ABSTRACT
AIMS: Our aim is to characterize through whole-genome sequencing (WGS) the antimicrobial resistance (AMR) and heavy metal tolerance (HMT) genes content, plasmid presence, virulence potential and genomic diversity of the rare non-typhoid Salmonella enterica serovar Orion (S. Orion) from 19 countries of the African, American, Eastern Mediterranean, European, Southeastern Asia and Western Pacific regions. METHODS AND RESULTS: Totally 324 S. Orion genomes were screened for AMR, HMT and virulence genes, plasmids and Salmonella Pathogenicity Islands (SPIs). Genomic diversity was investigated using Multi-Locus Sequence Typing (MLST) and core-genome MLST (cgMLST). Efflux pump encoding genes mdsA and mdsB were present in all genomes analysed, while quinolone chromosomal point mutations and aminoglycoside, beta-lactam, colistin, lincosamide, macrolide, phenicol, sulphonamide, trimethoprim, tetracycline and disinfectant resistance genes were found in 0.3%-5.9%. A total of 17 genomes (5.2%) from Canada, the United Kingdom, the USA and Tanzania showed a potential multi-drug resistance profile. Gold tolerance genes golS and golT were detected in all genomes analysed, while arsenic, copper, mercury, silver and tellurium tolerance genes were found in 0.3%-35.5%. Col(MGD2) was the most frequently detected plasmid, in 15.4% of the genomes. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, serum resistance, stress adaptation, type III secretion systems and six SPIs (1, 2, 3, 4, 5, 9, 12, 13, 14 and C63PI) were detected. ST639 was assigned to 89.2% of the S. Orion genomes, while cgMLST showed core-genome STs and clusters of strains specific by countries. CONCLUSION: The high virulence factor frequencies, the genomic similarity among some non-clinical and clinical strains circulating worldwide and the presence of a strain carrying a resistance gene against a last resource antimicrobial like colistin, highlight the potential risk of S. Orion strains for public health and food safety and reinforce the importance to not underestimate the potential hazard of rare non-typhoid Salmonella serovars.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Genome, Bacterial , Salmonella enterica , Salmonella enterica/genetics , Salmonella enterica/drug effects , Salmonella enterica/pathogenicity , Virulence/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Humans , Whole Genome Sequencing , Animals , Salmonella Infections/microbiology , Salmonella Infections/epidemiology , Serogroup , Plasmids/geneticsABSTRACT
Introduction. Salmonella enterica serovar Isangi (S. Isangi) is a rare non-typhoidal serovar, related to invasive nosocomial infections in various countries and to increasing antimicrobial resistance rates.Gap statement. Despite existing reports on S. Isangi, there is a lack of information of specific traits regarding this serovar, which could be improved through genomic analyses.Aim. Our goals were to characterize the antimicrobial resistance, virulence potential and genomic relatedness of 11 S. Isangi strains from Brazil in comparison to 185 genomes of global isolates using whole-genome sequencing (WGS) data.Methodology. Phenotypic resistance was determined by disc-diffusion. The search for resistance genes, plasmids, prophages, Salmonella pathogenicity islands (SPIs) and virulence genes, plus multi-locus sequence typing (MLST) and core-genome MLST (cgMLST) were performed using WGS.Results. Brazilian S. Isangi strains showed phenotypic resistance to nalidixic acid, ciprofloxacin and streptomycin, and harboured antimicrobial resistance [qnrB19, aac(6')-Iaa, mdsAB] and heavy metal tolerance (arsD, golST) genes. Col(pHAD28) and IncFII(S) plasmids, virulence genes related to adherence, macrophage induction, magnesium uptake, regulation and type III secretion systems, 12 SPIs and eight prophages were detected. The 185 additional global genomes analysed harboured resistance genes against 11 classes of antimicrobial compounds, 22 types of plasmids, 32 prophages, 14 SPIs, and additional virulence genes related to serum resistance, stress adaptation and toxins. Sequence type (ST)216 was assigned to genomes from Brazil and other countries, while ST335 was the most frequent ST, especially among South African genomes. cgMLST showed that Brazilian genomes were more closely related to genomes from European and African countries, the USA and Taiwan, while the majority of South African genomes were more closely related among each other.Conclusion. The presence of S. Isangi strains from Brazil and different countries showing a close genomic correlation, antimicrobial resistance profiles to drugs used in human therapy and a large number of virulence determinants reinforced the need for stronger initiatives to monitor rare non-typhoidal Salmonella serovars such as S. Isangi in order to prevent its dissemination among human and non-human sources.
Subject(s)
Anti-Bacterial Agents , Salmonella enterica , Virulence/genetics , Serogroup , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Brazil/epidemiology , Drug Resistance, Bacterial/genetics , Salmonella , Genomics , Salmonella enterica/genetics , Drug Resistance, Multiple, Bacterial/geneticsABSTRACT
Numerous genotyping techniques based on different principles and with different costs and levels of resolution are currently available for understanding the transmission dynamics of brucellosis worldwide. We aimed to compare the population structure of the genomes of 53 Brazilian Brucella abortus isolates using eight different genotyping methods: multiple-locus variable-number tandem-repeat analysis (MLVA8, MLVA11, MLVA16), multilocus sequence typing (MLST9, MLST21), core genome MLST (cgMLST) and two techniques based on single nucleotide polymorphism (SNP) detection (parSNP and NASP) from whole genomes. The strains were isolated from six different Brazilian states between 1977 and 2008 and had previously been analyzed using MLVA8, MLVA11, and MLVA16. Their whole genomes were sequenced, assembled, and subjected to MLST9 MLST21, cgMLST, and SNP analyses. All the genotypes were compared by hierarchical grouping method based on the average distances between the correlation matrices of each technique. MLST9 and MLST21 had the lowest level of resolution, both revealing only four genotypes. MLVA8, MLVA11, and MLVA16 had progressively increasing levels of resolution as more loci were analyzed, identifying 6, 16, and 44 genotypes, respectively. cgMLST showed the highest level of resolution, identifying 45 genotypes, followed by the SNP-based methods, both of which had 44 genotypes. In the assessed population, MLVA was more discriminatory than MLST and was easier and cheaper to perform. SNP techniques and cgMLST provided the highest levels of resolution and the results from the two methods were in close agreement. In conclusion, the choice of genotyping technique can strongly affect one's ability to make meaningful epidemiological conclusions but is dependent on available resources: while the VNTR based techniques are more indicated to high prevalence scenarios, the WGS methods are the ones with the best discriminative power and therefore recommended for outbreaks investigation.
Subject(s)
Brucella abortus , Brucellosis , Humans , Brucella abortus/genetics , Genotyping Techniques , Genotype , Multilocus Sequence Typing/methods , Brucellosis/epidemiology , Minisatellite Repeats , PhylogenyABSTRACT
Campylobacter has been one of the most common causative agent of bacterial food-borne gastroenteritis in humans worldwide. However, in Brazil the campylobacteriosis has been a neglected disease and there is insufficient data to estimate the incidence of this pathogen in the country. AIMS: The current study aimed to determine the phylogenetic relationships among Campylobacter coli strains isolated in Brazil and to compare them with international Campylobacter isolates available in some public databases. METHODS AND RESULTS: A total of 63C. coli strains isolated in Brazil were studied. The MLST analysis showed 18 different STs including three STs not yet described in the PubMLST database. The cgMLST allocated the Brazilian strains studied into five main clusters and each cluster comprised groups of strains with nearly identical cgMLST profiles and with significant genetic distance observed among the distinct clusters. The comparison of the Brazilian strains with 3401 isolates from different countries showed a wide distribution of these strains isolated in this country. CONCLUSIONS: The results showed a high similarity among some strains studied and a wide distribution of the Brazilian strains when compared to isolates from different countries, which is an interesting data set since it showed a high genetic diversity of these strains from Brazil in a global context. This study contributed for a better genomic characterization of C. coli strains isolated in Brazil and provided important information about the diversity of this clinically-relevant pathogen.
Subject(s)
Campylobacter coli/genetics , Genetic Variation , Genome, Bacterial , Animals , Brazil , Chickens/microbiology , Fresh Water/microbiology , Humans , Multilocus Sequence Typing , Phylogeny , Platyrrhini/microbiology , Sewage/microbiologyABSTRACT
Neisseria elongata is part of the commensal microbiota of the oropharynx. Although it is not considered pathogenic to humans, N. elongata has been implicated in several cases of infective endocarditis (IE). Here, we report a case of IE caused by N. elongata subsp. nitroreducens (Nel_M001) and compare its genome with 17 N. elongata genomes available in GenBank. We also evaluated resistance and virulence profiles with Comprehensive Antibiotic Resistance and Virulence Finder databases. The results showed a wide diversity among N. elongata isolates. Based on the pangenome cumulative curve, we demonstrate that N. elongata has an open pangenome. We found several different resistance genes, mainly associated with antibiotic efflux pumps. A wide range of virulence genes was observed, predominantly pilus formation genes. Nel_M001 was the only isolate to present two copies of some pilus genes and not present nspA gene. Together, our results provide insights into how this commensal microorganism can cause IE and may assist further biological investigations on nonpathogenic Neisseria spp. Case reporting and pangenome analyses are critical for enhancing our understanding of IE pathogenesis, as well as for alerting physicians and microbiologists to enable rapid identification and treatment to avoid unfavorable outcomes.
Subject(s)
Endocarditis, Bacterial , Endocarditis , Neisseria elongata , Endocarditis/complications , Endocarditis/genetics , Endocarditis, Bacterial/genetics , Genomics , Humans , Neisseria/geneticsABSTRACT
Resistance to third-generation cephalosporins (3GC) in Escherichia coli has been reported worldwide from humans and animals, but the situation in Cuba is still poorly understood. This study aimed to gain new insights into the phenotypic and genotypic characteristics of third-generation cephalosporin-resistant (3GC-R) E. coli isolated from pigs in Cuba. Rectal swabs from 215 healthy pigs were taken from different municipalities in the western region of Cuba and spread on MacConkey agar supplemented with cefotaxime and ceftazidime. Ninety-six isolates were identified as 3GC-R E. coli and 87.5% of them were resistant to at least three antibiotic classes as determined by the measurement of the minimum inhibitory concentration (MIC) of 14 antibiotics. Twenty-seven different isolates were selected for Illumina next-generation sequencing, and subsequent in silico analysis was performed for the detection of antibiotic resistance and virulence genes, plasmid incompatibility (Inc) groups, multilocus sequence typing (MLST), and core genome MLST (cgMLST). The sequenced isolates contained extended-spectrum ß-lactamase genes blaCTX-M-32 (n = 17), blaCTX-M-15 (n = 5), and blaCTX-M-55 (n = 4) as well as with pAmpC gene blaCMY-2 (n = 2). They also harbored genes for resistance to other clinically important classes of antibiotics, as well as several diverse virulence factors. The 3GC-R E. coli were genetically highly diverse, belonging to 16 different sequence types. IncX1 was the most frequent Inc group. The presence of 3GC-R E. coli in pigs from Cuba containing several different antibiotic resistance mechanisms emphasizes the need for surveillance programs and the establishment of strategies for the prudent use of antibiotics in food-producing animals.
Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Animals , Cuba/epidemiology , Escherichia coli/isolation & purification , Genes, Bacterial/genetics , Genotype , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phenotype , SwineABSTRACT
OBJECTIVES: Carbapenemase-producing Klebsiella pneumoniae (CP-Kp) is a major cause of infections in transplanted patients and has been associated with high mortality rates in this group. There is a lack of information about the Brazilian structure population of CP-Kp isolated from transplanted patients. By whole-genome sequencing (WGS), we analyzed phylogeny, resistome, virulome of CP-Kp isolates, and the structure of plasmids encoding bla KPC- 2 and bla NDM- 1 genes. METHODS: One K. pneumoniae isolated from each selected transplanted patient colonized or infected by CP-Kp over a 16-month period in a hospital complex in Porto Alegre (Brazil) was submitted for WGS. The total number of strains sequenced was 80. The hospital complex in Porto Alegre comprised seven different hospitals. High-resolution SNP typing, core genome multilocus sequence typing (cgMLST), resistance and virulence genes inference, and plasmid reconstruction were performed in 80 CP-Kp. RESULTS: The mortality rate of CP-Kp colonized or infected transplanted inpatients was 21.3% (17/80). Four CP-Kp epidemic clones were described: ST11/KPC-2, ST16/KPC-2, and ST15/NDM-1, all responsible for interhospital outbreaks; and ST437/KPC-2 affecting a single hospital. The average number of acquired resistance and virulence genes was 9 (range = 2-14) and 27 (range = 6-36), respectively. Two plasmids carrying the bla KPC - 2 were constructed and belonged to IncN and IncM types. Additionally, an IncFIB plasmid carrying the bla NDM- 1 was described. CONCLUSION: We detected intrahospital and interhospital spread of mobile structures and international K. pneumoniae clones as ST11, ST16, and ST15 among transplanted patients, which carry a significant range of acquired resistance and virulence genes and keep spreading across the world.