biosynthesis. Following pathway optimization, the medium components and fermentation conditions were further refined, resulting in a significant increase in the RK titer to 415.56 mg/L. The optimized strain demonstrated a 32.4-fold increase in the RK titer while maintaining a comparable final OD600 to the initial strain. Overall, the implemented static and dynamic regulatory strategies provide a novel approach for the efficient production of RK, taking into account cell viability and growth.

7.
Food Chem ; 463(Pt 4): 141496, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39378721

ABSTRACT

Rapid and effective analysis of foodborne bacteria is crucial for preventing and controlling bacterial infections. Here, we present the synthesis of a self-reporting molecularly imprinted polymer (MIP) as an inner reference probe (IR), and the in-situ growth of metal-organic frameworks on transition metal carbon nitrides (MOF/Ti3C2TX-MXene) as a signaling nanoprobe (SP). These advancements are then applied in a ratiometric electrochemical bioassay for Staphylococcus aureus (S. aureus) using a hybrid recognition mechanism. When S. aureus is present, the aptamer-integrated MIP (MIP@Apt) efficiently captures it, followed by binding with SP to form a sandwich structure. This leads to decreased current response of IR (IIR) and increased current intensity of SP (Isp), enabling quantification through utilization of the ISP to IIR ratio. The biosensor shows a wide detection range (10-108 CFU mL-1) and low detection limit of 1.2 CFU mL-1. Its feasibility for testing complex samples indicates the potential application in food analysis.

8.
Sci Rep ; 14(1): 22881, 2024 10 02.
Article in English | MEDLINE | ID: mdl-39358419

ABSTRACT

Micro-opto-electro-mechanical systems (MOEMS) biosensors are employed in various applications such as disease monitoring, drug investigation, detection of pollutants, and biological fluid studies. In this paper, a novel MOEMS biosensor based on a differential folded-flexure structure is introduced. The designed device is employed to detect prostate-specific antigen (PSA) protein and Hepatitis DNA. The target molecules cause a mechanical deflection in the folded-flexure; subsequently, the transmitted optical power across the finger, attached to the flexure, is modulated in proportion to the input concentration. Then, a photodiode power sensor measures the modulated optical power, where the output of the sensor is simply a current related to the target molecules' concentrations. The employed readout circuit operates at a wavelength of λ = 1550 nm with a laser power of 1 µW. The dimensions of the proposed biosensor are considered to be 365 × 340 × 2 µm³, making this sensor small enough and suitable for integration. The designed biosensor provides notable features of mechanical deflection sensitivities of 0.2053 nm/(ng/ml) and 7.2486 nm/nM, optical transmittance sensitivities of 0.535504 × 10-3 1/(ng/ml) and 18.91 × 10-3 1/nM, total output sensitivities of 0.5398 (mA/W)/(ng/ml) and 19.059 (mA/W)/nM, and measurement ranges of 0-1000 ng/ml and 0-28.33 nM for PSA and Hepatitis DNA, respectively. The proposed system is a sensitive and powerful sensor that can play an important role in diagnosing many diseases.


Subject(s)
Biosensing Techniques , DNA, Viral , Prostate-Specific Antigen , Prostatic Neoplasms , Biosensing Techniques/methods , Prostatic Neoplasms/diagnosis , Male , Prostate-Specific Antigen/analysis , Humans , DNA, Viral/analysis , Micro-Electrical-Mechanical Systems
9.
Front Cell Infect Microbiol ; 14: 1402932, 2024.
Article in English | MEDLINE | ID: mdl-39386170

ABSTRACT

Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.


Subject(s)
Aptamers, Nucleotide , Communicable Diseases , Humans , Communicable Diseases/diagnosis , Communicable Diseases/drug therapy , SELEX Aptamer Technique/methods , Molecular Diagnostic Techniques/methods , Animals
10.
Talanta ; 282: 126987, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39383717

ABSTRACT

This study proposed an electrochemical sensor combining Mxene@Ni3(HITP)2@AuNPs with NiCo@Fc-MWCNTs-LDH for detecting extracellular vesicles (EVs) derived from MCF-7 cells. Mxene exhibits high conductivity and large surface area. Ni3(HITP)2 is a novel conductive metal-organic framework (MOF) with outstanding conductivity, capable of loading more gold nanoparticles (AuNPs) when combined with polyetherimide (PEI). Tetrahedra DNA (TDN) is anchored on the substrate through gold nanoparticles (AuNPs) for the specific capture of EVs, with CD63 aptamers carried at their vertices. In the signal layer, the NiCo@Fc-MWCNTs-LDH loaded with CD63 aptamers was prepared as the electrochemical sensor signal label for EVs detection. This electrochemical sensor exhibits high sensitivity, evidenced by a low limit of detection (LOD) of 13.79 particles/mL and a linear range from 1.6 × 102 to 1.6 × 106 particles/mL, underscoring its potential for early cancer diagnosis.

11.
Int J Biol Macromol ; : 136337, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39383916

ABSTRACT

Cholesterol is a fundamental lipid prevalent in eukaryotic cell membranes and circulating in the bloodstream bound to lipoproteins. It serves as a precursor to steroid hormones and is regarded as a biomarker for cardiovascular disease and other metabolic disorders. Numerous cholesterol detection methods predominantly rely on enzymes, which suffer from instability, leading to non-cost-effective biosensors with low sensitivity and poor reusability. Therefore, monitoring cholesterol levels with a feasible, rapid, and stable biosensor is critical for diagnosing and treating various disorders. This study aimed to develop a non-enzymatic cholesterol biosensor based on a selected cholesterol recognition peptide as the detection element. Screen-printed carbon electrodes (SPEs) modified with biocompatible poly-L-lactic acid (PLLA) porous nanomembranes (NMs) were utilized as support for the covalent immobilization of the peptide. Data obtained from electrochemical impedance spectroscopy (EIS) demonstrated the peptide's effective binding affinity towards cholesterol, paving the way for its implementation. The determination of cholesterol with the proposed biosensor exhibited a low limit of detection of 6.31 µM with linear responses ranging from 2-15 µM and 20-40 µM. These findings present an alternative method for cholesterol sensing by integrating novel peptides as biorecognition motifs with biocompatible polymeric materials, potentially useful as biocompatible and future point-of-care sensors.

12.
ACS Sens ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392622

ABSTRACT

This paper presents a platform for amyloid-ß (Aß) biosensors, employing nearly monolayer semiconducting single-walled carbon nanotubes (sc-SWNTs) via click reaction. A high-purity sc-SWNT ink was obtained by employing a conjugated polymer wrapping method with the addition of silica gel. Aß detection involved monitoring the electrical resistances of the sc-SWNT layers. Electrical resistances increased rapidly corresponding to the concentration of amyloid-ß 1-42 (Aß1-42) peptides. Furthermore, we introduced Aß peptides onto the 1-pyrenebutanoic acid succinimidyl ester (PBASE) linker, confirming that only the chemical adsorption of the peptide by the antibody-antigen reaction yielded a significant change in electrical resistance. The optimized sensor exhibited a high sensitivity of 29% for Aß at a concentration of 10 pM. Notably, the biosensor platform featuring chemically immobilized sc-SWNT networks can be customized by incorporating various bioreceptors beyond Aß antibodies.

13.
ACS Sens ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392681

ABSTRACT

Transcription factor (TF)-based biosensors (TFBs) have received considerable attention in various fields due to their capability of converting biosignals, such as molecule concentrations, into analyzable signals, thereby bypassing the dependence on time-consuming and laborious detection techniques. Natural TFs are evolutionarily optimized to maintain microbial survival and metabolic balance rather than for laboratory scenarios. As a result, native TFBs often exhibit poor performance, such as low specificity, narrow dynamic range, and limited sensitivity, hindering their application in laboratory and industrial settings. This work analyzes four types of regulatory mechanisms underlying TFBs and outlines strategies for constructing efficient sensing systems. Recent advances in TFBs across various usage scenarios are reviewed with a particular focus on the challenges of commercialization. The systematic improvement of TFB performance by modifying the constituent elements is thoroughly discussed. Additionally, we propose future directions of TFBs for developing rapid-responsive biosensors and addressing the challenge of application isolation. Furthermore, we look to the potential of artificial intelligence (AI) technologies and various models for programming TFB genetic circuits. This review sheds light on technical suggestions and fundamental instructions for constructing and engineering TFBs to promote their broader applications in Industry 4.0, including smart biomanufacturing, environmental and food contaminants detection, and medical science.

14.
Nanomicro Lett ; 17(1): 34, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373823

ABSTRACT

Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.

15.
ACS Sens ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373016

ABSTRACT

Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of Staphylococcus aureus. The results showed that the developed sensor exhibited an impressive sensitivity of 122.56 Hz/(nmol/L) for detecting gene sequences of S. aureus, surpassing the sensitivity of conventional SAW sensors employing a bare Au film as the sensitive layer by 5-fold. The analysis revealed a remarkably linear detection (R2 of 0.97827) of S. aureus gene sequences within the range of 0 to 100 nmol/L. The limit of detection was impressively low at 0.9116 nmol/L. The good stability and specificity of the biosensor in liquid environments were demonstrated for clinical diagnostics.

16.
ACS Sens ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375866

ABSTRACT

Respiratory viruses such as SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) represent pressing health risks. Rapid diagnostic tests for these viruses detect single antigens or nucleic acids, which do not necessarily correlate with the amount of the intact virus. Instead, specific detection of intact respiratory virus particles may be more effective at assessing the contagiousness of a patient. Here, we report GLOVID, a modular biosensor platform to detect intact virions against a background of "free" viral proteins in solution. Our approach harnesses the multivalent display of distinct proteins on the surface of a viral particle to template the reconstitution of a split luciferase, allowing specific, single-step detection of intact influenza A and RSV virions corresponding to 0.1-0.3 fM of genomic units. The protein ligation system used to assemble GLOVID sensors is compatible with a broad range of binding domains, including nanobodies, scFv fragments, and cyclic peptides, which allows straightforward adjustment of the sensor platform to target different viruses.

17.
J Agric Food Chem ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356521

ABSTRACT

Staphylococcus aureus (S. aureus) is a prevalent foodborne pathogen that poses significant challenges to food safety. Herein, a sensitive and specific electrochemical biosensor based on RPA-CRISPR/Cas12a is developed for evaluating S. aureus. In the presence of S. aureus, the extracted target DNA fragments are efficiently amplified by recombinase polymerase amplification (RPA). The designed crRNA, binding to Cas12a, effectively recognizes the target fragment cleaving hpDNA. The signal molecule of hpDNA is cleaved from the sensing interface, resulting in a reduction of current response. Under optimal experimental conditions, the developed electrochemical biosensor exhibits remarkable sensitivity in detecting S. aureus. The linear range for quantifying S. aureus in pure culture is 1.04 × 101-1.04 × 108 CFU/mL, with a detection limit as low as 3 CFU/mL. In addition, the biosensor enables the accurate and sensitive detection of S. aureus in milk within a linear range of 1.07 × 101-1.07 × 107 CFU/mL. The electrochemical biosensor enhances anti-interference capability owing to the specific amplification of RPA primers and the single-base recognition ability of crRNA. The RPA-CRISPR/Cas12a biosensor exhibits exceptional anti-interference capability, precision, and sensitivity, thereby establishing a robust foundation for real-time monitoring of microbial contamination.

18.
Sci Rep ; 14(1): 22980, 2024 10 03.
Article in English | MEDLINE | ID: mdl-39363058

ABSTRACT

Catalytic hairpin assembly (CHA)-DNA walker allows nanostructures to spontaneously hybridize to the nucleic acids. The localized surface plasmon resonance provides the ability of color-shift for Au nanoparticles (AuNPs) to design a colorimetric biosensor by implementing CHA-DNA walker reaction on AuNPs. A target gene in Klebsiella pneumoniae as the reaction cascade trigger, was selected. H1 and H2 oligonucleotides as the components of the system were designed and verified by NUPACK. The AuNPs were conjugated to H1. The conjugation of the probes to the AuNPs was evaluated using FT-IR. The signal amplification process was conducted at 25℃. TEM imaging, zeta potential, spectroscopy, and gel-electrophoresis were used to examine the conduction of the reaction cascade and specificity. The sensitivity of the method was analyzed using serial dilution of the target. The formation of over-52 bp intermediate secondary structures (which only exist when the reaction happens) was confirmed by gel-electrophoresis. The color distinction between positive (0.08 to 0.058) and negative samples (0.098 to 0.05) was evidenced instantly and in a period of 90 min of the reaction as a drop change of 520 nm intensity absorbance. TEM imaging confirmed the further distance of AuNPs in the positive sample in comparison to that of the negative sample which reveals effective detection of the pathogen. The LOD of the technique was measured as 2.5 nM of the target sequence. The diagnostic approach is a label-free, enzyme-independent approach and can be executed in a single step. It has been designed by employing the CHA-DNA walker system along with the colorimetric properties of AuNPs for the first time, thereby paving the way for more rapid and accurate diagnostic kits.


Subject(s)
Biosensing Techniques , Gold , Klebsiella pneumoniae , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Klebsiella pneumoniae/genetics , Colorimetry/methods , Surface Plasmon Resonance/methods , Nucleic Acid Hybridization , Catalysis
19.
Biosens Bioelectron ; 267: 116830, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39368294

ABSTRACT

As a glycoprotein hormone, human chorionic gonadotropin (hCG) is an established marker for pregnancy test. On the basis of the target-mediated silver deposition (TSD), in this work, we report the development of an amplification-free electrochemical biosensor for the highly sensitive detection of hCG. The detection of hCG involves the use of the affinity peptide-modified electrode for hCG capture (the CGGSSPPLRINRHILTR peptide containing the hCG-binding domain of the PPLRINRHILTR sequence is used as the affinity peptide), the oxidation of the diol sites of the glycan chains on hCG hormones into aldehyde groups by NaIO4, and the deposition of silver nanoparticles (AgNPs) for the solid-state voltammetric stripping analysis. Due to the deposition of multiple AgNPs while the solid-state Ag/AgCl voltammetric process has a high signal-to-noise ratio, the TSD-based electrochemical biosensor can be applied to the highly sensitive detection of hCG without the need for signal amplification. Under optimal conditions, the stripping current increased linearly with an increasing hCG concentration over the range from 1.0 to 25 mIU/mL, with a detection limit of 0.45 mIU/mL. Owing to the high specificity of the hCG-binding peptide PPLRINRHILTR, this electrochemical hCG biosensor exhibits high selectivity. The results of the quantitative assay of hCG in urine samples at the concentrations of 25, 10, and 1.0 mIU/mL are desirable, indicating the good anti-interference capability. As the TSD-based electrochemical biosensor allows the amplification-free detection of low-abundance hCG, it is easy to use and cost-effective, showing great promise in point-of-care assay of hCG for pregnancy test.

20.
Biosens Bioelectron ; 267: 116839, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369516

ABSTRACT

The detection of cancer-associated nucleic acids and mutations through liquid biopsy has emerged as a highly promising non-invasive approach for early cancer detection and monitoring. In this study, we report the development of primer exchange reaction (PER) based signal amplification strategy that enables the rapid, sensitive and specific detection of nucleic acids bearing cancer specific single nucleotide mutations using flow cytometry. Using micrometer size beads as support for immobilizing oligonucleotides and programmable PER assembly for target oligonucleotide recognition and fluorescence signal amplification, we demonstrated the versatile detection of target nucleic acids including KRAS oligonucleotide, fragmented mRNAs, and miR-21. Moreover, our detection system can discriminate single base mutations frequently occurred in cancer-associated genes including KRAS, PIK3CA and P53 from cell extracts and circulating tumor DNAs (ctDNAs). The detection is highly sensitive, with a limit of detection down to 27 fM without pre-amplification. In view of a clinical application, we demonstrate the detection of single mutations after extraction and pre-amplification of ctDNAs from the plasma of breast cancer patients. Importantly, our detection strategy enabled the detection of single KRAS mutation even in the presence of 1000-fold excess of wild type (WT) DNA using multi-color flow cytometry detection approach. Overall, our strategy holds immense potential for clinical applications, offering significant improvements for early cancer detection and monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL