Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
J Neurotrauma ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994598

ABSTRACT

Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.

2.
Inflammation ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39044002

ABSTRACT

Toll-like receptors (TLRs) are activated by endogenous molecules released from damaged cells and contribute to neuroinflammation following traumatic brain injury (TBI) and epilepsy. TLR1/2 agonist tri-palmitoyl-S-glyceryl-cysteine (Pam3cys) is a vaccine adjuvant with confirmed safety in humans. We assessed impact of TLR1/2 postconditioning by Pam3cys on epileptogenesis and neuroinflammation in male rats, 6, 24, and 48 h after mild-to-moderate TBI. Pam3cys was injected into cerebral ventricles 30 min after controlled cortical impact (CCI) injury. After 24 h, rats underwent chemical kindling by once every other day injections of pentylenetetrazole (PTZ) 35 mg/kg until development of generalized seizures. Number of intact neurons, brain expression of proinflammatory cytokine TNF-α, anti-inflammatory cytokine IL-10, and marker of anti-inflammatory microglia arginase1 (Arg1) were determined by immunoblotting. Astrocytes and macrophage/microglia activation/polarization at the contused area was assessed by double immunostaining with Iba1/Arg1, Iba1/iNOS and GFAP/iNOS, specific antibodies. The CCI-injured rats became kindled by less number of PTZ injections than sham-operated rats (9 versus 14 injections, p < 0.0001). Pam3cys treatment returned the accelerated rate of epileptogenesis in TBI state to the sham level. Pam3cys decreased neural death 48 h after TBI. It decreased TNF-α (6 h post-TBI, p < 0.01), and up-regulated IL-10 (p < 0.01) and Arg1 (p < 0.05) 48 h after TBI. The iNOS-positive cells decreased (p < 0.001) whereas Iba1/Arg1-positive cells enhanced (p < 0.01) after Pam3cys treatment. Pam3cys inhibits TBI-accelerated acquisition of seizures. Pam3cys reprograms microglia and up-regulates anti-inflammatory cytokines during the first few days after TBI. This capacity along with the clinical safety, makes Pam3cys a potential candidate for development of effective medications against posttraumatic epilepsy.

3.
Front Chem ; 12: 1394064, 2024.
Article in English | MEDLINE | ID: mdl-38873407

ABSTRACT

Traumatic brain injury (TBI) is a global public health problem with 50-60 million incidents per year, most of which are considered mild (mTBI) and many of these repetitive (rmTBI). Despite their massive implications, the pathologies of mTBI and rmTBI are not fully understood, with a paucity of information on brain lipid dysregulation following mild injury event(s). To gain more insight on mTBI and rmTBI pathology, a non-targeted spatial lipidomics workflow utilizing high resolution mass spectrometry imaging was developed to map brain region-specific lipid alterations in rats following injury. Discriminant multivariate models were created for regions of interest including the hippocampus, cortex, and corpus callosum to pinpoint lipid species that differentiated between injured and sham animals. A multivariate model focused on the hippocampus region differentiated injured brain tissues with an area under the curve of 0.99 using only four lipid species. Lipid classes that were consistently discriminant included polyunsaturated fatty acid-containing phosphatidylcholines (PC), lysophosphatidylcholines (LPC), LPC-plasmalogens (LPC-P) and PC potassium adducts. Many of the polyunsaturated fatty acid-containing PC and LPC-P selected have never been previously reported as altered in mTBI. The observed lipid alterations indicate that neuroinflammation and oxidative stress are important pathologies that could serve to explain cognitive deficits associated with rmTBI. Therapeutics which target or attenuate these pathologies may be beneficial to limit persistent damage following a mild brain injury event.

4.
J Neuroinflammation ; 21(1): 122, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720343

ABSTRACT

Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Klebsiella Infections , Klebsiella pneumoniae , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Mice , Klebsiella Infections/pathology , Klebsiella Infections/microbiology , Female , Male , Cytokines/metabolism , Bronchoalveolar Lavage Fluid
5.
Epilepsy Res ; 201: 107337, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461594

ABSTRACT

Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Neocortex , Rats , Animals , Sodium-Bicarbonate Symporters/metabolism , Extracellular Space/metabolism , Neocortex/metabolism
6.
Methods Mol Biol ; 2761: 599-622, 2024.
Article in English | MEDLINE | ID: mdl-38427264

ABSTRACT

Road accidents, domestic falls, and persons associated with sports and military services exhibited the concussion or contusion type of traumatic brain injury (TBI) that resulted in chronic traumatic encephalopathy. In some instances, these complex neurological aberrations pose severe brain damage and devastating long-term neurological sequelae. Several preclinical (rat and mouse) TBI models simulate the clinical TBI endophenotypes. Moreover, many investigational neuroprotective candidates showed promising effects in these models; however, the therapeutic success of these screening candidates has been discouraging at various stages of clinical trials. Thus, a correct selection of screening model that recapitulates the clinical neurobiology and endophenotypes of concussion or contusion is essential. Herein, we summarize the advantages and caveats of different preclinical models adopted for TBI research. We suggest that an accurate selection of experimental TBI models may improve the translational viability of the investigational entity.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Contusions , Rats , Mice , Animals , Rodentia , Brain , Disease Models, Animal
7.
J Neurotrauma ; 41(13-14): e1721-e1737, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38450560

ABSTRACT

Traumatic brain injury (TBI) affects a large population, resulting in severe cognitive impairments. Although cognitive rehabilitation is an accepted treatment for some deficits, studies in patients are limited in ability to probe physiological and behavioral mechanisms. Therefore, animal models are needed to optimize strategies. Frontal TBI in a rat model results in robust and replicable cognitive deficits, making this an ideal candidate for investigating various behavioral interventions. In this study, we report three distinct frontal TBI experiments assessing behavior well into the chronic post-injury period using male Long-Evans rats. First, we evaluated the impact of frontal injury on local field potentials recorded simultaneously from 12 brain regions during a probabilistic reversal learning (PbR) task. Next, a set of rats were tested on a similar PbR task or an impulsivity task (differential reinforcement of low-rate behavior [DRL]) and half received salient cues associated with reinforcement contingencies to encourage engagement in the target behavior. After intervention on the PbR task, brains were stained for markers of activity. On the DRL task, cue relevance was decoupled from outcomes to determine if beneficial effects persisted on impulsive behavior. TBI decreased the ability to detect reinforced outcomes; this was evident in task performance and reward-feedback signals occurring at beta frequencies in lateral orbitofrontal cortex (OFC) and associated frontostriatal regions. The behavioral intervention improved flexibility and increased OFC activity. Intervention also reduced impulsivity, even after cues were decoupled, which was partially mediated by improvements in timing behavior. The current study established a platform to begin investigating cognitive rehabilitation in rats and identified a strong role for dysfunctional OFC signaling in probabilistic learning after frontal TBI.


Subject(s)
Beta Rhythm , Brain Injuries, Traumatic , Impulsive Behavior , Rats, Long-Evans , Reversal Learning , Reward , Animals , Male , Impulsive Behavior/physiology , Rats , Brain Injuries, Traumatic/psychology , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/rehabilitation , Brain Injuries, Traumatic/therapy , Beta Rhythm/physiology , Reversal Learning/physiology , Behavior, Animal/physiology
8.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38365273

ABSTRACT

Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Humans , Mice , Animals , Adolescent , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Cerebral Cortex/diagnostic imaging , Cognition
9.
Exp Neurol ; 374: 114714, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325653

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of disability and increases the risk of developing neurodegenerative diseases. The mechanisms linking TBI to neurodegeneration remain to be defined. It has been proposed that the induction of cellular senescence after injury could amplify neuroinflammation and induce long-term tissue changes. The induction of a senescence response post-injury in the immature brain has yet to be characterised. We carried out two types of brain injury in juvenile CD1 mice: invasive TBI using controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury. The analysis of senescence-related signals showed an increase in γH2AX-53BP1 nuclear foci, p53, p19ARF, and p16INK4a expression in the CCI group, 5 days post-injury (dpi). At 35 days, the difference was no longer statistically significant. Gene expression showed the activation of different senescence pathways in the ipsilateral and contralateral hemispheres in the injured mice. CCI-injured mice showed a neuroinflammatory early phase after injury (increased Iba1 and GFAP expression), which persisted for GFAP. After CCI, there was an increase at 5 days in p16INK4, whereas in rmTBI, a significant increase was seen at 35 dpi. Both injuries caused a decrease in p21 at 35 dpi. In rmTBI, other markers showed no significant change. The PCR array data predicted the activation of pathways connected to senescence after rmTBI. These results indicate the induction of a complex cellular senescence and glial reaction in the immature mouse brain, with clear differences between an invasive brain injury and a repetitive mild injury.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Brain Injuries , Mice , Animals , Brain Concussion/complications , Neuroinflammatory Diseases , Brain Injuries, Traumatic/complications , Cellular Senescence , Mice, Inbred C57BL , Disease Models, Animal
10.
Int J Mol Sci ; 25(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338936

ABSTRACT

Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.


Subject(s)
Brain Injuries, Traumatic , Nociceptin Receptor , Nociceptin , Animals , Rats , Analgesics, Opioid , Brain Injuries, Traumatic/genetics , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , RNA, Messenger/metabolism
11.
Mol Neurobiol ; 61(9): 7256-7268, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38376763

ABSTRACT

Extensive effort has been made to study the role of synaptic deficits in cognitive impairment after traumatic brain injury (TBI). Neurogranin (Ng) is a calcium-sensitive calmodulin (CaM)-binding protein essential for Ca2+/CaM-dependent kinase II (CaMKII) autophosphorylation which subsequently modulates synaptic plasticity. Given the loss of Ng expression after injury, additional research is warranted to discern changes in hippocampal post-synaptic signaling after TBI. Under isoflurane anesthesia, adult, male and female Sprague-Dawley rats received a sham/control or controlled cortical impact (CCI) injury. Ipsilateral hippocampal synaptosomes were isolated at 24 h and 1, 2, and 4 weeks post-injury, and western blot was used to evaluate protein expression of Ng-associated signaling proteins. Non-parametric Mann-Whitney tests were used to determine significance of injury for each sex at each time point. There were significant changes in the hippocampal synaptic expression of Ng and associated synaptic proteins such as phosphorylated Ng, CaMKII, and CaM up to 4 weeks post-CCI, demonstrating TBI alters hippocampal post-synaptic signaling. This study furthers our understanding of mechanisms of cognitive dysfunction within the synapse sub-acutely after TBI.


Subject(s)
Brain Injuries, Traumatic , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Hippocampus , Neurogranin , Rats, Sprague-Dawley , Signal Transduction , Synapses , Animals , Neurogranin/metabolism , Male , Female , Hippocampus/metabolism , Hippocampus/pathology , Synapses/metabolism , Synapses/pathology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Signal Transduction/physiology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Sex Characteristics , Rats , Time Factors , Synaptosomes/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Phosphorylation , Calmodulin/metabolism
12.
J Neuropathol Exp Neurol ; 83(2): 94-106, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38164986

ABSTRACT

This research assesses the capability of texture analysis (TA) derived from high-resolution (HR) T2-weighted magnetic resonance imaging to identify primary sequelae following 1-5 hours of controlled cortical impact mild or severe traumatic brain injury (TBI) to the left frontal cortex (focal impact) and secondary (diffuse) sequelae in the right frontal cortex, bilateral corpus callosum, and hippocampus in rats. The TA technique comprised first-order (histogram-based) and second-order statistics (including gray-level co-occurrence matrix, gray-level run length matrix, and neighborhood gray-level difference matrix). Edema in the left frontal impact region developed within 1 hour and continued throughout the 5-hour assessments. The TA features from HR images confirmed the focal injury. There was no significant difference among radiomics features between the left and right corpus callosum or hippocampus from 1 to 5 hours following a mild or severe impact. The adjacent corpus callosum region and the distal hippocampus region (s), showed no diffuse injury 1-5 hours after mild or severe TBI. These results suggest that combining HR images with TA may enhance detection of early primary and secondary sequelae following TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Rats , Animals , Brain/pathology , Magnetic Resonance Imaging/methods , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/pathology , Brain Injuries/diagnostic imaging , Brain Injuries/pathology , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology
13.
Brain Behav Immun ; 117: 181-194, 2024 03.
Article in English | MEDLINE | ID: mdl-38211634

ABSTRACT

Traumatic brain injury (TBI) results in prolonged and non-resolving activation of microglia. Forced turnover of these cells during the acute phase of TBI aids recovery, but the cell-intrinsic pathways that underpin the pro-repair phenotype of these repopulating microglia remain unclear. Here, we show that selective targeting of ROCK2 with the small molecule inhibitor KD025 impairs the proliferative response of microglia after TBI as well as during genetically induced turnover of microglia. KD025 treatment abolished the substantial neuroprotective and cognitive benefits conferred by repopulating microglia, preventing these cells from replenishing the depleted niche during the early critical time window post-injury. Delaying KD025 treatment to the subacute phase of TBI allowed microglial repopulation to occur, but this did not enhance the benefits conferred by repopulating microglia. Taken together, our data indicate that ROCK2 mediates neuronal survival and microglial population dynamics after TBI, including the emergence of repopulating microglia with a pro-repair phenotype.


Subject(s)
Brain Injuries, Traumatic , Microglia , Humans , Cell Proliferation , Cell Survival , Hydrolases , rho-Associated Kinases
14.
J Surg Res ; 296: 230-238, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295710

ABSTRACT

INTRODUCTION: Various murine models have been utilized to study TBI, including closed head injury (CHI) and controlled cortical impact (CCI), without direct comparison. The aim of our study was to evaluate these models to determine differences in neurological and behavioral outcomes postinjury. METHODS: Male C57B/6 mice (9-10 wk) were separated into six groups including: untouched, sham craniotomy (4 mm), CCI 0.9 mm depth of impact, CCI 1.6 mm, CCI 2.2 mm, and CHI. CCI was performed using a 3 mm impact tip at a velocity of 5 m/s, dwell time of 250 ms, and depth as noted above. CHI was completed with a centered 400 g weight drop from 1 cm height. Mice were survived to 14-d (n = 5 per group) and 30-d (n = 5 per group) respectively for histological analysis of p-tau within the hippocampus. These mice underwent Morris Water Maze memory testing and Rotarod motor testing. Serum was collected from a separate cohort of mice (n = 5 per group) including untouched, isoflurane only, CCI 1.6 mm, CHI at 1, 4, 6, and 24 h for analysis of neuron specific enolase and glial fibrillary acidic protein (GFAP) via ELISA. Laser speckle contrast imaging was analyzed prior to and after impact in the CHI and CCI 1.6 mm groups. RESULTS: There were no significant differences in Morris Water Maze or Rotarod testing times between groups at 14- or 30-d. P-tau was significantly elevated in all groups except CCI 1.6 mm contralateral and CCI 2.2 mm ipsilateral compared to untouched mice at 30-d. P-tau was also significantly elevated in the CHI group at 30 d compared to CCI 1.6 mm contralateral and CCI 2.2 mm on both sides. GFAP was significantly increased in mice undergoing CHI (9959 ± 91 pg/mL) compared to CCI (2299 ± 1288 pg/mL), isoflurane only (133 ± 75 pg/mL), and sham (86 ± 58 pg/mL) at 1-h post TBI (P < 0.0001). There were no differences in serum neuron specific enolase levels between groups. Laser doppler imaging demonstrated similar decreases in cerebral blood flow between CHI and CCI; however, CCI mice had a reduction in blood flow with craniotomy only that did not significantly decrease further with impact. CONCLUSIONS: Based on our findings, CHI leads to increased serum GFAP levels and increased p-tau within the hippocampus at 30-d postinjury. While CCI allows the comparison of one cerebral hemisphere to the other, CHI may be a better model of TBI as it requires less technical expertise and has similar neurological outcomes in these murine models.


Subject(s)
Brain Injuries, Traumatic , Head Injuries, Closed , Isoflurane , Humans , Mice , Animals , Male , Hippocampus/pathology , Phosphopyruvate Hydratase , Disease Models, Animal
15.
J Neurotrauma ; 41(3-4): 514-528, 2024 02.
Article in English | MEDLINE | ID: mdl-37885223

ABSTRACT

Early life stress (ELS) affects neurogenesis and spatial learning, and increases neuroinflammation after a pediatric mild traumatic brain injury (mTBI). Previous studies have shown that ELS has minimal effects in juveniles but shows age-dependent effects in adults. Hence, we aimed to evaluate the effects of ELS in adult male rats after an mTBI. Maternal separation for 180 min per day (MS180) during the first 21 post-natal (P) days was used as the ELS model. At P110, the rats were subjected to a mild controlled cortical impact injury (2.6 mm) or sham surgery. Spatial learning was evaluated in the Morris water maze (MWM) 14 days after surgery and both microglial activation and neurogenesis were quantified. The results indicate that MS180 + mTBI, but not control (CONT) + mTBI, rats show deficiencies in the acquisition of spatial learning. mTBI led to comparable increases in microglial activation in both the hilus and cortical regions for both groups. However, MS180 + mTBI rats exhibited a greater increase in microglial activation in the ipsilateral CA1 hippocampus subfield compared with CONT + mTBI. Interestingly, for the contralateral CA1 region, this effect was observed exclusively in MS180 + mTBI. ELS and mTBI independently caused a decrease in hippocampal neurogenesis and this effect was not increased further in MS180 + mTBI rats. The findings demonstrate that ELS and mTBI synergistically affect cognitive performance and neuroinflammation, thus supporting the hypothesis that increased inflammation resulting from the combination of ELS and mTBI could underlie the observed effects on learning.


Subject(s)
Adverse Childhood Experiences , Brain Concussion , Humans , Child , Rats , Animals , Male , Brain Concussion/complications , Spatial Learning , Rats, Sprague-Dawley , Neuroinflammatory Diseases , Maternal Deprivation , Microglia , Hippocampus , Maze Learning/physiology
16.
Exp Neurol ; 373: 114648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38081352

ABSTRACT

Environmental enrichment (EE) facilitates motor and cognitive recovery after traumatic brain injury (TBI). Historically, EE has been provided immediately and continuously after TBI, but this paradigm does not model the clinic where rehabilitation is typically not initiated until after critical care. Yet, treating TBI early may facilitate recovery. Hence, we sought to provide amantadine (AMT) as a bridge therapy before commencing EE. It was hypothesized that bridging EE with AMT would augment motor and cognitive benefits. Anesthetized adult male rats received a cortical impact (2.8 mm deformation at 4 m/s) or sham surgery and then were housed in standard (STD) conditions where they received intraperitoneal AMT (10 mg/kg or 20 mg/kg) or saline vehicle (VEH; 1 mL/kg) beginning 24 h after surgery and once daily during the 6-day bridge phase or once daily for 19 days for the non-bridge groups (i.e., continuously STD-housed) to compare the effects of acute AMT plus EE vs. chronic AMT alone. Abbreviated EE, which was presented to closer emulate clinical rehabilitation (e.g., 6 h/day), began on day 7 for the AMT bridge and chronic EE groups. Motor (beam-walking) and cognition (acquisition of spatial learning and memory) were assessed on days 7-11 and 14-19, respectively. Cortical lesion volume and hippocampal cell survival were quantified on day 21. EE, whether provided in combination with VEH or AMT, and AMT (20 mg/kg) + STD, benefitted motor and cognition vs. the STD-housed VEH and AMT (10 mg/kg) groups (p < 0.05). The AMT (20 mg/kg) + EE group performed better than the VEH + EE, AMT (10 mg/kg) + EE, and AMT (20 mg/kg) + STD groups in the acquisition of spatial learning (p < 0.05) but did not differ in motor function (p > 0.05). All groups receiving EE exhibited decreased cortical lesion volumes and increased CA3 neuron survival relative to the STD-housed groups (p < 0.05) but did not differ from one another (p > 0.05). The added cognitive benefit achieved by bridging EE with AMT (20 mg/kg) supports the hypothesis that the temporal separation of combinational therapies is more effective after TBI.


Subject(s)
Brain Injuries, Traumatic , Psychomotor Performance , Rats , Male , Animals , Rats, Sprague-Dawley , Environment , Brain Injuries, Traumatic/drug therapy , Cognition , Amantadine/pharmacology , Amantadine/therapeutic use , Maze Learning/physiology , Disease Models, Animal
17.
Exp Neurol ; 372: 114647, 2024 02.
Article in English | MEDLINE | ID: mdl-38070724

ABSTRACT

Traumatic brain injury (TBI) results in several pathological changes within the hippocampus that result in adverse effects on learning and memory. Therapeutic strategies to enhance learning and memory after TBI are still in the early stages of clinical development. One strategy is to target the α7 nicotinic acetylcholine receptor (nAChR), which is highly expressed in the hippocampus and contributes to the formation of long-term memory. In our previous study, we found that AVL-3288, a positive allosteric modulator of the α7 nAChR, improved cognitive recovery in rats after moderate fluid-percussion injury (FPI). However, whether AVL-3288 improved cognitive recovery specifically through the α7 nAChR was not definitively determined. In this study we utilized Chrna7 knockout mice and compared their recovery to wild-type mice treated with AVL-3288 after TBI. We hypothesized that AVL-3288 treatment would improve learning and memory in wild-type mice, but not Chrna7-/- mice after TBI. Adult male C57BL/6 wild-type and Chrna7-/- mice received sham surgery or moderate controlled cortical impact (CCI) and recovered for 3 months. Mice were then treated with vehicle or AVL-3288 at 30 min prior to contextual fear conditioning. At 3 months after CCI, expression of α7 nAChR, choline acetyltransferase (ChAT), high-affinity choline transporter (ChT), and vesicular acetylcholine transporter (VAChT) were found to be significantly decreased in the hippocampus. Treatment of wild-type mice at 3 months after CCI with AVL-3288 significantly improved cue and contextual fear conditioning, whereas no beneficial effects were observed in Chrna7-/- mice. Parietal cortex and hippocampal atrophy were not improved with AVL-3288 treatment in either wild-type or Chrna7-/- mice. Our results indicate that AVL-3288 improves cognition during the chronic recovery phase of TBI through modulation of the α7 nAChR.


Subject(s)
Brain Injuries, Traumatic , alpha7 Nicotinic Acetylcholine Receptor , Rats , Male , Mice , Animals , alpha7 Nicotinic Acetylcholine Receptor/genetics , Mice, Inbred C57BL , Cognition , Hippocampus/metabolism , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/metabolism , Mice, Knockout
18.
Neural Regen Res ; 19(5): 1092-1097, 2024 May.
Article in English | MEDLINE | ID: mdl-37862213

ABSTRACT

Endorepellin plays a key role in the regulation of angiogenesis, but its effects on angiogenesis after traumatic brain injury are unclear. This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice. Mice were randomly divided into four groups: sham, controlled cortical impact only, adeno-associated virus (AAV)-green fluorescent protein, and AAV-shEndorepellin-green fluorescent protein groups. In the controlled cortical impact model, the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+ proliferating endothelial cells and the functional microvessel density in mouse brain. These changes resulted in improved neurological function compared with controlled cortical impact mice. Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein. Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization, which may further improve neurobehavioral outcomes. Furthermore, an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control. Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor- and angiopoietin-1-related signaling pathways.

19.
Neurotrauma Rep ; 4(1): 724-735, 2023.
Article in English | MEDLINE | ID: mdl-37928134

ABSTRACT

Sixty-nine million traumatic brain injuries (TBIs) are reported worldwide each year, and, of those, close to 3 million occur in the United States. In addition to neurobehavioral and cognitive deficits, TBI induces other maladaptive behaviors, such as agitation and aggression, which must be managed for safe, accurate assessment and effective treatment of the patient. The use of antipsychotic drugs (APDs) in TBI is supported by some expert guidelines, which suggests that they are an important part of the pharmacological armamentarium to be used in the management of agitation. Despite the advantages of APDs after TBI, there are significant disadvantages that may not be fully appreciated clinically during decision making because of the lack of a readily available updated compendium. Hence, the aim of this review is to integrate the existing findings and present the current state of APD use in pre-clinical models of TBI. The studies discussed were identified through PubMed and the University of Pittsburgh Library System search strategies and reveal that APDs, particularly those with dopamine2 (D2) receptor antagonism, generally impair the recovery process in rodents of both sexes and, in some instances, attenuate the potential benefits of neurorehabilitation. We believe that the compilation of findings represented by this exhaustive review of pre-clinical TBI + APD models can serve as a convenient source for guiding informed decisions by critical care clinicians and physiatrists contemplating APD use for patients exhibiting agitation.

20.
Front Pharmacol ; 14: 1272969, 2023.
Article in English | MEDLINE | ID: mdl-37920208

ABSTRACT

Traumatic brain injury (TBI) affects more than 2.5 million people in the U.S. each year and is the leading cause of death and disability in children and adults ages 1 to 44. Approximately 90% of TBI cases are classified as mild but may still lead to acute detrimental effects such as impaired cerebral blood flow (CBF) that result in prolonged impacts on brain function and quality of life in up to 15% of patients. We previously reported that nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor antagonism reversed mild blast TBI-induced vestibulomotor deficits and prevented hypoxia. To explore mechanisms by which the NOP receptor-N/OFQ pathway modulates hypoxia and other TBI sequelae, the ability of the NOP antagonist, SB-612111 (SB), to reverse TBI-induced CBF and associated injury marker changes were tested in this study. Male Wistar rats randomly received sham craniotomy or craniotomy + TBI via controlled cortical impact. Injury severity was assessed after 1 h (modified neurological severity score (mNSS). Changes in CBF were assessed 2 h post-injury above the exposed cortex using laser speckle contrast imaging in response to the direct application of increasing concentrations of vehicle or SB (1, 10, and 100 µM) to the brain surface. TBI increased mNSS scores compared to baseline and confirmed mild TBI (mTBI) severity. CBF was significantly impaired on the ipsilateral side of the brain following mTBI, compared to contralateral side and to sham rats. SB dose-dependently improved CBF on the ipsilateral side after mTBI compared to SB effects on the respective ipsilateral side of sham rats but had no effect on contralateral CBF or in uninjured rats. N/OFQ levels increased in the cerebral spinal fluid (CSF) following mTBI, which correlated with the percent decrease in ipsilateral CBF. TBI also activated ERK and cofilin within 3 h post-TBI; ERK activation correlated with increased CSF N/OFQ. In conclusion, this study reveals a significant contribution of the N/OFQ-NOP receptor system to TBI-induced dysregulation of cerebral vasculature and suggests that the NOP receptor should be considered as a potential therapeutic target for TBI.

SELECTION OF CITATIONS
SEARCH DETAIL