Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202410219, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949846

ABSTRACT

Pd(II)-based low-symmetry coordination cages possessing anisotropic cavities are of great interest. The common strategies employed to achieve such cages utilize either more than one type of symmetrical ligands (e.g., Laa, Lbb etc.) or only one type of unsymmetrical ligand (e.g., Lab). To significantly enhance the anisotropy, we have designed two unsymmetrical bidentate ligands i.e., Lab and Lcd, aiming at a low-symmetry Pd2Lab 2Lcd 2-type cage. It was accomplished by high-fidelity integrative self-sorting of two different low-symmetry cages having Pd2Lab 4 and Pd4Lcd 8-type architectures (homoleptic complexes of the designed ligands). Structural constraints and geometry complementarity in the ligand design drive the non-statistical exclusive self-assembly of the Pd2Lab 2Lcd 2-type cage. By taking advantage of the complemental geometries between ligands, a low-symmetry Pd2Lab 2Lcc 2-type cage was also obtained. Heteromeric completive self-sorting of three homoleptic assemblies (Pd2Lab 4, Pd4Lcc 8 and Pd4Lcd 8-type cages) into an exclusive mixture of Pd2Lab 2Lcd 2 and Pd2Lab 2Lcc 2-type mixed ligated assemblies was demonstrated through cage-to-cage transformations.

2.
Angew Chem Int Ed Engl ; 63(36): e202407279, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38872356

ABSTRACT

Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.

3.
Angew Chem Int Ed Engl ; 63(23): e202403711, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38567836

ABSTRACT

Controlling supramolecular systems between different functional forms by utilizing acids/bases as stimuli is a formidable challenge, especially where labile coordination bonds are involved. A pair of acid/base responsive, interconvertible 1,5-enedione/pyrylium based Pd2L4-type cages are prepared that exhibit differential guest binding abilities towards disulfonates of varied sizes. A three-state switch has been achieved, where (i) a weakly coordinating base induced cage-to-cage transformation in the first step, (ii) a strongly coordinating base triggered cage disassembly as the second step, and (iii) the third step shows acid(strong) promoted generation of initial cage, thereby completing the cycle. To our surprise, binding of a specific disulfonate guest facilitated cage-to-cage transformations by inducing strain on the cage assembly thereby opening the labile pyrylium rings of the cage. Through a competitive guest binding study, we demonstrated the superior guest binding capability of the octacationic pyrylium-based cage over a similar-sized tetracationic cage. These results provide a reliable approach to reversibly modulate the guest binding properties of acid/base-responsive self-assembled coordination cages.

4.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542856

ABSTRACT

Coordination cages sustained by metal-ligand interactions feature polyhedral architectures and well-defined hollow structures, which have attracted significant attention in recent years due to a variety of structure-guided promising applications. Sulfonylcalix[4]arenes-based coordination cages, termed metal-organic supercontainers (MOSCs), that possess unique multi-pore architectures containing an endo cavity and multiple exo cavities, are emerging as a new family of coordination cages. The well-defined built-in multiple binding domains of MOSCs allow the efficient encapsulation of guest molecules, especially for drug delivery. Here, we critically discuss the design strategy, and, most importantly, the recent advances in research surrounding cavity-specified host-guest chemistry and biomedical applications of MOSCs.

5.
Adv Sci (Weinh) ; 11(11): e2308445, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229156

ABSTRACT

Biological macromolecules exhibit emergent functions through hierarchical self-assembly, a concept that is extended to design artificial supramolecular assemblies. Here, the first example of breaking the common parallel arrangement of capsule-shaped zirconium coordination cages is reported by constructing the hierarchical porous framework ZrR-1. ZrR-1 adopts a quaternary structure resembling protein and contains 12-connected chloride clusters, representing the highest connectivity for zirconium-based cages reported thus far. Compared to the parallel framework ZrR-2, ZrR-1 demonstrated enhanced stability in acidic aqueous solutions and a tenfold increase in BET surface area (879 m2  g-1 ). ZrR-1 also exhibits excellent proton conductivity, reaching 1.31 × 10-2 S·cm-1 at 353 K and 98% relative humidity, with a low activation energy of 0.143 eV. This finding provides insights into controlling the hierarchical self-assembly of metal-organic cages to discover superstructures with emergent properties.

6.
Angew Chem Int Ed Engl ; 62(51): e202315451, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37888946

ABSTRACT

Metal-organic cages (MOCs) are popular host architectures assembled from ligands and metal ions/nodes. Assembling structurally complex, low-symmetry MOCs with anisotropic cavities can be limited by the formation of statistical isomer libraries. We set out to investigate the use of primary coordination-sphere engineering (CSE) to bias isomer selectivity within homo- and heteroleptic Pdn L2n cages. Unexpected differences in selectivities between alternative donor groups led us to recognise the significant impact of the second coordination sphere on isomer stabilities. From this, molecular-level insight into the origins of selectivity between cis and trans diastereoisomers was gained, highlighting the importance of both host-guest and host-solvent interactions, in addition to ligand design. This detailed understanding allows precision engineering of low-symmetry MOC assemblies without wholesale redesign of the ligand framework, and fundamentally provides a theoretical scaffold for the development of stimuli-responsive, shape-shifting MOCs.

7.
Front Chem ; 11: 1269471, 2023.
Article in English | MEDLINE | ID: mdl-37731456

ABSTRACT

Supramolecular containers have long been applied to regulate organic reactions with distinct selectivity, owing to their diverse functions such as the ability to pose a guest molecule(s) with a certain orientation and conformation. In this review, we try to illustrate how self-assembled coordination cages could achieve this goal. Two representative cage hosts, namely, self-assembled Pd(II)-ligand octahedral coordination cages ([Pd6L4]12+) and self-assembled Ga(III)-ligand tetrahedral coordination cages ([Ga4L6]12-) are selected as the pilot hosts that this mini review covers. Representative works in this area are presented here in brief.

8.
Angew Chem Int Ed Engl ; 62(40): e202308288, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37459561

ABSTRACT

A strategy to engineer the stacking of diketopyrrolopyrrole (DPP) dyes based on non-statistical metallosupramolecular self-assembly is introduced. For this, the DPP backbone is equipped with nitrogen-based donors that allow for different discrete assemblies to be formed upon the addition of Pd(II), distinguished by the number of π-stacked chromophores. A Pd3 L6 three-ring, a heteroleptic Pd2 L2 L'2 ravel composed of two crossing DPPs (flanked by two carbazoles), and two unprecedented self-penetrated motifs (a Pd2 L3 triple and a Pd2 L4 quadruple stack), were obtained and systematically investigated. With increasing counts of stacked chromophores, UV/Vis absorptions red-shift and emission intensities decrease, except for compound Pd2 L2 L'2 , which stands out with an exceptional photoluminescence quantum yield of 51 %. This is extraordinary for open-shell metal containing assemblies and explainable by an intra-assembly FRET process. The modular design and synthesis of soluble multi-chromophore building blocks offers the potential for the preparation of nanodevices and materials with applications in sensing, photo-redox catalysis and optics.

9.
ACS Appl Mater Interfaces ; 15(30): 36052-36060, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37486195

ABSTRACT

The multivalent presentation of glycans leads to enhanced binding avidity to lectins due to the cluster glycoside effect. Most materials used as scaffolds for multivalent glycan arrays, such as polymers or nanoparticles, have intrinsic dispersity: meaning that in any sample, a range of valencies are presented and it is not possible to determine which fraction(s) are responsible for binding. The intrinsic dispersity of many multivalent glycan scaffolds also limits their reproducibility and predictability. Here we make use of the structurally programmable nature of self-assembled metal coordination cages, with polyhedral metal-ion cores supporting ligand arrays of predictable sizes, to assemble a 16-membered library of perfectly monodisperse glycoclusters displaying valencies from 2 to 24 through a careful choice of ligand/metal combinations. Mono- and trisaccharides are introduced into these clusters, showing that the synthetic route is tolerant of biologically relevant glycans, including sialic acids. The cluster series demonstrates increased binding to a range of lectins as the number of glycans increases. This strategy offers an alternative to current glycomaterials for control of the valency of three-dimensional (3-D) glycan arrays, and may find application across sensing, imaging, and basic biology.


Subject(s)
Lectins , Nanoparticles , Ligands , Reproducibility of Results , Polysaccharides
10.
ACS Appl Mater Interfaces ; 15(24): 29252-29258, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37294737

ABSTRACT

Coordination cages with a well-defined nanocavity are a class of promising supramolecular materials for molecular recognition and sensing. However, their applications in sequential sensing of multiple types of pollutants are highly desirable yet extremely limiting and challenging. Herein, we demonstrate a convenient strategy to develop a supramolecular fluorescence sensor for sequentially detecting environmental pollutants of aluminum ions and nitrofurantoin. A coordination cage (Ni-NTB), adopting an octahedral structure with triphenylamine chromophores occupying on the faces, is weakly emissive in solution due to the intramolecular rotations of the phenyl rings. Ni-NTB exhibits sensitive and selective fluorescence "off-on-off" processes during consecutive sensing of Al3+ and nitrofurantoin, an antibacterial drug. These sequential detection processes are highly interference-tolerant and visually observable with the naked eye. Mechanism studies reveal that the fluorescence switch is controllable by tuning the degree of intramolecular rotations of the phenyl rings and the pathway of intermolecular charge transfer, which is associated with the host-guest interaction. Moreover, the fabrication of Ni-NTB on test strips enabled a quick naked-eye sequential sensing of Al3+ and nitrofurantoin in seconds. Hence, this novel supramolecular fluorescence "off-on-off" sensing platform provides a new approach to developing supramolecular functional materials for monitoring environmental pollution.

11.
Angew Chem Int Ed Engl ; 62(32): e202305122, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37263970

ABSTRACT

Numerous indole alkaloids such as the iboga- and aspidosperma-type are believed to be biosynthesized via a common hypothetical intermediate, dehydrosecodine. The highly reactive nature of dehydrosecodine-type compounds has hampered their isolation and structural elucidation. In this study, we achieved the first X-ray structural determination of a dehydrosecodine-type compound by integrating synthetic optimization of the reactivity and stabilizing the fragile molecule by encapsulation into a supramolecular host. Formation of a 1 : 1 complex of the dehydrosecodine-type labile guest bearing both vinyl indole and dihydropyridine units with the host was observed. This integrated approach not only provides insights into the biosynthetic conversions but also allows stabilization and storage of the reactive and otherwise short-lived intermediate within the confined hydrophobic cavity.

12.
Angew Chem Int Ed Engl ; 62(27): e202302229, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37186056

ABSTRACT

Coordination cages can be used for enantio- and regioselective catalysis and for the selective sensing and separation of isomeric guest molecules. Here, stereoisomers of a family of coordination cages are resolved using ultra-high-resolution cyclic ion-mobility mass spectrometry (cIM-MS). The observed ratio of diastereomers is dependent on both the metal ion and counter ion. Moreover, the point groups can be assigned through complementary NMR experiments. This method enables the identification and interrogation of the individual isomers in complex mixtures of cages which cannot be performed in solution. Furthermore, these techniques allow the stability of individual isomers within the mixture to be probed, with the T-symmetric isomers in this case shown to be more robust than the C3 and S4 analogues.

13.
Chem ; 8(9): 2362-2379, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36133801

ABSTRACT

Confinement within molecular cages can dramatically modify the physicochemical properties of the encapsulated guest molecules, but such host-guest complexes have mainly been studied in a static context. Combining confinement effects with fast guest exchange kinetics could pave the way toward stimuli-responsive supramolecular systems-and ultimately materials-whose desired properties could be tailored "on demand" rapidly and reversibly. Here, we demonstrate rapid guest exchange between inclusion complexes of an open-window coordination cage that can simultaneously accommodate two guest molecules. Working with two types of guests, anthracene derivatives and BODIPY dyes, we show that the former can substantially modify the optical properties of the latter upon noncovalent heterodimer formation. We also studied the light-induced covalent dimerization of encapsulated anthracenes and found large effects of confinement on reaction rates. By coupling the photodimerization with the rapid guest exchange, we developed a new way to modulate fluorescence using external irradiation.

14.
Angew Chem Int Ed Engl ; 61(47): e202209305, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36074340

ABSTRACT

Metallosupramolecular hosts of nanoscopic dimensions, which are able to serve as selective receptors and catalysts, are usually composed of only one type of organic ligand, restricting diversity in terms of cavity shape and functional group decoration. We report a series of heteroleptic [Pd2 A2 B2 ] coordination cages that self-assemble from a library of shape complementary bis-monodentate ligands in a non-statistical fashion. Ligands A feature an inward pointing NH function, able to engage in hydrogen bonding and amenable to being functionalized with amide and alkyl substituents. Ligands B comprise tricyclic aromatic backbones of different shape and electronic situation. The obtained heteroleptic coordination cages were investigated for their ability to bind phosphate diesters as guests. All-atom molecular dynamics (MD) simulations in explicit solvent were conducted to understand the mechanistic relationships behind the experimentally determined guest affinities.


Subject(s)
Esters , Phosphates , Models, Molecular , Ligands , Hydrogen Bonding
15.
Angew Chem Int Ed Engl ; 61(33): e202204732, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35596739

ABSTRACT

Controllable arrangement of different ligands in a single assembly will not only bring increased complexity but also offers a new route to fine-tune the function of the designed architecture. We report here a combinatorial self-assembly with enPd(NO3 )2 and three different ligands (L1-3 ), which gave rise to a family of six palladium-organic cages (C1-6) with systematically varied shapes and cavities, including three new heteroleptic (Pd5 L1 2 L2 , Pd5 L1 2 L3 , Pd4 L2 L3 ), one new homoleptic (Pd4 L3 2 ) cages, and two known homoleptic (Pd6 L1 4 , Pd4 L2 2 ) cages. Emergent functions due to the fusion of two half cavities on the heteroleptic cages from their parent homoleptic cages have been observed: the heteroleptic cages can form ternary complexes by co-encapsulation of both aromatic and aliphatic guests, while their homoleptic counterparts can only form binary complexes. Such a forced co-encapsulation effect endows the heteroleptic cages with enhanced catalytic power for the Knoevenagel condensation.

16.
Angew Chem Int Ed Engl ; 61(35): e202205725, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35616285

ABSTRACT

Multicomponent metallo-supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non-statistical fashion. We employ our shape-complementary assembly (SCA) method to achieve for the first time integrative self-sorting of heteroleptic PdII cages showing guest-tunable circularly polarized luminescence (CPL). An enantiopure helicene-based ligand (M or P configuration) is coupled with a non-chiral emissive fluorenone-based ligand (A or B) to form a series of Pd2 L2 L'2 assemblies. The modular strategy allows to impart the chiral information of the helicenes to the overall supramolecular system, resulting in CPL from the non-chiral component. Guest binding results in a 4-fold increase of CPL intensity. The principle offers potential to generate libraries of multifunctional materials with applications in molecular recognition, enantioselective photo-redox catalysis and information processing.

17.
ACS Sens ; 7(5): 1602-1611, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35499166

ABSTRACT

Three kinds of coordination cages and a molecular knot with inductively activated +P-H, N-H, or C-H hydrogen bond donors anchoring in the functionalized cavities were inspected as ionophores to develop polymeric membrane ISEs for potentiometric sensing of environmentally important oxyanions and halides. The proposed ISEs displayed significant preference for perrhenate, phosphate, or chloride with a selectivity pattern distinctively different from the sequence depending on the Gibbs free energy of hydration owing to the high degree of shape, charge, and size selectivity originating from the rigidity and complementarity of the binding cavities. To gain further insight into the response characters of the proposed ISEs, the binding constants of ionophore-anion complexes in the membrane phase were investigated, and the binding affinity, together with the Hofmeister series, correlates well with the determined selectivity pattern of the proposed ISEs. Optimizing the composition of the membrane such as lipophilic additives and plasticizers produced ISEs displaying Nernstian/near-Nernstian potentiometric responses to primary anions with a wide linear range, improved detection limits, good reversibility, and satisfying lifetime. Potentiometric determination of perrhenate, phosphate, and chloride in river water, mineral water, and artificial serum samples was achieved with good recovery and accuracy using the proposed ISEs, demonstrating their potential for real-life applications. These results will shed new light on how novel ionophores could be designed for potentiometric sensing and broaden the scope of host-guest chemistry of coordination cages and molecular knots.


Subject(s)
Chlorides , Polymers , Anions , Halogens , Ionophores/chemistry , Phosphates , Potentiometry/methods
18.
Chemistry ; 28(12): e202104228, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35018672

ABSTRACT

Nonaqueous emulsions are crucial for a range of applications based on water-sensitive systems such as controlled polymerizations requiring anhydrous reaction conditions and the stabilization of readily hydrolyzable reagents or pharmacologically active components. However, defined molecular surfactants to stabilize such nonaqueous emulsions are scarce. We introduce a self-assembled coordination cage, decorated with cholesterol functionalities, to serve as a molecular surfactant for various oil-in-oil emulsions of immiscible organic solvents. While the positively charged cage forms the amphiphile's polar moiety, the non-polar cholesterol appendices can bend in a common direction to stabilize the emulsion. Templated by the droplets, polycondensation reactions were carried out to produce microstructured polyurethane and polyurea materials of different particle sizes and morphologies. Further, the amphiphilic cage can encapsulate a guest molecule and the resulting host-guest assembly was also examined as a surfactant. In addition, the aggregation behavior of the amphiphilic cage in an aqueous medium was examined.


Subject(s)
Surface-Active Agents , Water , Emulsions , Particle Size , Solvents
19.
Chemistry ; 28(7): e202103781, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34929061

ABSTRACT

Extremely high electrophilic metal complexes, composed by a metal cation and very electron poor σ-donor ancillary ligands, are expected to be privileged catalysts for oxidation reactions in organic chemistry. However, their low lifetime prevents any use in catalysis. Here we show the synthesis of fluorinated pyridine-Pd2+ coordinate cages within the channels of an anionic tridimensional metal-organic framework (MOF), and their use as efficient metal catalysts for the aerobic oxidation of aliphatic alcohols to carboxylic acids without any additive. Mechanistic studies strongly support that the MOF-stabilized coordination cage with perfluorinated ligands unleashes the full electrophilic potential of Pd2+ to dehydrogenate primary alcohols, without any base, and also to activate O2 for the radical oxidation to the aldehyde intermediate. This study opens the door to design catalytic perfluorinated complexes for challenging organic transformations, where an extremely high electrophilic metal site is required.

20.
Chemistry ; 28(5): e202103406, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34825743

ABSTRACT

Metallo-supramolecular self-assembly has yielded a plethora of discrete nanosystems, many of which show competence in capturing guests and catalyzing chemical reactions. However, the potential of low-molecular bottom-up self-assemblies in the development of structured inorganic materials has rarely been methodically explored so far. Herein, we present a new type of metallo-supramolecular surfactant with the ability to stabilize non-aqueous emulsions for a significant period. The molecular design of the surfactant is based on a heteroleptic coordination cage (CGA-3; CGA=Cage-based Gemini Amphiphile), assembled from two pairs of organic building blocks, grouped around two Pd(II) cations. Shape-complementarity between the differently functionalized components generates discrete amphiphiles with a tailor-made polarity profile, able to stabilize non-aqueous emulsions, such as hexadecane-in-DMSO. These emulsions were used as a medium for the synthesis of spherical metal oxide microcapsules (titanium oxide, zirconium oxide, and niobium oxide) from soluble, water-sensitive alkoxide precursors by allowing a controlled dosage of water to the liquid-liquid phase boundary. Synthesized materials were analyzed by a combination of electron microscopic techniques. In situ liquid cell transmission electron microscopy (LC-TEM) was utilized for the first time to visualize the dynamics of the emulsion-templated formation of hollow inorganic titanium oxide and zirconium oxide microspheres.


Subject(s)
Oxides , Surface-Active Agents , Capsules , Emulsions , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL