Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Pathog Dis ; 822024 Feb 07.
Article in English | MEDLINE | ID: mdl-39210512

ABSTRACT

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Immune Evasion , Interferon-gamma , Humans , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Animals , Chlamydia trachomatis/immunology , Host-Pathogen Interactions/immunology , Female , Mice , Reproductive Tract Infections/immunology , Reproductive Tract Infections/microbiology , Nitric Oxide/metabolism
2.
Cell Host Microbe ; 32(6): 913-924.e7, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870903

ABSTRACT

Aspects of how Burkholderia escape the host's intrinsic immune response to replicate in the cell cytosol remain enigmatic. Here, we show that Burkholderia has evolved two mechanisms to block the activity of Ring finger protein 213 (RNF213)-mediated non-canonical ubiquitylation of bacterial lipopolysaccharide (LPS), thereby preventing the initiation of antibacterial autophagy. First, Burkholderia's polysaccharide capsule blocks RNF213 association with bacteria and second, the Burkholderia deubiquitylase (DUB), TssM, directly reverses the activity of RNF213 through a previously unrecognized esterase activity. Structural analysis provides insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from its isopeptidase function. Furthermore, a putative TssM homolog also displays esterase activity and removes ubiquitin from LPS, establishing this as a virulence mechanism. Of note, we also find that additional immune-evasion mechanisms exist, revealing that overcoming this arm of the host's immune response is critical to the pathogen.


Subject(s)
Bacterial Proteins , Burkholderia , Lipopolysaccharides , Ubiquitination , Lipopolysaccharides/metabolism , Humans , Burkholderia/immunology , Bacterial Proteins/metabolism , Esterases/metabolism , Immune Evasion , Ubiquitin-Protein Ligases/metabolism , Host-Pathogen Interactions/immunology , Autophagy , Virulence
3.
Trends Parasitol ; 40(6): 449-451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762372

ABSTRACT

Polymeric guanylate-binding proteins (GBPs) physically dismember the vacuole membrane formed by Toxoplasma gondii while nitric oxide (NO) poisons and inhibits parasite replication within interferon (IFN)-γ activated macrophages. Zhao et al. report a novel mechanism for synergy between these classical microbicidal and microbistatic effectors in cell-autonomous immunity to the intracellular parasites.


Subject(s)
Toxoplasma , Toxoplasma/immunology , Nitric Oxide/metabolism , Animals , Humans , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Macrophages/immunology , Macrophages/parasitology
4.
Int Immunol ; 36(5): 199-210, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38175650

ABSTRACT

Toxoplasma gondii is a pathogenic protozoan parasite of the Apicomplexa family that affects approximately 30% of the world's population. Symptoms are usually mild in immunocompetent hosts, but it can pose significant health risks to immunosuppressed patients and pregnant women. Current treatment options are limited, and new therapies and vaccines are needed. The innate immune system is the first to recognize T. gondii infection and activates pro-inflammatory cytokines and chemokines to promote acquired immunity. The IL-12/IFN-γ axis is particularly important, and when this pathway is inhibited, infection becomes uncontrolled and lethal. In mice, receptors such as Toll-like receptor 11 (TLR11), TLR12, and chemokine receptors are involved in T. gondii recognition and the modulation of immune responses. In humans, where TLR11 and TLR12 are absent, other mechanisms have been reported as the innate immune sensing system in T. gondii infection. Immune cells activated in response to infection produce interleukin (IL)-12, which stimulates the proliferation of natural killer cells and T cells and promotes the production of interferon (IFN)-γ. Several IFN-γ-induced anti-T. gondii defense mechanisms inhibit parasite growth. These include nitric oxide (NO) production, indoleamine 2,3-dioxygenase, and the destruction of parasitophorous vacuoles by IFN-γ-inducible immunity related GTPase groups (IRGs and GBPs). Recent studies focusing on the diversity of IRGs in rodents and effector molecules in T. gondii suggest that host immune mechanisms and pathogen immune evasion mechanisms have co-evolved. Furthermore, it has been suggested that cysts are not simply dormant during chronic infection. This review summarizes recent findings on anti-T. gondii innate, adaptive, and cell-autonomous immune responses.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Pregnancy , Female , Mice , Animals , Interleukin-12 , Immunity, Cellular , Carrier Proteins
6.
Front Cell Infect Microbiol ; 13: 1205355, 2023.
Article in English | MEDLINE | ID: mdl-37655297

ABSTRACT

Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213.


Subject(s)
Anti-Infective Agents , Moyamoya Disease , Humans , Ubiquitin-Protein Ligases , Genes, Regulator , Transcription Factors , Adenosine Triphosphatases
7.
mBio ; 14(4): e0319022, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37530528

ABSTRACT

The obligate intracellular bacterium Chlamydia trachomatis inserts a family of inclusion membrane (Inc) proteins into the membrane of its vacuole (the inclusion). The Inc CpoS is a critical suppressor of host cellular immune surveillance, but the underlying mechanism remained elusive. By complementing a cpoS mutant with various natural orthologs and variants of CpoS, we linked distinct molecular interactions of CpoS to distinct functions. Unexpectedly, we found CpoS to be essential for the formation of inclusion membrane microdomains that control the spatial organization of multiple Incs involved in signaling and modulation of the host cellular cytoskeleton. While the function of CpoS in microdomains was uncoupled from its role in the suppression of host cellular defenses, we found the ability of CpoS to interact with Rab GTPases to be required not only for the manipulation of membrane trafficking, such as to mediate transport of ceramide-derived lipids (sphingolipids) to the inclusion, but also for the inhibition of Stimulator of interferon genes (STING)-dependent type I interferon responses. Indeed, depletion of Rab35 phenocopied the exacerbated interferon responses observed during infection with CpoS-deficient mutants. Overall, our findings highlight the role of Inc-Inc interactions in shaping the inclusion microenvironment and the modulation of membrane trafficking as a pathogenic immune evasion strategy. IMPORTANCE Chlamydia trachomatis is a prevalent bacterial pathogen that causes blinding ocular scarring and urogenital infections that can lead to infertility and pregnancy complications. Because Chlamydia can only grow within its host cell, boosting the intrinsic defenses of human cells may represent a novel strategy to fight pathogen replication and survival. Hence, CpoS, a Chlamydia protein known to block host cellular defenses, or processes regulated by CpoS, could provide new opportunities for therapeutic intervention. By revealing CpoS as a multifunctional virulence factor and by linking its ability to block host cellular immune signaling to the modulation of membrane trafficking, the present work may provide a foundation for such rationale targeting and advances our understanding of how intracellular bacteria can shape and protect their growth niche.


Subject(s)
Chlamydia Infections , Interferon Type I , Humans , Bacterial Proteins/metabolism , Chlamydia trachomatis/genetics , Chlamydia Infections/microbiology , Immune Evasion , Interferon Type I/metabolism , HeLa Cells , Host-Pathogen Interactions
8.
Proc Natl Acad Sci U S A ; 120(15): e2216028120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023136

ABSTRACT

The gamma-interferon (IFNγ)-inducible guanylate-binding proteins (GBPs) promote host defense against gram-negative cytosolic bacteria in part through the induction of an inflammatory cell death pathway called pyroptosis. To activate pyroptosis, GBPs facilitate sensing of the gram-negative bacterial outer membrane component lipopolysaccharide (LPS) by the noncanonical caspase-4 inflammasome. There are seven human GBP paralogs, and it is unclear how each GBP contributes to LPS sensing and pyroptosis induction. GBP1 forms a multimeric microcapsule on the surface of cytosolic bacteria through direct interactions with LPS. The GBP1 microcapsule recruits caspase-4 to bacteria, a process deemed essential for caspase-4 activation. In contrast to GBP1, closely related paralog GBP2 is unable to bind bacteria on its own but requires GBP1 for direct bacterial binding. Unexpectedly, we find that GBP2 overexpression can restore gram-negative-induced pyroptosis in GBP1KO cells, without GBP2 binding to the bacterial surface. A mutant of GBP1 that lacks the triple arginine motif required for microcapsule formation also rescues pyroptosis in GBP1KO cells, showing that binding to bacteria is dispensable for GBPs to promote pyroptosis. Instead, we find that GBP2, like GBP1, directly binds and aggregates "free" LPS through protein polymerization. We demonstrate that supplementation of either recombinant polymerized GBP1 or GBP2 to an in vitro reaction is sufficient to enhance LPS-induced caspase-4 activation. This provides a revised mechanistic framework for noncanonical inflammasome activation where GBP1 or GBP2 assembles cytosol-contaminating LPS into a protein-LPS interface for caspase-4 activation as part of a coordinated host response to gram-negative bacterial infections.


Subject(s)
GTP-Binding Proteins , Lipopolysaccharides , Humans , Capsules , Carrier Proteins , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Inflammasomes/metabolism , Interferon-gamma/metabolism , Lipopolysaccharides/metabolism , Pyroptosis , Caspases, Initiator/metabolism
9.
Pathog Dis ; 812023 01 17.
Article in English | MEDLINE | ID: mdl-37012222

ABSTRACT

Guanylate-Binding Proteins are interferon-inducible GTPases that play a key role in cell autonomous responses against intracellular pathogens. Despite sharing high sequence similarity, subtle differences among GBPs translate into functional divergences that are still largely not understood. A key GBP feature is the formation of supramolecular GBP complexes on the bacterial surface. Such complexes are observed when GBP1 binds lipopolysaccharide (LPS) from Shigella and Salmonella and further recruits GBP2-4. Here, we compared GBP recruitment on two cytosol-dwelling pathogens, Francisella novicida and S. flexneri. Francisella novicida was coated by GBP1 and GBP2 and to a lower extent by GBP4 in human macrophages. Contrary to S. flexneri, F. novicida was not targeted by GBP3, a feature independent of T6SS effectors. Multiple GBP1 features were required to promote targeting to F. novicida while GBP1 targeting to S. flexneri was much more permissive to GBP1 mutagenesis suggesting that GBP1 has multiple domains that cooperate to recognize F. novicida atypical LPS. Altogether our results indicate that the repertoire of GBPs recruited onto specific bacteria is dictated by GBP-specific features and by specific bacterial factors that remain to be identified.


Subject(s)
Lipopolysaccharides , Shigella flexneri , Humans , Cytosol/metabolism , Cytosol/microbiology , Shigella flexneri/genetics , Shigella flexneri/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism
10.
Int Rev Cell Mol Biol ; 374: 37-81, 2023.
Article in English | MEDLINE | ID: mdl-36858656

ABSTRACT

Legionella pneumophila is the causative agent of Legionnaires' disease, a severe pneumonia. L. pneumophila injects via a type-IV-secretion-system (T4SS) more than 300 bacterial proteins into macrophages, its main host cell in humans. Certain of these bacterial effectors target organelles in the infected cell and hijack multiple processes to facilitate all steps of the intracellular life cycle of this pathogen. In this review, we discuss the interplay between L. pneumophila, an intracellular bacterium fully armed with virulence tools, and mitochondria, the extraordinary eukaryotic organelles playing prominent roles in cellular bioenergetics, cell-autonomous immunity and cell death. We present and discuss key findings concerning the multiple interactions of L. pneumophila with mitochondria during infection and the mechanisms employed by T4SS effectors that target mitochondrial functions to subvert infected cells.


Subject(s)
Legionella , Humans , Mitochondria , Cell Death , Eukaryota , Macrophages
11.
Int J Mol Sci ; 24(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36769182

ABSTRACT

Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Mice , Animals , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Carrier Proteins/metabolism , BCG Vaccine
12.
Autophagy ; 19(10): 2811-2813, 2023 10.
Article in English | MEDLINE | ID: mdl-36779581

ABSTRACT

Previously considered as an exclusive extracellular bacterium, Staphylococcus aureus has been shown to be able to invade many cells in vitro and in humans. Once inside the host cell, both cytosolic and endosome-associated S. aureus strongly induce macroautophagy/autophagy. Whether autophagy fosters S. aureus intracellular survival or clearance remains unclear. The YAP1-TEAD axis regulates the expression of target genes controlling the cell fate (e.g., proliferation, migration, cell cycle …). Growing evidence indicates that YAP1-TEAD also regulates autophagy and lysosomal pathways. Recently we showed that the YAP1-TEAD axis promotes autophagy and lysosome biogenesis to restrict S. aureus intracellular replication. We also discovered that the C3 exoenzyme-like EDIN-B toxin produced by the pathogenic S. aureus ST80 strain inhibits YAP1 nuclear translocation resulting in a strong increase of intracellular S. aureus burden.


Subject(s)
Autophagy , Intracellular Space , Staphylococcus aureus , TEA Domain Transcription Factors , Humans , Autophagy/immunology , HEK293 Cells , Intracellular Space/microbiology , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification , Staphylococcus aureus/growth & development , Staphylococcus aureus/immunology , TEA Domain Transcription Factors/metabolism , In Vitro Techniques
13.
Cell Host Microbe ; 30(12): 1671-1684.e9, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36084633

ABSTRACT

Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and a major threat to women's reproductive health in particular. This obligate intracellular pathogen resides and replicates within a cellular compartment termed an inclusion, where it is sheltered by unknown mechanisms from gamma-interferon (IFNγ)-induced cell-autonomous host immunity. Through a genetic screen, we uncovered the Chlamydia inclusion membrane protein gamma resistance determinant (GarD) as a bacterial factor protecting inclusions from cell-autonomous immunity. In IFNγ-primed human cells, inclusions formed by garD loss-of-function mutants become decorated with linear ubiquitin and are eliminated. Leveraging cellular genome-wide association data, we identified the ubiquitin E3 ligase RNF213 as a candidate anti-Chlamydia protein. We demonstrate that IFNγ-inducible RNF213 facilitates the ubiquitylation and destruction of GarD-deficient inclusions. Furthermore, we show that GarD operates as a cis-acting stealth factor barring RNF213 from targeting inclusions, thus functionally defining GarD as an RNF213 antagonist essential for chlamydial growth during IFNγ-stimulated immunity.


Subject(s)
Bacterial Infections , Chlamydia Infections , Female , Humans , Chlamydia trachomatis/genetics , Genome-Wide Association Study , Chlamydia Infections/metabolism , Ubiquitination , Interferon-gamma/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , HeLa Cells , Adenosine Triphosphatases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
mBio ; 13(5): e0188822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154443

ABSTRACT

The obligate intracellular protozoan pathogen Toxoplasma gondii infects a wide range of vertebrate hosts and frequently causes zoonotic infections in humans. Whereas infected immunocompetent individuals typically remain asymptomatic, toxoplasmosis in immunocompromised individuals can manifest as a severe, potentially lethal disease, and congenital Toxoplasma infections are associated with adverse pregnancy outcomes. The protective immune response of healthy individuals involves the production of lymphocyte-derived cytokines such as interferon gamma (IFN-γ), which elicits cell-autonomous immunity in host cells. IFN-γ-inducible antiparasitic defense programs comprise nutritional immunity, the production of noxious gases, and the ubiquitylation of the Toxoplasma-containing parasitophorous vacuole (PV). PV ubiquitylation prompts the recruitment of host defense proteins to the PV and the consequential execution of antimicrobial effector programs, which reduce parasitic burden. However, the ubiquitin E3 ligase orchestrating these events has remained unknown. Here, we demonstrate that the IFN-γ-inducible E3 ligase RNF213 translocates to Toxoplasma PVs and facilitates PV ubiquitylation in human cells. Toxoplasma PVs become decorated with linear and K63-linked ubiquitin and recruit ubiquitin adaptor proteins in a process that is RNF213 dependent but independent of the linear ubiquitin chain assembly complex (LUBAC). IFN-γ priming fails to restrict Toxoplasma growth in cells lacking RNF213 expression, thus identifying RNF213 as a potent executioner of ubiquitylation-driven antiparasitic host defense. IMPORTANCE Globally, approximately one out of three people become infected with the obligate intracellular parasite Toxoplasma. These infections are typically asymptomatic but can cause severe disease and mortality in immunocompromised individuals. Infections can also be passed on from mother to fetus during pregnancy, potentially causing miscarriage or stillbirth. Therefore, toxoplasmosis constitutes a substantial public health burden. A better understanding of mechanisms by which healthy individuals control Toxoplasma infections could provide roadmaps toward novel therapies for vulnerable groups. Our work reveals a fundamental mechanism controlling intracellular Toxoplasma infections. Cytokines produced during Toxoplasma infections instruct human cells to produce the enzyme RNF213. We find that RNF213 labels intracellular vacuoles containing Toxoplasma with the small protein ubiquitin, which functions as an "eat-me" signal, attracting antimicrobial defense programs to fight off infection. Our work therefore identified a novel antiparasitic protein orchestrating a central aspect of the human immune response to Toxoplasma.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Adenosine Triphosphatases/metabolism , Antiparasitic Agents/metabolism , Antiviral Agents/metabolism , Cytokines/metabolism , Gases/metabolism , Interferon-gamma , Interferons/metabolism , Toxoplasma/metabolism , Toxoplasmosis/parasitology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Vacuoles/metabolism
15.
Dis Model Mech ; 15(7)2022 07 01.
Article in English | MEDLINE | ID: mdl-35801644

ABSTRACT

Pyroptosis, a regulated form of pro-inflammatory cell death, is characterised by cell lysis and by the release of cytokines, damage- and pathogen-associated molecular patterns. It plays an important role during bacterial infection, where it can promote an inflammatory response and eliminate the replicative niche of intracellular pathogens. Recent work, using a variety of bacterial pathogens, has illuminated the versatility of pyroptosis, revealing unexpected and important concepts underlying host defence. In this Review, we overview the molecular mechanisms underlying pyroptosis and discuss their role in host defence, from the single cell to the whole organism. We focus on recent studies using three cellular microbiology paradigms - Mycobacterium tuberculosis, Salmonella Typhimurium and Shigella flexneri - that have transformed the field of pyroptosis. We compare insights discovered in tissue culture, zebrafish and mouse models, highlighting the advantages and disadvantages of using these complementary infection models to investigate pyroptosis and for modelling human infection. Moving forward, we propose that in-depth knowledge of pyroptosis obtained from complementary infection models can better inform future studies using higher vertebrates, including humans, and help develop innovative host-directed therapies to combat bacterial infection.


Subject(s)
Bacterial Infections , Mycobacterium tuberculosis , Animals , Mice , Pyroptosis , Salmonella typhimurium , Zebrafish
16.
Parasitol Int ; 89: 102593, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35500831

ABSTRACT

Toxoplasma gondii is an intracellular parasite that does not differentiate among hosts and is capable of infecting nearly all warm-blooded vertebrates. Although about 30% of the human population is thought to be infected with T. gondii, it is one of the most common opportunistic infections that does not cause serious symptoms when the immune system is functioning normally. In this review, we focus on anti-T. gondii infection by host innate immunity, acquired immunity, and type II interferon-mediated cell-autonomous immunity. T. gondii has three types of secretory structures, rhoptries, dense granules, and micronemes, among which molecules released from T. gondii via rhoptries and dense granules act to inhibit host responses to eliminate. T. gondii. The molecules released by T. gondii through rhoptries and dense granules not only act to suppress host immunity, but also to control gene expression in infected cells, thereby favouring the spread of infection. T. gondii has survived to this day, and may continue to evolve by skilfully applying its own factors to the infected host.


Subject(s)
Parasites , Toxoplasma , Adaptive Immunity , Animals , Humans , Immunity, Innate , Interferon-gamma , Toxoplasma/genetics
17.
Parasitol Res ; 121(6): 1559-1571, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35435512

ABSTRACT

Vertebrate cells have evolved an elaborate multi-tiered intracellular surveillance system linked to downstream antimicrobial effectors to defend themselves from pathogens. This cellular self-defense system is referred to as cell-autonomous immunity. A wide array of cell-autonomous mechanisms operates to control intracellular pathogens including protozoa such as Toxoplasma gondii. Cell-autonomous immunity consists of antimicrobial defenses that are constitutively active in cells and those that are inducible typically in response to host cell activation. The IFN family of cytokines is an important stimulator of inducible cell-autonomous immunity. There are several hundred interferon-stimulated genes (ISGs); many of them have known roles in inducible cell-autonomous immune mechanisms. The importance of IFN-γ activation of cell-autonomous immunity is evidenced by the fact that many intracellular pathogens have evolved a diversity of molecular mechanisms to inhibit activation of infected cells through the JAK-STAT pathway in response to IFN-γ. The goal of this review is to provide a broad framework for understanding the elaborate system of cell-autonomous immunity that acts as a first line of defense between a host and intracellular parasites.


Subject(s)
Interferon-gamma , Toxoplasma , Immunity, Innate , Janus Kinases/metabolism , STAT Transcription Factors , Signal Transduction
18.
Infect Immun ; 89(11): e0020221, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34338548

ABSTRACT

Gamma interferon (IFN-γ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii. Effector IRGs are loaded onto the Toxoplasma-containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFN-γ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma. However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan-Irgm-/- cells lacking all three Irgm proteins, and Irgm2-/- mice succumb to Toxoplasma infections as readily as pan-Irgm-/- mice. These findings demonstrate that, relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma.


Subject(s)
GTP Phosphohydrolases/physiology , GTP-Binding Proteins/physiology , Toxoplasmosis/immunology , Animals , Apoptosis Regulatory Proteins/physiology , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/physiology , Ubiquitin/physiology , Vacuoles/physiology
19.
FEMS Microbiol Rev ; 45(1)2021 01 08.
Article in English | MEDLINE | ID: mdl-32897321

ABSTRACT

The phylum Chlamydiae constitutes a group of obligate intracellular bacteria that infect a remarkably diverse range of host species. Some representatives are significant pathogens of clinical or veterinary importance. For instance, Chlamydia trachomatis is the leading infectious cause of blindness and the most common bacterial agent of sexually transmitted diseases. Chlamydiae are exceptionally dependent on their eukaryotic host cells as a consequence of their developmental biology. At the same time, host cell death is an integral part of the chlamydial infection cycle. It is therefore not surprising that the bacteria have evolved exquisite and versatile strategies to modulate host cell survival and death programs to their advantage. The recent introduction of tools for genetic modification of Chlamydia spp., in combination with our increasing awareness of the complexity of regulated cell death in eukaryotic cells, and in particular of its connections to cell-intrinsic immunity, has revived the interest in this virulence trait. However, recent advances also challenged long-standing assumptions and highlighted major knowledge gaps. This review summarizes current knowledge in the field and discusses possible directions for future research, which could lead us to a deeper understanding of Chlamydia's virulence strategies and may even inspire novel therapeutic approaches.


Subject(s)
Cell Death , Chlamydia Infections/pathology , Host-Pathogen Interactions/physiology , Chlamydia trachomatis , Humans
20.
FEBS J ; 288(20): 5826-5849, 2021 10.
Article in English | MEDLINE | ID: mdl-33314740

ABSTRACT

Disease-causing microorganisms not only breach anatomical barriers and invade tissues but also frequently enter host cells, nutrient-enriched environments amenable to support parasitic microbial growth. Protection from many infectious diseases is therefore reliant on the ability of individual host cells to combat intracellular infections through the execution of cell-autonomous defense programs. Central players in human cell-autonomous immunity are members of the family of dynamin-related guanylate binding proteins (GBPs). The importance of these interferon-inducible GTPases in host defense to viral, bacterial, and protozoan pathogens has been established for some time; only recently, cell biological and biochemical studies that largely focused on the prenylated paralogs GBP1, GBP2, and GBP5 have provided us with robust molecular frameworks for GBP-mediated immunity. Specifically, the recent characterization of GBP1 as a bona fide pattern recognition receptor for bacterial lipopolysaccharide (LPS) disrupting the integrity of bacterial outer membranes through LPS aggregation, the discovery of a link between hydrolysis-induced GMP production by GBP1 and inflammasome activation, and the classification of GBP2 and GBP5 as inhibitors of viral envelope glycoprotein processing via suppression of the host endoprotease furin have paved the way for a vastly improved conceptual understanding of the molecular mechanisms by which GBP nanomachines execute cell-autonomous immunity. The herein discussed models incorporate our current knowledge of the antimicrobial, proinflammatory, and biochemical properties of human GBPs and thereby provide testable hypotheses that will guide future studies into the intricacies of GBP-controlled host defense and their role in human disease.


Subject(s)
Bacteria/immunology , GTP-Binding Proteins/metabolism , Host-Pathogen Interactions , Immunity, Innate/immunology , Inflammasomes/immunology , GTP-Binding Proteins/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL