Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
World J Crit Care Med ; 13(2): 91397, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38855276

ABSTRACT

Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.

2.
Brain Res ; 1838: 148998, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754802

ABSTRACT

Altered extracellular amino acid concentrations following concussion or mild traumatic brain injury can result in delayed neuronal damage through overactivation of NMDA glutamatergic receptors. However, the consequences of repeated concussions prior to complete recovery are not well understood. In this study, we utilized in vivo cerebral microdialysis and a weight-drop model to investigate the acute neurochemical response to single and repeated concussions in adult rats that were fully conscious. A microdialysis probe was inserted into the hippocampus and remained in place during impact. Primary outcomes included concentrations of glutamate, GABA, taurine, glycine, glutamine, and serine, while secondary outcomes were righting times and excitotoxic indices. Compared to sham injury, the first concussion resulted in significant increases in glutamate, GABA, taurine, and glycine levels, longer righting times, and higher excitotoxic indices. Following the second concussion, righting times were significantly longer, suggesting cumulative effects of repeated concussion while only partial increases were observed in glutamate and taurine levels. GABA and glycine levels, and excitotoxic indices were comparable to sham injury. These findings suggest that single and repeated concussions may induce acute increases in several amino acids, while repeated concussions could exacerbate neurological symptoms despite less pronounced neurochemical changes.


Subject(s)
Brain Concussion , Disease Models, Animal , Microdialysis , Rats, Sprague-Dawley , Animals , Brain Concussion/metabolism , Microdialysis/methods , Male , Rats , Hippocampus/metabolism , gamma-Aminobutyric Acid/metabolism , Taurine/metabolism , Glutamic Acid/metabolism , Glycine/metabolism
3.
World Neurosurg ; 187: e620-e628, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38679378

ABSTRACT

OBJECTIVE: The local effects of an intracerebral hemorrhage (ICH) on surrounding brain tissue can be detected bedside using multimodal brain monitoring techniques. The aim of this study is to design a gradient boosting regression model using the R package boostmtree with the ability to predict lactate-pyruvate ratio measurements in ICH. METHODS: We performed a retrospective analysis of 6 spontaneous ICH and 6 traumatic ICH patients who underwent surgical removal of the clot with microdialysis catheters placed in the perihematomal zone. Predictors of glucose, lactate, pyruvate, age, sex, diagnosis, and operation status were used to design our model. RESULTS: In a holdout analysis, the model forecasted lactate-pyruvate ratio trends in a representative in-sample testing set. We anticipate that boostmtree could be applied to designs of similar regression models to analyze trends in other multimodal monitoring features across other types of acute brain injury. CONCLUSIONS: The model successfully predicted hourly lactate-pyruvate ratios in spontaneous ICH and traumatic ICH cases after the hemorrhage evacuation and displayed significantly better performance than linear models. Our results suggest that boostmtree may be a powerful tool in developing more advanced mathematical models to assess other multimodal monitoring parameters for cases in which the perihematomal environment is monitored.


Subject(s)
Cerebral Hemorrhage , Lactic Acid , Pyruvic Acid , Humans , Cerebral Hemorrhage/diagnosis , Retrospective Studies , Lactic Acid/metabolism , Male , Female , Pyruvic Acid/metabolism , Middle Aged , Aged , Algorithms , Microdialysis/methods , Microdialysis/trends , Adult , Aged, 80 and over
4.
Acta Neurochir (Wien) ; 166(1): 190, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653934

ABSTRACT

BACKGROUND: Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS: Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS: Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS: Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.


Subject(s)
Brain Injuries, Traumatic , Cerebrovascular Circulation , Homeostasis , Intracranial Pressure , Lactic Acid , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/metabolism , Child , Adolescent , Homeostasis/physiology , Female , Male , Retrospective Studies , Intracranial Pressure/physiology , Cerebrovascular Circulation/physiology , Lactic Acid/metabolism , Lactic Acid/analysis , Microdialysis/methods , Pyruvic Acid/metabolism , Pyruvic Acid/analysis , Brain/metabolism , Brain/physiopathology
5.
Surg Neurol Int ; 14: 395, 2023.
Article in English | MEDLINE | ID: mdl-38053714

ABSTRACT

Background: Cerebral microdialysis (CMD) is an FDA-approved multimodal invasive monitoring technique that provides local brain metabolism measurements through continuous interstitial brain fluid sampling at the bedside. The past applications in traumatic brain injury and subarachnoid hemorrhage show that acute brain injury (ABI) can lead to a metabolic crisis reflected by changes in cerebral glucose, pyruvate, and lactate. However, limited literature exists on CMD in spontaneous intracerebral hemorrhage (ICH). Case Description: A 45-year-old woman presented with a Glasgow Coma Scale of 8T and left frontal ICH with a 6 mm midline shift. She underwent craniotomy and ICH evacuation. Intraoperatively, CMD, brain tissue oxygenation (PbtO2), intracranial pressure (ICP), and cerebral blood flow (CBF) catheters were placed, targeted toward the peri-hematoma region. Postoperatively, ICP was normal; however, PbtO2, CBF, glucose, and lactate/ pyruvate ratio were abnormal. Due to concern for the metabolic crisis, poor examination, and hydrocephalus on computed tomography of the head (CTH), she underwent external ventricular drainage (EVD). Post-EVD, all parameters normalized (P < 0.05 on Student's t-test). Monitors were removed, and she was discharged to a nursing facility with a modified Rankin scale of 4. Conclusion: Here, we demonstrate the safe implementation of CMD in ICH and the use of CMD in tandem with PbtO2/ICP/CBF to guide treatment in ICH. Despite a normal ICP, numerous cerebral metabolic derangements existed and improved after cerebrospinal fluid diversion. A normal ICP may not reflect underlying metabolic-substrate demands of the brain during ABI. CMD and PbtO2/CBF monitoring augment traditional ICP monitoring in brain injury. Further prospective studies will be needed to understand further the interplay between ICP, PbtO2, CBF, and CMD values in ABI.

6.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139131

ABSTRACT

The study of an organism's response to cerebral ischemia at different levels is essential to understanding the mechanism of the injury and protection. A great interest is devoted to finding the links between quantitative metabolic changes and post-ischemic damage. This work aims to summarize the outcomes of the most studied metabolites in brain tissue-lactate, glutamine, GABA (4-aminobutyric acid), glutamate, and NAA (N-acetyl aspartate)-regarding their biological function in physiological conditions and their role after cerebral ischemia/reperfusion. We focused on ischemic damage and post-ischemic recovery in both experimental-including our results-as well as clinical studies. We discuss the role of blood glucose in view of the diverse impact of hyperglycemia, whether experimentally induced, caused by insulin resistance, or developed as a stress response to the cerebral ischemic event. Additionally, based on our and other studies, we analyze and critically discuss post-ischemic alterations in energy metabolites and the elevation of blood ketone bodies observed in the studies on rodents. To complete the schema, we discuss alterations in blood plasma circulating amino acids after cerebral ischemia. So far, no fundamental brain or blood metabolite(s) has been recognized as a relevant biological marker with the feasibility to determine the post-ischemic outcome or extent of ischemic damage. However, studies from our group on rats subjected to protective ischemic preconditioning showed that these animals did not develop post-ischemic hyperglycemia and manifested a decreased metabolic infringement and faster metabolomic recovery. The metabolomic approach is an additional tool for understanding damaging and/or restorative processes within the affected brain region reflected in the blood to uncover the response of the whole organism via interorgan metabolic communications to the stressful cerebral ischemic challenge.


Subject(s)
Brain Ischemia , Hyperglycemia , Rats , Animals , Brain Ischemia/metabolism , Cerebral Infarction , Brain/metabolism , Lactic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Hyperglycemia/metabolism
7.
Brain Spine ; 3: 102686, 2023.
Article in English | MEDLINE | ID: mdl-38021004

ABSTRACT

Introduction: Complex metabolic disruption is a major aspect of the pathophysiology of traumatic brain injury (TBI). Pyruvate is an intermediate in glucose metabolism and considered one of the most clinically informative metabolites during neurocritical care of TBI patients, especially in deducing the lactate/pyruvate ratio (LPR) - a widely-used metric for probing the brain's metabolic redox state. LPR is conventionally measured offline on a bedside analyzer, on hourly accumulations of brain microdialysate. However, there is increasing interest within the field to quantify microdialysate pyruvate and LPR continuously in near-real-time within its pathophysiological range. We have previously measured pure standard pyruvate in-vitro using mid-infrared transmission, employing a commercially available external cavity-quantum cascade laser (EC-QCL) and a microfluidic flow cell and reported a limit of detection (LOD) of 0.1 mM. Research question: The present study was to test whether the current commercially available state-of-the-art mid-infrared transmission system, can detect pyruvate levels lower than previously reported. Materials and methods: We measured pyruvate in perfusion fluid on the mid-infrared transmission system also equipped with an EC-QCL and microfluidic flow cells, tested at three pathlengths. Results: We characterised the system to extract its relevant figures-of-merit and report the LOD of 0.07 mM. Discussion and conclusion: The reported LOD of 0.07 mM represents a clinically recognised threshold and is the lowest value reported in the field for a sensor that can be coupled to microdialysis. While work is ongoing for a definitive evaluation of the system to measuring pyruvate, these preliminary results set a good benchmark and reference against which future developments can be examined.

8.
Environ Toxicol Pharmacol ; 104: 104285, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783442

ABSTRACT

In the present study, we investigated the role of voltage-sensitive calcium channels (VSCCs) on the striatal dopamine release induced by the pesticide glyphosate (GLY) using selective VSCC inhibitors. The dopamine levels were measured by in vivo cerebral microdialysis coupled to HPLC-ED. Nicardipine (L-type VSCC antagonist) or ω-conotoxin MVIIC (non-selective P/Q-type antagonist) had no effect on dopamine release induced by 5 mM GLY. In contrast, flunarizine (T-type antagonist) or ω-conotoxin GVIA (neuronal N-type antagonist) significantly reduced GLY-stimulated dopamine release. These results suggest that GLY-induced dopamine release depends on extracellular calcium and its influx through the T- and N-type VSCCs. These findings were corroborated by molecular docking, which allowed us to establish a correlation between the effect of GLY on blocked VSCC with the observed dopamine release. We propose new molecular targets of GLY in the dorsal striatum, which could have important implications for the assessment of pesticide risks in non-target organisms.


Subject(s)
Calcium Channels , Pesticides , Dopamine , Calcium Channel Blockers/pharmacology , Organophosphorus Compounds/toxicity , Molecular Docking Simulation , Calcium/metabolism
9.
10.
J Cereb Blood Flow Metab ; 43(11): 1967-1982, 2023 11.
Article in English | MEDLINE | ID: mdl-37572080

ABSTRACT

Delayed cerebral ischemia (DCI) is a devastating complication of aneurysmal subarachnoid hemorrhage (ASAH) causing brain infarction and disability. Cerebral microdialysis (CMD) monitoring is a focal technique that may detect DCI-related neurochemical changes as an advance warning. We conducted retrospective analyses from 44 poor-grade ASAH patients and analyzed glucose, lactate, pyruvate, and glutamate concentrations in control patients without DCI (n = 19), and in patients with DCI whose CMD probe was located within (n = 17) or outside (n = 8) a new infarct. When monitored from within a lesion, DCI was preceded by a decrease in glucose and a surge in glutamate, accompanied by increases in lactate/pyruvate and lactate/glucose ratios whereas these parameters remained stable in control patients. When CMD monitoring was performed outside the lesion, the glutamate surge was absent, but glucose and L/G ratio were still significantly altered. Overall, glucose and L/G ratio were significant biomarkers of DCI (se96.0, spe73.7-68.4). Glucose and L/G predicted DCI 67 h before CT detection of a new infarct. The pathogenesis of DCI therefore induces early metabolic disturbances that can be detected by CMD as an advance warning. Glucose and L/G could provide a trigger for initiating further examination or therapy, earlier than when guided by other monitoring techniques.


Subject(s)
Brain Ischemia , Subarachnoid Hemorrhage , Humans , Retrospective Studies , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , Brain Ischemia/metabolism , Brain/metabolism , Cerebral Infarction/complications , Glucose/metabolism , Lactic Acid/metabolism , Pyruvic Acid/metabolism , Glutamic Acid
11.
Neurocrit Care ; 38(2): 470-485, 2023 04.
Article in English | MEDLINE | ID: mdl-36890340

ABSTRACT

Invasive neuromonitoring has become an important part of pediatric neurocritical care, as neuromonitoring devices provide objective data that can guide patient management in real time. New modalities continue to emerge, allowing clinicians to integrate data that reflect different aspects of cerebral function to optimize patient management. Currently, available common invasive neuromonitoring devices that have been studied in the pediatric population include the intracranial pressure monitor, brain tissue oxygenation monitor, jugular venous oximetry, cerebral microdialysis, and thermal diffusion flowmetry. In this review, we describe these neuromonitoring technologies, including their mechanisms of function, indications for use, advantages and disadvantages, and efficacy, in pediatric neurocritical care settings with respect to patient outcomes.


Subject(s)
Brain Injuries , Cerebrovascular Circulation , Child , Humans , Brain , Monitoring, Physiologic/methods , Intracranial Pressure
12.
Front Neurol ; 14: 1085540, 2023.
Article in English | MEDLINE | ID: mdl-36895905

ABSTRACT

Cerebral microdialysis may be used in patients with severe brain injury to monitor their cerebral physiology. In this article we provide a concise synopsis with illustrations and original images of catheter types, their structure, and how they function. Where and how catheters are inserted, their identification on imaging modalities (CT and MRI), together with the roles of glucose, lactate/pyruvate ratio, glutamate, glycerol and urea are summarized in acute brain injury. The research applications of microdialysis including pharmacokinetic studies, retromicrodialysis, and its use as a biomarker for efficacy of potential therapies are outlined. Finally, we explore limitations and pitfalls of the technique, as well as potential improvements and future work that is needed to progress and expand the use of this technology.

13.
Anesthesiol Clin ; 41(1): 39-78, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36872007

ABSTRACT

Traumatic brain injury is a devastating event associated with substantial morbidity. Pathophysiology involves the initial trauma, subsequent inflammatory response, and secondary insults, which worsen brain injury severity. Management entails cardiopulmonary stabilization and diagnostic imaging with targeted interventions, such as decompressive hemicraniectomy, intracranial monitors or drains, and pharmacological agents to reduce intracranial pressure. Anesthesia and intensive care requires control of multiple physiologic variables and evidence-based practices to reduce secondary brain injury. Advances in biomedical engineering have enhanced assessments of cerebral oxygenation, pressure, metabolism, blood flow, and autoregulation. Many centers employ multimodality neuromonitoring for targeted therapies with the hope to improve recovery.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Intensive Care Units , Brain , Critical Care
14.
Neurocrit Care ; 39(1): 145-154, 2023 08.
Article in English | MEDLINE | ID: mdl-36922474

ABSTRACT

BACKGROUND: The aim was to study the course of body temperature in the acute phase of poor-grade aneurysmal subarachnoid hemorrhage (aSAH) in relation to the primary brain injury, cerebral physiology, and clinical outcome. METHODS: In this observational study, 166 patients with aSAH treated at the neurosurgery department at Uppsala University Hospital in Sweden between 2008 and2018 with temperature, intracranial pressure (ICP), and microdialysis (MD) monitoring were included. The first 10 days were divided into the early phase (days 1-3) and the vasospasm phase (days 4-10). RESULTS: Normothermia (temperature = 36-38 °C) was most prevalent in the early phase. A lower mean temperature at this stage was univariately associated with a worse primary brain injury, with higher Fisher grade and higher MD glycerol concentration, as well as a worse neurological recovery at 1 year. There was otherwise no association between temperature and cerebral physiological variables in the early phase. There was a transition toward an increased burden of hyperthermia (temperature > 38 °C) in the vasospasm phase. This was associated with concurrent infections but not with neurological or radiological injury severity at admission. Elevated temperature was associated with higher MD pyruvate concentration, lower rate of an MD pattern indicative of ischemia, and higher rate of poor neurological recovery at 1 year. There was otherwise no association between temperature and cerebral physiological variables in the vasospasm phase. The associations between temperature and clinical outcome did not hold true in multiple logistic regression analyses. CONCLUSIONS: Spontaneously low temperature in the early phase reflected a worse primary brain injury and indicated a worse outcome prognosis. Hyperthermia was common in the vasospasm phase and was more related to infections than primary injury severity but also with a more favorable energy metabolic pattern with better substrate supply, possibly related to hyperemia.


Subject(s)
Brain Injuries , Brain Ischemia , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Humans , Subarachnoid Hemorrhage/complications , Intracranial Pressure , Temperature , Brain Ischemia/complications , Brain Injuries/complications , Energy Metabolism , Vasospasm, Intracranial/complications
15.
Neurotrauma Rep ; 4(1): 25-40, 2023.
Article in English | MEDLINE | ID: mdl-36726870

ABSTRACT

Cerebral protein profiling in traumatic brain injury (TBI) is needed to better comprehend secondary injury pathways. Cerebral microdialysis (CMD), in combination with the proximity extension assay (PEA) technique, has great potential in this field. By using PEA, we have previously screened >500 proteins from CMD samples collected from TBI patients. In this study, we customized a PEA panel prototype of 21 selected candidate protein biomarkers, involved in inflammation (13), neuroplasticity/-repair (six), and axonal injury (two). The aim was to study their temporal dynamics and relation to age, structural injury, and clinical outcome. Ten patients with severe TBI and CMD monitoring, who were treated in the Neurointensive Care Unit, Uppsala University Hospital, Sweden, were included. Hourly CMD samples were collected for up to 7 days after trauma and analyzed with the 21-plex PEA panel. Seventeen of the 21 proteins from the CMD sample analyses showed significantly different mean levels between days. Early peaks (within 48 h) were noted with interleukin (IL)-1ß, IL-6, IL-8, granulocyte colony-stimulating factor, transforming growth factor alpha, brevican, junctional adhesion molecule B, and neurocan. C-X-C motif chemokine ligand 10 peaked after 3 days. Late peaks (>5 days) were noted with interleukin-1 receptor antagonist (IL-1ra), monocyte chemoattractant protein (MCP)-2, MCP-3, urokinase-type plasminogen activator, Dickkopf-related protein 1, and DRAXIN. IL-8, neurofilament heavy chain, and TAU were biphasic. Age (above/below 22 years) interacted with the temporal dynamics of IL-6, IL-1ra, vascular endothelial growth factor, MCP-3, and TAU. There was no association between radiological injury (Marshall grade) or clinical outcome (Extended Glasgow Outcome Scale) with the protein expression pattern. The PEA method is a highly sensitive molecular tool for protein profiling from cerebral tissue in TBI. The novel TBI dedicated 21-plex panel showed marked regulation of proteins belonging to the inflammation, plasticity/repair, and axonal injury families. The method may enable important insights into complex injury processes on a molecular level that may be of value in future efforts to tailor pharmacological TBI trials to better address specific disease processes and optimize timing of treatments.

16.
Front Neurol ; 14: 1017290, 2023.
Article in English | MEDLINE | ID: mdl-36779054

ABSTRACT

Traditionally, intracranial pressure (ICP) and partial brain tissue oxygenation (PbtO2) have been the primary invasive intracranial measurements used to guide management in patients with severe traumatic brain injury (TBI). After injury however, the brain develops an increased metabolic demand which may require an increment in the oxidative metabolism of glucose. Simultaneously, metabolic, and electrical dysfunction can lead to an inability to meet these demands, even in the absence of ischemia or increased intracranial pressure. Cerebral microdialysis provides the ability to accurately measure local concentrations of various solutes including lactate, pyruvate, glycerol and glucose. Experimental and clinical data demonstrate that such measurements of cellular metabolism can yield critical missing information about a patient's physiologic state and help limit secondary damage. Glucose management in traumatic brain injury is still an unresolved question. As cerebral glucose metabolism may be uncoupled from systemic glucose levels due to the metabolic dysfunction, measurement of cerebral extracellular glucose concentrations could provide more predictive information and prove to be a better biomarker to avoid secondary injury of at-risk brain tissue. Based on data obtained from cerebral microdialysis, specific interventions such as ICP-directed therapy, blood glucose increment, seizure control, and/or brain oxygen optimization can be instituted to minimize or prevent secondary insults. Thus, microdialysis measurements of parenchymal metabolic function provides clinically valuable information that cannot be obtained by other monitoring adjuncts in the standard ICU setting.

17.
Brain Commun ; 5(1): fcac342, 2023.
Article in English | MEDLINE | ID: mdl-36687392

ABSTRACT

Subarachnoid haemorrhage is a devastating disease that results in neurocognitive deficits and a poor functional outcome in a considerable proportion of patients. In this study, we investigated the prognostic value of microtubule-associated tau protein measured in the cerebral microdialysate for long-term functional and neuropsychological outcomes in poor-grade subarachnoid haemorrhage patients. We recruited 55 consecutive non-traumatic subarachnoid haemorrhage patients who underwent multimodal neuromonitoring, including cerebral microdialysis. Mitochondrial dysfunction was defined as lactate-to-pyruvate ratio >30 together with pyruvate >70 mmol/L and metabolic distress as lactate-to-pyruvate ratio >40. The multidimensional 12-month outcome was assessed by means of the modified Rankin scale (poor outcome: modified Rankin scale ≥4) and a standardized neuropsychological test battery. We used multivariable generalized estimating equation models to assess associations between total microdialysate-tau levels of the first 10 days after admission and hospital complications and outcomes. Patients were 56 ± 12 years old and presented with a median Hunt & Hess score of 5 (interquartile range: 3-5). Overall mean total microdialysate-tau concentrations were highest within the first 24 h (5585 ± 6291 pg/mL), decreased to a minimum of 2347 ± 4175 pg/mL on Day 4 (P < 0.001) and remained stable thereafter (P = 0.613). Higher total microdialysate-tau levels were associated with the occurrence of delayed cerebral ischaemia (P = 0.001), episodes of metabolic distress (P = 0.002) and mitochondrial dysfunction (P = 0.034). Patients with higher tau levels had higher odds for a poor 12-month functional outcome (adjusted odds ratio: 2.61; 95% confidence interval: 1.32-5.17; P = 0.006) and impaired results in the trail making test-B (adjusted odds ratio: 3.35; 95% confidence interval: 1.16-9.68; P = 0.026) indicative of cognitive flexibility. Total microdialysate-tau levels significantly decreased over the first 10 days (P < 0.05) in patients without delayed cerebral ischaemia or good functional outcomes and remained high in those with delayed cerebral ischaemia and poor 12-month outcomes, respectively. Dynamic changes of total tau in the cerebral microdialysate may be a useful biomarker for axonal damage associated with functional and neurocognitive recovery in poor-grade subarachnoid haemorrhage patients. In contrast, ongoing axonal damage beyond Day 3 after bleeding indicates a higher risk for delayed cerebral ischaemia as well as a poor functional outcome.

19.
Toxicol Lett ; 373: 105-113, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36427774

ABSTRACT

The possible role of voltage-sensitive calcium channels (VSCC) activation in the glufosinate ammonium (GLA)-induced dopamine release was investigated using selective VSCC blockers and the dopamine levels were measured by HPLC from samples obtained by in vivo cerebral microdialysis. While pretreatment with 10 µM flunarizine (T-type VSCC antagonist) or nicardipine (L-type VSCC antagonist) had no statistically significant effect on dopamine release induced by 10 mM GLA, pretreatment with 100 µM of both antagonists, or 20 µM ω-conotoxin MVIIC (non-selective P/Q-type VSCC antagonist) significantly decreased the GLA-induced dopamine release over 72.2%, 73%, and 70.2%, respectively. Administration of the specific antagonist of neuronal N-type VSCCs, the ω-conotoxin GVIA (20 µM), produced an almost complete blockade of in vivo dopamine release induced by GLA. These results show that GLA-induced dopamine release could be produced by the activation of a wide range of striatal VSCC located at the synaptic terminals and axons of striatal dopaminergic neurons, especially N-type VSCC.


Subject(s)
Dopamine , Pesticides , Rats , Animals , Organophosphorus Compounds , Calcium Channels , Potassium/metabolism , Calcium Channel Blockers/pharmacology
20.
J Neurotrauma ; 40(5-6): 472-481, 2023 03.
Article in English | MEDLINE | ID: mdl-36193562

ABSTRACT

Following traumatic brain injury (TBI), cerebral metabolic dysfunction, characterized by an elevated cerebral microdialysis (CMD) lactate/pyruvate (LP) ratio, is associated with poor outcome. However, the exact pathophysiological mechanisms underlying this association are not entirely established. In this pre-planned analysis of the BIOmarkers of AXonal injury after Traumatic Brain Injury (BIO-AX-TBI) prospective study, we investigated any associations of LP ratio with brain structure volume change rates at 1 year. Fourteen subjects underwent acute-phase (0-96 h post-TBI) CMD monitoring and had longitudinal magnetic resonance imaging (MRI) quantification of brain volume loss between the subacute phase (14 days to 6 weeks) and 1 year after TBI, recalculated as an annual rate. On average, CMD showed an elevated (>25) LP ratio (31 [interquartile range (IQR) 24-34]), indicating acute cerebral metabolic dysfunction. Annualized whole brain and total gray matter (GM) volume change rates were abnormally reduced (-3.2% [-9.3 to -2.2] and -1.9% [-4.4 to 1.7], respectively). Reduced annualized total GM volume correlated significantly with elevated CMD LP ratio (Spearman's ρ = -0.68, p-value = 0.01) and low CMD glucose (ρ = 0.66, p-value = 0.01). After adjusting for age, admission Glasgow Coma Scale (GCS) score and CT Marshall score, CMD LP ratio remained strongly associated with 1-year total GM volume change rate (p < 0.001; multi-variable analysis). No relationship was found between WM volume changes and CMD metabolites. We demonstrate a strong association between acute post-traumatic cerebral metabolic dysfunction and 1-year gray matter atrophy, reinforcing the role of CMD LP ratio as an early biomarker of poor long-term recovery after TBI.


Subject(s)
Brain Diseases , Brain Injuries, Traumatic , Humans , Prospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/metabolism , Brain/diagnostic imaging , Brain/metabolism , Glasgow Coma Scale , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL