Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 582
Filter
2.
Diagnostics (Basel) ; 14(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39272760

ABSTRACT

In time-of-flight positron emission tomography (TOF-PET), a coincidence time resolution (CTR) below 100 ps reduces the angular coverage requirements and, thus, the geometric constraints of the scanner design. Among other possibilities, this opens the possibility of using flat-panel PET detectors. Such a design would be more cost-accessible and compact and allow for a higher degree of modularity than a conventional ring scanner. However, achieving adequate CTR is a considerable challenge and requires improvements at every level of detection. Based on recent results in the ongoing development of optimised TOF-PET photodetectors and electronics, we expect that within a few years, a CTR of about 75 ps will be be achievable at the system level. In this work, flat-panel scanners with four panels and various design parameters were simulated, assessed and compared to a reference scanner based on the Siemens Biograph Vision using NEMA NU 2-2018 metrics. Point sources were also simulated, and a method for evaluating spatial resolution that is more appropriate for flat-panel geometry is presented. We also studied the effects of crystal readout strategies, comparing single-crystal and module readout levels. The results demonstrate that with a CTR below 100 ps, a flat-panel scanner can achieve image quality comparable to that of a reference clinical scanner, with considerable savings in scintillator material.

3.
Ultrason Sonochem ; 111: 107067, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39288593

ABSTRACT

Zein-based films exhibit high efficiency in ethylene adsorption. However, its brittleness limits the practical applications. To address this issue, this study synergizes the plasticizing effects of high-intensity ultrasound (HIU) and castor oil (CO) to reduce the brittleness of zein-based films. The plasticizing mechanism was demonstrated through the formation of new intermolecular hydrogen bonds and electrostatic interactions, as evidenced by fourier transform infrared spectroscopy (FTIR) and zeta potential measurements. The tensile strength of 6 % CO-zein film increased eightfold. Additionally, the freshness of mangoes stored with 6 % CO-zein film significantly improved, extending their shelf life from 5 days to 15 days. Therefore, this study investigated the synergistic plasticization of zein-based films through the addition of CO, based on HIU. It also provides a theoretical basis for fruit packaging.

4.
Int J Biol Macromol ; : 135293, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233160

ABSTRACT

Castor stalk from hemp plants is an attractive lignocellulosic feedstock for biomass refining valorization due to its similar chemical composition to hardwoods. In this study, the castor stalk fibers were pretreated with efficient dual-functional ethanolamine to achieve delignification and swelling of the cellulosic fibers, followed by cellulase enzymatic digestion for biomass conversion. Experimental results showed that ethanolamine pretreatment at 160 °C for 1 h effectively removed 69.20 % of lignin and 43.18 % of hemicellulose. In addition to efficient delignification and removal of hemicellulose, the study also revealed that supramolecular structure of cellulose was another major factor affecting enzymatic hydrolysis performance. The lowered crystallinity (60-70 %) and swelled crystal sizes (2.95-3.04 nm) promoted enzymatic hydrolysis efficiency during the heterogeneous reaction process. Under optimal conditions (160 °C, 1 h; enzyme loading: 15 FPU/g substrate), promoted yields of 100 % glucose and over 90 % xylose were achieved, which were significantly higher than those obtained from untreated castor stalk. These findings highlighted the effectiveness of the dual-functional ethanolamine pretreatment strategy for efficient bioconversion of lignocellulosic feedstocks. Overall, this study provides valuable insights into the development of new strategies for the efficient utilization of biomass resources, which is essential for the sustainable development of our society.

5.
Ann Vasc Surg ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341554

ABSTRACT

OBJECTIVE: To compare the efficacy and safety of the Ankura Plus and Castor stents in Stanford type B aortic dissection (TBAD) with an insufficient proximal anchoring area. METHODS: Between January 2020 and October 2022, 54 patients with TBAD were enrolled, including 16 patients with Ankura Plus stents and 38 patients with Castor stents. Data from the two stents were retrospectively analyzed. RESULTS: The surgical success rate for both stents was 100%, and no endoleaks or deaths occurred during hospitalization. The Ankura Plus stent group had a longer surgery time than the Castor stent group (122.6±5.1 vs. 103.7±10.0, P <0.001). After an average follow-up of 12 months, the patency rates of the main and branch stents were 100% in both groups. The diameter of the true lumen (TL) was significantly increased, the diameter of the false lumen (FL) was reduced, and there was no statistically significant difference in the probability of complete thrombosis of the FL (68.8% vs. 67.6%, P=0.993). There were no significant differences in the incidences of renal failure (6.3% vs. 8.1%, P = 0.814), stroke (6.3% vs. 2.7%, P = 0.520), or endoleaks (6.3% vs. 10.5%, P = 0.621) between the Ankura Plus and Castor stent groups. One patient in the Castor stent group underwent reintervention because of a type I endoleak three months after surgery. One patient in the Ankura Plus stent group had an additional covered stent placed after one month due to distal TL stenosis of the main stent. One patient in the Castor stent group died of renal failure four months after surgery. CONCLUSION: Both the Ankura Plus and Castor stents are feasible, safe, and effective in the treatment of TBAD with an insufficient proximal anchoring area. Additional long-term studies are required to evaluate the robustness and applicability of Ankura Plus stents.

6.
BMC Plant Biol ; 24(1): 885, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342119

ABSTRACT

BACKGROUND: Castor (Ricinus communis L., 2n = 2x = 20) is an important industrial crop, due to its oil is very important to the global special chemical industry. Seed size and seed weight are fundamentally important in determining castor yield, while little is known about it. In this study, QTL analysis and candidate gene mining of castor seed size and seed weight were conducted with composite interval mapping (CIM), inclusive composite interval mapping (ICIM) and marker enrichment strategy in 4 populations, i.e., populations F2, BC1, S1-1 and S1-2, derived from 2 accessions with significant phenotypic differences. RESULTS: In the QTL primary mapping, 2 novel QTL clusters were detected in marker intervals RCM520-RCM76 and RCM915-RCM950. In order to verify their accuracy and to narrow their intervals, QTL remapping was carried out in populations F2 and BC1. Among them, 44 and 30 QTLs underlying seed size and seed weight were detected in F2 population using methods CIM and ICIM-ADD respectively, including 4-9 and 3-5 ones conferring each trait were identified with a phenotypic variation explained ranged from 37.92 to 115.81% and 32.86-45.98% respectively. The remapping results in BC1 population were consistent with those in F2 population. Importantly, 3 QTL clusters (i.e. QTL-cluster1, QTL-cluster2 and QTL-cluster3) were found in marker intervals RCM74-RCM76 (37.1 kb), RCM930-RCM950 (259.8 kb) and RCM918-RCM920 (172.9 kb) respectively; in addition, all of them were detected again, the former one was found in the S1-2 population, and the latter two were found simultaneously in the populations S1-1 and S1-2. Finally, 6 candidate genes (i.e. LOC8266555, LOC8281168, LOC8281151, LOC8259066, LOC8258591 and LOC8270077) were screened in the above QTL clusters, they were differentially expressed in multiple seed tissues of both parents, signifying the potential role in regulating seed size and seed weight. CONCLUSION: The above results not only provide new insights into the genetic structure of seed size and seed weight in castor, but also lay the foundation for the functional identification of these candidate genes.


Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Seeds , Quantitative Trait Loci/genetics , Seeds/genetics , Seeds/growth & development , Seeds/anatomy & histology , Ricinus communis/genetics , Ricinus communis/growth & development , Phenotype , Genes, Plant , Ricinus/genetics
7.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39338382

ABSTRACT

The assessment of ricinoleic acid (RA) incorporated into polymeric nanoparticles is a challenge that has not yet been explored. This bioactive compound, the main component of castor oil, has attracted attention in the pharmaceutical field for its valuable anti-inflammatory, antifungal, and antimicrobial properties. This work aims to develop a new and simple analytical method using high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the identification and quantification of ricinoleic acid, with potential applicability in several other complex systems. The method was validated through analytical parameters, such as linearity, limit of detection and quantification, accuracy, precision, selectivity, and robustness. The physicochemical properties of the nanocapsules were characterized by dynamic light scattering (DLS) to determine their hydrodynamic mean diameter, polydispersity index (PDI), and zeta potential (ZP), via transmission electron microscopy (TEM) and quantifying the encapsulation efficiency. The proposed analytical method utilized a mobile phase consisting of a 65:35 ratio of acetonitrile to water, acidified with 1.5% phosphoric acid. It successfully depicted a symmetric peak of ricinoleic acid (retention time of 7.5 min) for both the standard and the RA present in the polymeric nanoparticles, enabling the quantification of the drug loaded into the nanocapsules. The nanocapsules containing ricinoleic acid (RA) exhibited an approximate size ranging from 309 nm to 441 nm, a PDI lower than 0.2, ζ values of approximately -30 mV, and high encapsulation efficiency (~99%). Overall, the developed HPLC-DAD procedure provides adequate confidence for the identification and quantification of ricinoleic acid in PLGA nanocapsules and other complex matrices.

8.
J Hazard Mater ; 478: 135553, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39173386

ABSTRACT

Cationic and anionic castor oil-based waterborne polyurethanes (C-WPU/A and C-WPU/C) have great potential for development in agriculture. However, it is still unclear whether these polyurethanes are harmful or toxic to soil fauna. Based on multilevel toxicity endpoints and transcriptomics, we investigated the effects of C-WPU/A and C-WPU/C on earthworms (Eisenia fetida). The acute toxicity results showed that C-WPU/A was highly toxic to the earthworms, whereas C-WPU/C was nearly nontoxic. C-WPU/A significantly affected the body weight, burrowing ability and cocoon production rate of earthworms compared to C-WPU/C. After exposure to C-WPU/A, the results showed accumulation of reactive oxygen species (ROS), abnormal peroxidase activity, and increased malondialdehyde levels. Additionally, more serious histopathological damage was observed in earthworms, such as epidermal damage, vacuolization, longitudinal muscle disorganization, and shedding of intestinal epidermal cells. At the cellular level, C-WPU/A induced more severe lysosomal damage, DNA damage and apoptosis than C-WPU/A. C-WPU/A made more differentially expressed genes and considerably more enriched pathways at the transcriptional level than C-WPU/C. These pathways are largely involved in cell membrane signaling, detoxification, and apoptosis. These results provide an important reference for elucidating the selective toxicity mechanisms of C-WPU/A and C-WPU/C in earthworms.


Subject(s)
Castor Oil , Oligochaeta , Polyurethanes , Reactive Oxygen Species , Oligochaeta/drug effects , Oligochaeta/genetics , Animals , Polyurethanes/toxicity , Castor Oil/toxicity , Risk Assessment , Reactive Oxygen Species/metabolism , Soil Pollutants/toxicity , Apoptosis/drug effects , Cations/toxicity , Anions/toxicity , DNA Damage/drug effects , Water Pollutants, Chemical/toxicity
9.
Sci Total Environ ; 950: 175166, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39094639

ABSTRACT

The influence of ecosystem engineers on habitats and communities is commonly acknowledged in a site-bounded context, i.e. in places directly affected by the presence of the focal species. However, the spatial extent of the effects of such engineering is poorly understood, raising the question as to what impact they have on ecosystems situated beyond the species' direct influence. Beavers Castor spp., iconic ecosystem engineers, are capable of significantly transforming aquatic ecosystems. Their presence boosts biodiversity in adjacent aquatic and riparian habitats, but as a result of cascading processes, beavers may affect terrestrial habitats situated beyond the range of their immediate activity. Our study investigates the breeding bird assemblage along a spatial gradient from the water to the forest interior on central European watercourses modified and unmodified by beavers. The results show that beaver sites are characterized by a higher species richness and abundance of breeding birds than unmodified watercourses. Such sites also host a different species pool, as 27 % of the recorded bird species occurred exclusively on the beaver sites. The effect of the beaver's presence on the bird assemblage extended to adjacent terrestrial habitats located up to 100 m from the water's edge, where the species richness and abundance was higher and the species composition was substantially modified. We also found a positive correlation between the total area of beaver wetland and the numbers of bird species and individuals recorded. Our study adds to the general understanding of the spatial context of the ecosystem engineering concept, as the changes brought about by engineers have an influence beyond the area of their immediate occurrence. Our work also has implications for landscape planning and management, where existing beaver sites with terrestrial buffer zones may constitute a network of biodiversity hotspots.


Subject(s)
Biodiversity , Birds , Ecosystem , Wetlands , Animals , Conservation of Natural Resources , Environmental Monitoring
10.
J Med Case Rep ; 18(1): 410, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39210364

ABSTRACT

INTRODUCTION: Ricin intoxication is a serious condition with symptoms ranging from mild gastroenteritis to fatal outcomes due to shock and multi-organ failure. Intoxication from the ingestion of castor seeds is uncommon. However, its diagnosis is crucial, particularly with a clear history of exposure to castor seeds, regardless of the route of exposure (enteral or parenteral). Prompt diagnosis is essential to monitor and manage the patient effectively and to prevent potentially fatal outcomes. We report a case where ingestion of castor seeds resulted in gastroenteritis severe enough to necessitate emergency medical care. CASE REPORT: We present the case of a 47-year-old Belgian woman of Moroccan descent, previously healthy who was admitted to the emergency department with symptoms of colicky abdominal pain, diarrhea, and vomiting following the ingestion of six castor beans. The patient was diagnosed with ricin intoxication, admitted for observation, and received symptomatic treatment. She was discharged home after a complete recovery three days later. CONCLUSION: Our report underscores the clinical manifestations, hemodynamic changes, laboratory findings, and treatment of intoxication due to castor seed ingestion. It contributes to the limited literature on castor seed poisoning in humans, with a specific focus on cases in Belgium. This report aims to raise awareness among clinicians about this condition and emphasizes the importance of a comprehensive history-taking to prevent misdiagnosis and malpractice.


Subject(s)
Plant Poisoning , Ricin , Ricinus communis , Female , Humans , Middle Aged , Abdominal Pain/chemically induced , Abdominal Pain/diagnosis , Abdominal Pain/therapy , Belgium , Ricin/poisoning , Ricinus communis/chemistry , Ricinus communis/poisoning , Seeds/chemistry , Seeds/poisoning , Treatment Outcome , Vomiting/chemically induced , Vomiting/diagnosis , Vomiting/therapy , Plant Poisoning/diagnosis , Plant Poisoning/etiology , Plant Poisoning/therapy
11.
Front Plant Sci ; 15: 1397215, 2024.
Article in English | MEDLINE | ID: mdl-39109065

ABSTRACT

Castor bean (Ricinus communis L.) is an important oil crop. However, the influence of transposable elements (TEs) on the dynamics of castor bean evolution awaits further investigation. This study explored the role of transposable elements in the genomes of wild castor bean accessions from Ethiopia (Rc039) and Kenya (WT05) as well as in the cultivated variety (Hale). The distribution and composition of repeat sequences in these three lineages exhibited relative consistency, collectively accounting for an average of 36.7% of the genomic sequences. Most TE families displayed consistent lengths and compositions across these lineages. The dynamics of TEs significantly differed from those of genes, showing a lower correlation between the two. Additionally, the distribution of TEs on chromosomes showed an inverse trend compared to genes. Furthermore, Hale may have originated from the ancestor of Rc039. The divergent evolutionary paths of TEs compared to genes indicate the crucial role of TEs in shaping castor bean genetics and evolution, providing insights into the fields of castor bean and plant genomics research.

12.
Neurogastroenterol Motil ; : e14892, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115258

ABSTRACT

BACKGROUND: Between food and medicine, nutraceuticals are widely used in human health for the prevention and treatment of various diseases. This study aims to determine the cytoprotective effects of Anethum gravelons fruit extract (AGFAE) on castor oil-induced diarrhea in rats due to its phytochemical and antioxidant properties. METHODS: Male rats were divided into six groups of six animals each: Control (C), Castor oil (CO), CO + different doses of AGFAE (50, 100, and 200 mg/kg, b.w., p.o.), and the CO + loperamide group (LOP, 10 mg/kg, b.w., p.o.). KEY RESULTS: In vitro, the chemical composition of aqueous Dill fruit extract showed strong antioxidant activity, with a high content of total polyphenols, flavonoids, and tannins. In our in vivo studies, pre-treatment with AGFAE reduced malondialdehyde and hydrogen peroxide levels and maintained normal activity of enzymatic and non-enzymatic antioxidants in the gastric and intestinal mucosa. In addition, we found that AGFAE prophylaxis improved the stability of many plasma biochemical parameters altered by castor oil intoxication, such as C-reactive protein concentrations and alkaline phosphatase activities. CONCLUSIONS & INFERENCES: We suggest that AGFAE phenolic compounds had significant protection against diarrhea involving several mechanisms such as reducing hypersecretion, peristaltic, inflammation, and preserving the endogenous antioxidant levels.

13.
Cureus ; 16(7): e64063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39114210

ABSTRACT

INTRODUCTION: Endodontic retreatment is essential for periapical healing, involving the removal of inadequate fillings, thorough cleaning, and new filling application to prevent leakage. This study compares the dissolving abilities of Eucalyptus, Orange, and Castor oils in the re-treatment of resin-based endodontic fillings using conventional and rotary techniques. METHODOLOGY: Thirty single-rooted human teeth were prepared and filled with gutta-percha and AH Plus sealer. They were divided into three groups (n=10) based on the solvent used (Eucalyptus, Orange, or Castor oil) and further subdivided based on the techniques used (conventional and rotary). Standardised re-treatment procedures were performed, and the amount of residual material was measured. RESULTS: A significant difference (p<0.001) was found among the groups, indicating that both the type of solvent and the technique significantly affected the amount of residual material. The rotary technique generally left less residual material compared to the conventional technique for all solvents. Eucalyptus oil with the rotary technique showed the least residual material (mean = 5.8), while Castor oil with the conventional technique showed the most (mean = 10.2). CONCLUSION: Eucalyptus oil, especially when used with rotary techniques, is highly effective in removing resin-based endodontic fillings, providing a viable and safer alternative to traditional solvents. The study underscores the importance of selecting appropriate solvents and techniques for successful endodontic re-treatment.

14.
J Food Sci ; 89(10): 6507-6522, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39192487

ABSTRACT

Castor oil has been widely used in various fields due to its properties, leading to large attention for its extraction mechanism. To research the castor oil extraction mechanism during pressing, a self-developed uniaxial compression device combined with an in situ observation is established. The effects of pressure, loading speed, and creep time are investigated, and a finite element model coupling with multi-physics is established for castor oil pressing extraction, verified by the seed cake experimental compression strain matching with numerical simulation under the same condition. Simulation results indicated that the pressing oil extraction process can be divided into two stages, Darcy's speed shows the first sharp decreasing stage and the second gradual increasing stage during porosity and pressure interaction. In the first stage, porosity is dominant on Darcy's speed. With porosity decreasing, the pressure effect on Darcy's speed exceeds porosity in the second stage. With seed thickness increasing, Darcy's speed first increases and then decreases. With loading speed increasing, Darcy's speed increases. Darcy's speed decreases constantly with creep time increasing. This study can provide basic theoretical and practical guidance for oil extraction.


Subject(s)
Castor Oil , Pressure , Castor Oil/chemistry , Porosity , Food Handling/methods , Seeds/chemistry , Computer Simulation
15.
Materials (Basel) ; 17(16)2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39203083

ABSTRACT

One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.

16.
J Biotechnol ; 393: 17-30, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39025368

ABSTRACT

Ricinoleic acid (RA) from castor oil was employed in biotransformation of peach-flavoured γ-decalactone (GDL), using a Candida parapsilosis strain (MTCC13027) which was isolated from waste of pineapple crown base. Using four variables-pH, cell density, amount of RA, and temperature-the biotransformation parameters were optimized using RSM and BBD. Under optimized conditions (pH 6, 10 % of microbial cells, 10 g/L RA at 28°C), the conversion was maximum and resulted to 80 % (+)-GDL (4.4 g/L/120 h) yield in shake flask (500 mL). Furthermore, optimization was achieved by adjusting the aeration and agitation parameters in a 3 L bioreactor, which were then replicated in a 10 L bioreactor to accurately determine the amount of (+)-GDL. In bioreactor condition, 4.7 g/L (>85 %) of (+)-GDL is produced with 20 % and 40 % dissolved oxygen (1.0 vvm) at 150 rpm in 72 h and 66 h, respectively. Further, a new Al-Mg-Ca-Si composite column-chromatography method is developed to purify enantiospecific (+)-GDL (99.9 %). This (+)-GDL is 100 % nature-identical as validated through 14C-radio-carbon dating. Thorough chemical investigation of enantiospecific (+)-GDL is authenticated for its use as flavour. This bioflavour has been developed through a cost-effective biotechnological process in response to the demand from the food industry on commercial scale.


Subject(s)
Bioreactors , Candida parapsilosis , Castor Oil , Lactones , Ricinoleic Acids , Ricinoleic Acids/metabolism , Ricinoleic Acids/chemistry , Bioreactors/microbiology , Castor Oil/chemistry , Castor Oil/metabolism , Candida parapsilosis/metabolism , Lactones/metabolism , Lactones/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Biotransformation
17.
BMC Genomics ; 25(1): 670, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965476

ABSTRACT

BACKGROUND: The TCP (teosinte branched1/cincinnata/proliferating cell factor) family plays a prominent role in plant development and stress responses. However, TCP family genes have thus far not been identified in castor bean, and therefore an understanding of the expression and functional aspects of castor bean TCP genes is lacking. To identify the potential biological functions of castor bean (RcTCP) TCP members, the composition of RcTCP family members, their basic physicochemical properties, subcellular localizations, interacting proteins, miRNA target sites, and gene expression patterns under stress were assessed. RESULTS: The presence of 20 RcTCP genes on the nine chromosomes of castor bean was identified, all of which possess TCP domains. Phylogenetic analysis indicated a close relationship between RcTCP genes and Arabidopsis AtTCP genes, suggesting potential functional similarity. Subcellular localization experiments confirmed that RcTC01/02/03/10/16/18 are all localized in the nucleus. Protein interaction analysis revealed that the interaction quantity of RcTCP03/06/11 proteins is the highest, indicating a cascade response in the functional genes. Furthermore, it was found that the promoter region of RcTCP genes contains a large number of stress-responsive elements and hormone-induced elements, indicating a potential link between RcTCP genes and stress response functions. qRT-PCR showed that all RcTCP genes exhibit a distinct tissue-specific expression pattern and their expression is induced by abiotic stress (including low temperature, abscisic acid, drought, and high salt). Among them, RcTCP01/03/04/08/09/10/14/15/18/19 genes may be excellent stress-responsive genes. CONCLUSION: We discovered that RcTCP genes play a crucial role in various activities, including growth and development, the stress response, and transcription. This study provides a basis for studying the function of RcTCP gene in castor.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Ricinus communis , Stress, Physiological , Stress, Physiological/genetics , Ricinus communis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling
18.
Chemosphere ; 362: 142655, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908444

ABSTRACT

Lead is used in many industries such as refining, mining, battery manufacturing, smelting. Releases of lead from these industries is one of the major public health concerns due to widespread persistence in the environment and its resulting poisoning character. In this work, the castor seed shell (CSS) waste was exploited for preparing a beneficial bio-adsorbent for removal of Pb(II) ions from water. The raw CSS was modified with H3PO4 at different acid concentrations, impregnation ratios, activation times, and temperatures. An optimum adsorption capacity was observed for CSS modified with 2 M acid, 5 mL g-1 solid to liquid ratio, treated at 95 °C for 160 min. Exploiting acid modification, the SEM, XRD, and FTIR analyses show some alterations in functional groups and the surface morphology of the biomass. The impacts of physiochemical variables (initial lead ions concentration, pH, adsorbent dose and adsorption time) on the lead removal percentage were investigated, using response surface methodology (RSM). Maximum removal of 72.26% for raw CSS and 97.62% for modified CSS were obtained at an initial lead concentration (50 mg L-1), pH (5.7), adsorption time (123 min) and adsorbent dosage (1.1 g/100 mL). Isothermal and kinetics models were fitted to adsorption equilibrium data and kinetics data for the modified CSS and the adsorption system was evaluated thermodynamically and from the energy point of view. Isothermal scrutinization indicated the mono-layer nature of adsorption, and the kinetics experimental outcomes best fitted with the pseudo-second-order, implying that the interaction of lead ions and hot acid-treated CSS was the rate-controlling phenomenon of process. Overall, results illustrated that the hot acid-treated biomass-based adsorbent can be considered as an alternative bio-adsorbent for removing lead from water media.


Subject(s)
Lead , Phosphoric Acids , Seeds , Water Pollutants, Chemical , Adsorption , Lead/chemistry , Lead/isolation & purification , Seeds/chemistry , Phosphoric Acids/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods , Ricinus communis/chemistry , Hydrogen-Ion Concentration
19.
BMC Plant Biol ; 24(1): 493, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831288

ABSTRACT

Drought is one of the natural stresses that greatly impact plants. Castor bean (Ricinus communis L.) is an oil crop with high economic value. Drought is one of the factors limiting castor bean growth. The drought resistance mechanisms of castor bean have become a research focus. In this study, we used castor germinating embryos as experimental materials, and screened genes related to drought resistance through physiological measurements, proteomics and metabolomics joint analysis; castor drought-related genes were subjected to transient silencing expression analysis in castor leaves to validate their drought-resistant functions, and heterologous overexpression and backward complementary expression in Arabidopsis thaliana, and analysed the mechanism of the genes' response to the participation of Arabidopsis thaliana in drought-resistance.Three drought tolerance-related genes, RcECP 63, RcDDX 31 and RcA/HD1, were obtained by screening and analysis, and transient silencing of expression in castor leaves further verified that these three genes corresponded to drought stress, and heterologous overexpression and back-complementary expression of the three genes in Arabidopsis thaliana revealed that the function of these three genes in drought stress response.In this study, three drought tolerance related genes, RcECP 63, RcDDX 31 and RcA/HD1, were screened and analysed for gene function, which were found to be responsive to drought stress and to function in drought stress, laying the foundation for the study of drought tolerance mechanism in castor bean.


Subject(s)
Arabidopsis , Droughts , Ricinus communis , Seeds , Ricinus communis/genetics , Ricinus communis/physiology , Seeds/genetics , Seeds/physiology , Seeds/growth & development , Arabidopsis/genetics , Arabidopsis/physiology , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Drought Resistance
20.
Sci Rep ; 14(1): 13490, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866939

ABSTRACT

In this study, polyurethane (PU) foams were manufactured using kraft lignin and castor oil as bio-based polyols by replacing 5-20 wt% and 10-100 wt% of conventional polyol, respectively. To investigate the effects of unmodified bio-based polyols on PU foam production, reactivity and morphology within PU composites was analyzed as well as mechanical and thermal properties of the resulting foams. Bio-based PU foam production was carried out after characterizing the reagents used in the foaming process (including hydroxyl group content, molecular weight distribution, and viscosity). To compare the resulting bio-based PU foams, control foam were produced without any bio-based polyol under the same experimental conditions. For lignin-incorporated PU foams, two types, LPU and lpu, were manufactured with index ratio of 1.01 and 1.3, respectively. The compressive strength of LPU foams increased with lignin content from 5 wt% (LPU5: 147 kPa) to 20 wt% (LPU20: 207 kPa), although it remained lower than that of the control foam (PU0: 326 kPa). Similarly, the compressive strength of lpu foams was lower than that of the control foam (pu0: 441 kPa), with values of 164 kPa (lpu5), 163 kPa (lpu10), 167 kPa (lpu15), and 147 kPa (lpu20). At 10 wt% lignin content, both foams (LPU10 and lpu10) exhibited the smallest and most homogenous pore sizes and structures. For castor oil-incorporated PU foams with an index of 1.01, denoted as CPU, increasing castor oil content resulted in larger cell sizes and void fractions, transitioning to an open-cell structure and decreasing the compressive strength of the foams from 284 kPa (CPU10) to 23 kPa (CPU100). Fourier transform infrared (FT-IR) results indicated the formation of characteristic urethane linkages in PU foams and confirmed that bio-based polyols were less reactive with isocyanate compared to traditional polyol. Thermogravimetric analysis (TGA) showed that incorporating lignin and castor oil affected the thermal decomposition behavior. The thermal stability of lignin-incorporated PU foams improved as the lignin content increased with char yields increasing from 11.5 wt% (LPU5) to 15.8 wt% (LPU20) and from 12.4 wt% (lpu5) to 17.5 wt% (lpu20). Conversely, the addition of castor oil resulted in decreased thermal stability, with char yields decreasing from 10.6 wt% (CPU10) to 4.2 wt% (CPU100). This research provides a comprehensive understanding of PU foams incorporating unmodified biomass-derived polyols (lignin and castor oil), suggesting their potential for value-added utilization as bio-based products.

SELECTION OF CITATIONS
SEARCH DETAIL