Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139316

ABSTRACT

Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle/genetics , Cyclin-Dependent Kinases/metabolism , Apoptosis/genetics
2.
Regen Ther ; 21: 389-397, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36196449

ABSTRACT

Introduction: Human induced pluripotent stem cells (hiPSCs) are generated through the reprogramming of somatic cells expressing a defined set of transcription factors. The advent of autologous iPSCs has enabled the generation of patient-specific iPSC lines and is expected to contribute to the exploration of cures and causes of diseases, drug screening, and tailor-made regenerative medicines. Efficient control of hiPSC derivation is beneficial for industrial applications. However, the mechanisms underlying somatic cell reprogramming remain unknown, while reprogramming efficiency remains extremely low, especially in human cells. Methods and results: We previously reported that chemical inhibition of the NOTCH signaling pathway and DOT1L promoted the generation of hiPSCs from keratinocytes, but the mechanisms and effect of this double inhibition on other types of cells remain to be investigated. Here, we found that the NOTCH/DOT1L inhibition markedly increased iPSC colony generation from human fibroblast cells via mRNA reprogramming, and mesenchymal to epithelial transition (MET)-related genes are significantly expressed in the early phase of the reprogramming. We successfully derived hiPSC lines using a single-cell sorting system under efficient reprogramming conditions. Conclusions: This user-friendly reprogramming approach paves the way for the development of hiPSC derivations in industrial applications of disease modeling and drug screening.

3.
Regen Ther ; 21: 81-86, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35785042

ABSTRACT

Cell therapy is a promising alternative treatment approach currently under study for osteoarthritis (OA), the most common chronic musculoskeletal disease. However, the mesenchymal stem cells (MSCs) used in cell therapy to treat OA are usually expanded in vitro to obtain sufficient numbers for transplantation, and their safety has not been fully assessed from multiple perspectives. Analysis of karyotypic abnormalities, in particular, is important to ensure the safety of cells; however, chromosomal mutations may also occur during the cell-expansion process. In addition, there have been many reports showing chromosome abnormalities, mainly trisomy 7, in the cartilage and synovium of patients with OA as well as in normal tissues. The suitability of cells with these karyotypic abnormalities as cells for cell therapy has not been evaluated. Recently, we assessed the safety of using cells with trisomy 7 from the osteoarthritic joint of a patient for transplantation, and we followed up with the patient for 5 years. This study showed analysis for copy number variant and whole-genome sequencing, compared with blood DNA from the same patient. We did not find any abnormalities in the genes regardless of trisomy 7. No side effects were observed for at least 5 years in the human clinical study. This suggests that the transplantation of cultured cells with trisomy 7 isolated from an osteoarthritic joint and transplanted into the osteoarthritic joints of the same person is not expected to cause serious adverse events. However, it is unclear what problems may arise in the case of allogeneic transplantation. Different types of risks will also exist depending on other transplantation routes, such as localization to the knee-joint only or circulation inflow and lung entrapment. In addition, since the cause of trisomy 7 occurrence remains unclear, it is necessary to clarify the mechanism of trisomy 7 in OA to perform cell therapy for OA patients in a safe manner.

4.
Toxicol Rep ; 9: 298-310, 2022.
Article in English | MEDLINE | ID: mdl-35284244

ABSTRACT

Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide and crop desiccant. Glyphosate has long been suspected of leading to the development of cancer and of compromising fertility. Herbicides have been increasingly recognized as epigenetic modifiers, and the impact of glyphosate on human and animal health might be mediated by epigenetic modifications. This article presents the results from an animal study where pigs were exposed to glyphosate while feeding. The experimental setup included a control group with no glyphosate added to the feed and two groups of pigs with 20 ppm and 200 ppm of glyphosate added to the feed, respectively. After exposure, the pigs were dissected, and tissues of the small intestine, liver, and kidney were used for DNA methylation and gene expression analyses. No significant change in global DNA methylation was found in the small intestine, kidney, or liver. Methylation status was determined for selected genes involved in various functions such as DNA repair and immune defense. In a CpG island of the promoter for IL18, we observed significantly reduced DNA methylation for certain individual CpG positions. However, this change in DNA methylation had no influence on IL18 mRNA expression. The expression of the DNA methylation enzymes DNMT1, DNMT3A, and DNMT3B was measured in the small intestine, kidney, and liver of pigs exposed to glyphosate. No significant changes in relative gene expression were found for these enzymes following dietary exposure to 20 and 200 ppm glyphosate. In contrast, a significant increase in expression of the enzyme TET3, responsible for demethylation, was observed in kidneys exposed to 200 ppm glyphosate.

5.
Genes Cells ; 27(1): 14-24, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34808017

ABSTRACT

LincRNA-p21 is a long intergenic non-coding RNA (LincRNA) gene reported to activate the transcription of the adjacent Cdkn1a (p21) gene in cis. The importance of the enhancer elements in the LincRNA-p21 gene region has also been reported; however, the involvement of the LincRNA-p21 transcripts in regulating Cdkn1a in vivo is still unclear. In this study, we used a LincRNA-p21-trapped mouse line (LincRNA-p21Gt ) in which ßgeo was inserted into intron 1, and all enhancer elements were retained. In LincRNA-p21Gt/Gt mice, the transcription of LincRNA-p21 was repressed due to the ßgeo sequence, and the expression of exon 1 of LincRNA-p21 was restored through its deletion or replacement by another sequence, and Cdkn1a expression was also upregulated. Furthermore, regardless of the full-length transcripts, the expression of Cdkn1a correlated with the transcription of the exon 1 of LincRNA-p21. This result indicates that the LincRNA-p21 transcripts are not functional, but the transcriptional activity around exon 1 is important for Cdkn1a expression.


Subject(s)
RNA, Long Noncoding , Animals , Cell Proliferation , Exons , Mice , RNA, Long Noncoding/genetics
6.
Bioengineered ; 12(1): 6952-6966, 2021 12.
Article in English | MEDLINE | ID: mdl-34516353

ABSTRACT

Primary liver cancer is the sixth most common cancer and the third leading cause of malignancy-related death worldwide in 2020, with 75-85% of hepatocellular carcinoma (HCC). Evidences have verified that long noncoding RNAs (lncRNAs) play key roles in HCC onset and development. However, the function and mechanism of lncRNA insulin-like growth factor 2-antisense (IGF2-AS) in HCC remain unclear. Herein, IGF2-AS expression profile in HCC patients was first investigated based on The Cancer Genome Atlas (TCGA) database and local HCC patients, followed by prognostic value evaluation using Kaplan-Meier method; then, the bioinformatics analysis, dual-luciferase reporter assay, Spearman correlation assay, function gain, and loss with rescue experiments were applied to investigate the biological function and the involved molecular mechanisms of IGF2-AS in HCC oncogenesis and development. Our results showed that IGF2-AS expression was significantly down-regulated in HCC cells and tissues; lower IGF2-AS expression was significantly associated with poor prognosis of HCC patients; IGF2-AS over-expression inhibited the viability, colony formation, invasion, and migration, while promoted apoptosis in vitro, and inhibited HCC xenograft growth in vivo; IGF2-AS sponged microRNA-520h (miR-520h) to up-regulate IGF2-AS expression, and miR-520h over-expression or cyclin-dependent kinase inhibitor 1A (CDKN1A) silencing reversed IGF2-AS reduced aggressive behaviors of HCC cells. In conclusion, IGF2-AS is a tumor-suppressor in HCC, and lower IGF2-AS expression is associated with poor prognosis of HCC patients; IGF2-AS inhibits HCC oncogenesis and development by IGF2-AS/miR-520h/CDKN1A pathway. Therefore, IGF2-AS may serve as a new biomarker for HCC management.


Subject(s)
Carcinoma, Hepatocellular , Cyclin-Dependent Kinase Inhibitor p21/genetics , Liver Neoplasms , MicroRNAs/genetics , Proteins/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Female , Humans , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , MicroRNAs/metabolism , Middle Aged , Proteins/metabolism , Signal Transduction/genetics , Transcriptome/genetics
7.
Exp Ther Med ; 19(5): 3203-3210, 2020 May.
Article in English | MEDLINE | ID: mdl-32266016

ABSTRACT

MicroRNA (miR)-106b-5p has been reported to act as both an oncogene and tumor suppressor in several tumors. The aim of the present study was to investigate the biological function of miR-106b-5p in osteosarcoma (OS). miR-106b-5p expression was observed to be significantly increased in OS tissues and cell lines. MTT assay and flow cytometry analysis determined that miR-106b-5p inhibitor transfection suppressed OS cell proliferation and induced cell cycle G0/G1 phase arrest. Furthermore, bioinformatics analysis and a luciferase reporter assay demonstrated that cyclin-dependent kinase inhibitor 1A (CDKN1A) was a potential target of miR-106b-5p. p21 protein expression was found to be significantly increased by miR-106b-5p downregulation in OS cells. Further analysis demonstrated that CDKN1A was downregulated in OS tissues and was negatively correlated with miR-106b-5p expression. Furthermore, upregulation of CDKN1A expression mimicked, whilst CDKN1A knockdown reversed the suppressive effects of miR-106b-5p inhibitor on OS cell proliferation and cell cycle progression. In summary, the present data suggested that miR-106b-5p promotes cell proliferation and cell cycle progression by directly targeting CDKN1A in OS.

8.
J Biol Chem ; 294(46): 17555-17569, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31601652

ABSTRACT

The forkhead box O (FOXO) proteins are transcription factors involved in the differentiation of many cell types. Type II collagen (Col2) Cre-Foxo1-knockout and Col2-Cre-Foxo1,3,4 triple-knockout mice exhibit growth plate malformation. Moreover, recent studies have reported that in some cells, the expressions and activities of FOXOs are promoted by transforming growth factor ß1 (TGFß1), a growth factor playing a key role in chondrogenic differentiation. Here, using a murine chondrogenic cell line (ATDC5), mouse embryos, and human mesenchymal stem cells, we report the mechanisms by which FOXOs affect chondrogenic differentiation. FOXO1 expression increased along with chondrogenic differentiation, and FOXO1 inhibition suppressed chondrogenic differentiation. TGFß1/SMAD signaling promoted expression and activity of FOXO1. In ATDC5, FOXO1 knockdown suppressed expression of sex-determining region Y box 9 (Sox9), a master regulator of chondrogenic differentiation, resulting in decreased collagen type II α1 (Col2a1) and aggrecan (Acan) expression after TGFß1 treatment. On the other hand, chemical FOXO1 inhibition suppressed Col2a1 and Acan expression without suppressing Sox9 To investigate the effects of FOXO1 on chondrogenic differentiation independently of SOX9, we examined FOXO1's effects on the cell cycle. FOXO1 inhibition suppressed expression of p21 and cell-cycle arrest in G0/G1 phase. Conversely, FOXO1 overexpression promoted expression of p21 and cell-cycle arrest. FOXO1 inhibition suppressed expression of nascent p21 RNA by TGFß1, and FOXO1 bound the p21 promoter. p21 inhibition suppressed expression of Col2a1 and Acan during chondrogenic differentiation. These results suggest that FOXO1 is necessary for not only SOX9 expression, but also cell-cycle arrest during chondrogenic differentiation via TGFß1 signaling.


Subject(s)
Chondrogenesis/genetics , Forkhead Box Protein O1/genetics , SOX9 Transcription Factor/genetics , Transforming Growth Factor beta1/genetics , Aggrecans/genetics , Animals , Cell Cycle Checkpoints/genetics , Cell Differentiation/genetics , Collagen Type II/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Forkhead Box Protein O1/antagonists & inhibitors , Gene Expression Regulation, Developmental/genetics , Humans , Mesenchymal Stem Cells/metabolism , Mice , Smad Proteins/genetics , Transforming Growth Factor beta1/pharmacology
9.
Am J Physiol Renal Physiol ; 317(5): F1350-F1358, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31545928

ABSTRACT

Long noncoding RNAs (lncRNAs) have been reported to play an important role in diabetic nephropathy (DN). However, the molecular mechanism involved in this process remains poorly understood. Thus, the present study aimed to explore the function and molecular mechanism of dysregulated lncRNA X-inactive specific transcript (XIST) in DN. DN mouse models were established by streptozotocin treatment, and human renal tubular epithelial HK-2 cells were exposed to high glucose to produce an in vitro model. XIST was highly expressed in renal tissues of patients with DN, mice with DN, and high glucose-exposed HK-2 cells. To identify the interaction among XIST, miR-93-5p, and cyclin-dependent kinase inhibitor 1A (CDKN1A) and to analyze the functional significance of their interaction in renal interstitial fibrosis, we altered endogenous expression of XIST and miR-93-5p and CDKN1A. Dual-luciferase reporter assay results suggested that XIST was highly expressed in the kidney tissue of DN mice and high glucose-exposed HK-2 cells. XIST was identified to be a lncRNA that could bind to miR-93-5p, and CDKN1A was a target of miR-93-5p. Downregulated expression of XIST led to an increase in miR-93-5p expression, thereby decreasing CDKN1A and suppressing renal interstitial fibrosis in DN. Consistently, XIST knockdown reduced the expression of fibrosis markers (fibronectin, collagen type IV, and transforming growth factor-ß1). Restoration of CDKN1A or decreasing miR-93-5p yielded a reversed effect on renal interstitial fibrosis. In conclusion, our study demonstrated that silenced XIST inducing miR-93-5p-dependent CDKN1A inhibition was beneficial for preventing renal interstitial fibrosis in DN, which may provide a future strategy to prevent the progression of DN.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/genetics , Diabetes Mellitus, Experimental , Female , Gene Silencing , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Middle Aged , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding/genetics
10.
Mol Med Rep ; 19(1): 345-361, 2019 01.
Article in English | MEDLINE | ID: mdl-30483774

ABSTRACT

Neuroblastoma derived from primitive sympathetic neural precursors is a common type of solid tumor in infants. MYCN proto­oncogene bHLH transcription factor (MYCN) amplification and 1p36 deletion are important factors associated with the poor prognosis of neuroblastoma. Expression levels of MYCN and c­MYB proto­oncogene transcription factor (c­myb) decline during the differentiation of neuroblastoma cells; E2F transcription factor 1 (E2F1) activates the MYCN promoter. However, the underlying mechanism of MYCN overexpression and amplification requires further investigation. In the present study, potential c­Myb target genes, and the effect of c­myb RNA interference (RNAi) on MYCN expression and amplification were investigated in MYCN­amplified neuroblastoma cell lines. The mRNA expression levels and MYCN gene copy number in five neuroblastoma cell lines were determined by quantitative polymerase chain reaction. In addition, variations in potential target gene expression and MYCN gene copy number between pre­ and post­c­myb RNAi treatment groups in MYCN­amplified Kelly, IMR32, SIMA and MHH­NB­11 cell lines, normalized to those of non­MYCN­amplified SH­SY5Y, were examined. To determine the associations between gene expression levels and chromosomal aberrations, MYCN amplification and 1p36 alterations in interphases/metaphases were analyzed using fluorescence in situ hybridization. Statistical analyses revealed correlations between 1p36 alterations and the expression of c­myb, MYB proto­oncogene like 2 (B­myb) and cyclin dependent kinase inhibitor 1A (p21). Additionally, the results of the present study also demonstrated that c­myb may be associated with E2F1 and L3MBTL1 histone methyl­lysine binding protein (L3MBTL1) expression, and that E2F1 may contribute to MYCN, B­myb, p21 and chromatin licensing and DNA replication factor 1 (hCdt1) expression, but to the repression of geminin (GMNN). On c­myb RNAi treatment, L3MBTL1 expression was silenced, while GMNN was upregulated, indicating G2/M arrest. In addition, MYCN gene copy number increased following treatment with c­myb RNAi. Notably, the present study also reported a 43.545% sequence identity between upstream of MYCN and Drosophila melanogaster amplification control element 3, suggesting that expression and/or amplification mechanisms of developmentally­regulated genes may be evolutionarily conserved. In conclusion, c­myb may be associated with regulating MYCN expression and amplification. c­myb, B­myb and p21 may also serve a role against chromosome 1p aberrations. Together, it was concluded that MYCN gene is amplified during S phase, potentially via a replication­based mechanism.


Subject(s)
E2F1 Transcription Factor/metabolism , Gene Amplification , Gene Expression Regulation, Neoplastic , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Proto-Oncogene Proteins c-myb/metabolism , S Phase , Base Sequence , Binding Sites , E2F1 Transcription Factor/genetics , Humans , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Proto-Oncogene Proteins c-myb/genetics , Sequence Homology , Tumor Cells, Cultured
11.
Oncol Lett ; 16(1): 1291-1297, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29963200

ABSTRACT

Liver kinase B1 (LKB1) encodes a serine/threonine kinase and functions as a tumor suppressor. LKB1 loss-of-function somatic mutations are frequently observed in sporadic types of cancer, particularly in lung cancer. Ectopic LKB1 induces growth arrest by upregulating p21/cyclin dependent kinase inhibitor 1A (WAF1) in LKB1 deficient cervical and melanoma cancer cell lines. However, the underlying molecular mechanism remains to be elucidated. The present study built upon previous observations by confirming that the ectopic expression level of LKB1 significantly reduced colony formation of LKB1-deficient lung cancer cells. Mechanistically, the present study demonstrated that LKB1 overexpression significantly induced p21/WAF1 expression in a kinase-dependent manner. Conversely, LKB1 stable knockdown resulted in a decrease in p21/WAF1 expression level in colon cancer cells. In addition, it was revealed that pharmacological activation of adenosine monophosphate protein kinase (AMPK) by 2-deoxyglucose significantly increased the p21/WAF1 expression level, suggesting that AMPK acts downstream of LKB1 to induce p21/WAF1 expression. Furthermore, the present study demonstrated that functional p53 was required for p21/WAF1 induction by LKB1. Phosphorylation of p53-Ser15 was increased by ectopic LKB1 or AMPK activation. Taken together, these results suggested that LKB1 acts via its substrate, AMPK, to upregulate p21/WAF1 expression in a p53-dependent manner. Therefore, the present study identified an important signaling axis, providing novel molecular insights into the tumor suppressor role of LKB1.

12.
Bone Rep ; 8: 90-94, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29955626

ABSTRACT

Sclerostin antibody (Scl-Ab) stimulates bone formation, which with long-term treatment, attenuates over time. The cellular and molecular mechanisms responsible for the attenuation of bone formation are not well understood, but in aged ovariectomized (OVX) rats, the reduction in vertebral cancellous bone formation is preceded by a reduction in osteoprogenitor (OP) number and significant induction of signaling pathways known to suppress mitogenesis and cell cycle progression in the osteocyte (OCy) (Taylor et al., 2016). To determine if the reduction in OP number is associated with a decrease in proliferation, aged OVX rats were administered vehicle or Scl-Ab for 9 or 29 days and implanted with continuous-delivery 5-bromo-2'-deoxyuridine (BrdU) mini-osmotic pumps 5 days prior to necropsy. The total number of BrdU-labeled osteoblasts (OB) was quantified in vertebral cancellous bone to indirectly assess the effects of Scl-Ab treatment on OP proliferation at the time of activation of modeling-based bone formation at day 9 and at the time of maximal mineralizing surface, initial decrease in OP number, and transcriptional changes in the OCy at day 29. Compared with vehicle, Scl-Ab resulted in an increase in the total number of BrdU-positive OB (+260%) at day 9 that decreased with continued treatment (+50%) at day 29. These differences in proliferation occurred at time points when the increase in total OB number was significant and similar in magnitude. These findings suggest that reduced OP proliferation contributes to the decrease in OP numbers, an effect that would limit the OB pool and contribute to the attenuation of bone formation that occurs with long-term Scl-Ab treatment.

13.
Br J Haematol ; 182(3): 373-383, 2018 08.
Article in English | MEDLINE | ID: mdl-29797327

ABSTRACT

Despite the absence of mutations in the DNA repair machinery in myeloid malignancies, the advent of high-throughput sequencing and discovery of splicing and epigenetics defects in chronic myelomonocytic leukaemia (CMML) prompted us to revisit a pathogenic role for genes involved in DNA damage response. We screened for misregulated DNA repair genes by enhanced RNA-sequencing on bone marrow from a discovery cohort of 27 CMML patients and 9 controls. We validated 4 differentially expressed candidates in CMML CD34+ bone marrow selected cells and in an independent cohort of 74 CMML patients, mutationally contextualized by targeted sequencing, and assessed their transcriptional behavior in 70 myelodysplastic syndrome, 66 acute myeloid leukaemia and 25 chronic myeloid leukaemia cases. We found BAP1 and PARP1 down-regulation to be specific to CMML compared with other related disorders. Chromatin-regulator mutated cases showed decreased BAP1 dosage. We validated a significant over-expression of the double strand break-fidelity genes CDKN1A and ERCC1, independent of promoter methylation and associated with chemorefractoriness. In addition, patients bearing mutations in the splicing component SRSF2 displayed numerous aberrant splicing events in DNA repair genes, with a quantitative predominance in the single strand break pathway. Our results highlight potential targets in this disease, which currently has few therapeutic options.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Leukemia, Myelomonocytic, Chronic/genetics , Aged , Bone Marrow/pathology , Case-Control Studies , DNA Mutational Analysis , Female , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Myelodysplastic Syndromes/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Serine-Arginine Splicing Factors/genetics , Transcription, Genetic , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
14.
Mol Med Rep ; 17(3): 4665-4671, 2018 03.
Article in English | MEDLINE | ID: mdl-29328456

ABSTRACT

Ischemic heart disease is a major health threat, resulting in a large number of mortalities annually worldwide. Oxidative stress is one of the main causes of cell death during ischemia­reperfusion (IR) injury. Cyclin dependent kinase inhibitor 1A (known as p21) is important in protecting tissues against IR injury, however the mechanism remains unknown. In the present study, oxygen­glucose deprivation and subsequent reoxygenation (OGD/R) in H9c2 heart­derived myocytes was used as a model to study myocardial IR injury in vitro. mRNA and protein expression levels were determined by reverse transcription­quantitative polymerase chain reaction and western blotting, respectively. The levels of reactive oxygen species were measured using the fluorescence dye 2',7'­dichlorodihydrofluorescein diacetate. The present data demonstrated that p21 expression was upregulated by tumor protein p53 (p53) in H9c2 cells exposed to OGD/R. p21 protected H9c2 cells against OGD/R­induced oxidative stress. In addition, p21 mediated upregulation of NF­E2­related factor­2 (Nrf2), a regulator of antioxidant responses, which in turn suppressed cell death in H9c2 cells subjected to OGD/R. Thus, activation of the p53/p21/Nrf2 signaling pathway may be an important adaptive response that limits oxidative injury during IR.


Subject(s)
Cell Hypoxia , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Oxidative Stress , Oxygen/metabolism , Animals , Cell Line , Cell Survival , Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p21/genetics , Fluorescent Dyes/chemistry , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/analysis , Reactive Oxygen Species/chemistry , Signal Transduction , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
15.
Cell Physiol Biochem ; 42(4): 1645-1656, 2017.
Article in English | MEDLINE | ID: mdl-28746924

ABSTRACT

BACKGROUND/AIMS: Adult cardiomyocytes can re-enter cell cycle as stimulated by prohypertrophic factors although they withdraw from cell cycle soon after birth. p21WAF1/CIP1, a cyclin-dependent kinase inhibitor, has been implicated in cardiac hypertrophy, however, its precise contribution to this process remains largely unclear. METHODS: The gene expression profile in left ventricle (LV) of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats was determined using quantitative PCR array and verified by real-time PCR and Western blotting. Hypertrophic response of H9c2 cells and neonatal rat ventricular myocytes (NRVM) were induced by angiotensin II (1 µmol/L). Cardiac hypertrophy of mice was elicited by isoproterenol (ISO) infusion (40 mg/kg per day for 14 days). p21-adenovirus and p21-siRNA were employed to transfect NRVM, and sterigmatocystin (STE, 3 mg/kg, ip, qd) was used to inhibit p21 activity. mRNA and protein expression levels of α- and ß-myosin heavy chain (MHC), p21WAF1/CIP1, calcineurin (CaN) and atrial natriuretic peptide (ANP) were assayed by realtime PCR and WB, respectively. RESULTS: Sixteen genes showed two-fold or greater changes between SHR and WKY rats, in which the expression of p21WAF1/CIP1 was upregulated by 4.15-fold (P=0.002) and reversed by losartan. Surface area, protein content, mRNA and protein expressions of ß-MHC, ANP and p21WAF1/CIP1 in H9c2 cells treated with AngII elevated significantly compared with control group. p21-Ad transfection markedly increased the surface area and ß-MHC mRNA expression of normal NRVMs, and p21-siRNA transfection decreased them in AngII-treated NRVMs. STE treatment decreased HW/BW and cross-sectional area, expression levels of ß-MHC, ANP and p21 significantly in ISO-treated mice. CONCLUSION: Our findings suggest that p21 facilitates the development of cardiac hypertrophy, and regulating the expression of p21 may be an approach to attenuate hypertrophic growth of cardiomyocytes.


Subject(s)
Cardiomegaly/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Heart Ventricles/metabolism , Myocytes, Cardiac/metabolism , Animals , Atrial Natriuretic Factor/genetics , Atrial Natriuretic Factor/metabolism , Calcineurin/genetics , Calcineurin/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cell Line , Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Heart Ventricles/drug effects , Heart Ventricles/pathology , Isoproterenol , Losartan/pharmacology , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sterigmatocystin/pharmacology , Ventricular Myosins/genetics , Ventricular Myosins/metabolism
16.
Exp Ther Med ; 13(5): 2003-2011, 2017 May.
Article in English | MEDLINE | ID: mdl-28565800

ABSTRACT

MicroRNAs (miRNAs) are small, non-coding RNAs that are key regulators of gene expression by directly binding to the 3'-untranslated region of their target mRNAs, resulting in translational repression or degradation of mRNA. It has been demonstrated that miRNAs have key roles in a variety of human malignancies, including osteosarcoma. The present study aimed to assess the molecular mechanism of miR-93 in the regulation of osteosarcoma cell proliferation. Reverse-transcription quantitative PCR and western blot assays were used to examine mRNA and protein expression. An MTT assay and flow cytometry were performed to determine the cell proliferation and cell cycle distribution. A luciferase reporter assay was performed to confirm the direct targeting of cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as P21, by miR-93, which was suggested by a bioinformatics analysis. The results showed that the expression of miR-93 was frequently and significantly increased in a total of 19 osteosarcoma tissues compared to their matched adjacent non-tumor tissues, and the upregulation of miR-93 was associated with the malignant progression of osteosarcoma. Furthermore, miR-93 was also upregulated in the human osteosarcoma cell lines Saos-2, U2OS, SW1353 and MG63 when compared with that in the human osteoblast cell line hFOB1.19. Transfection with miR-93 inhibitor significantly reduced the miR-93 levels and inhibited the proliferation of U2OS and MG63 osteosarcoma cells. The protein levels of P21 were negatively regulated by miR-93 in U2OS and MG63 cells. Knockdown of miR-93 caused cell cycle arrest at G1 stage in U2OS and MG63 cells, identical to the effect of P21 overexpression. Finally, P21 was found to be significantly downregulated in osteosarcoma tissues compared to their matched adjacent non-tumor tissues, suggesting that the inhibition of P21 may be due to increased miR-93 expression in osteosarcoma tissues. In conclusion, the present study demonstrated that miR-93 enhances the proliferation of osteosarcoma cells, at least in part via inhibiting P21 expression and thus promoting cell cycle progression.

17.
Oncol Lett ; 13(2): 722-730, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28356951

ABSTRACT

Multidrug resistance (MDR) impedes successful chemotherapy in colorectal carcinoma (CRC) and emerging evidence suggests that microRNAs (miRs) are involved in the development of MDR. In the present study, the role of miR-93-5p in the modulation of drug resistance in CRC was investigated using HCT-8 and MDR HCT-8/vincristine (VCR) cell lines. The results demonstrated upregulated expression of miR-93-5p and MDR protein 1 (MDR1) in HCT-8/VCR cells, compared with the parental HCT-8 cells. Furthermore, cyclin-dependent kinase inhibitor 1A (CDKN1A) was identified as a potential target of miR-93-5p using miR target analysis tools, including PicTar, TargetScan and miRanda. In addition, inhibition of miR-93-5p expression in HCT-8/VCR cells markedly downregulated MDR1 gene expression, upregulated CDKN1A gene expression and induced cell cycle arrest in G1. Conversely, the overexpression of miR-93-5p in HCT-8/VCR cells upregulated MDR1 gene expression, downregulated CDKN1A gene expression and promoted G1/S transition. Furthermore, the in vitro drug sensitivity assay performed suggested that downregulation of miR-93-5p enhanced the sensitivity of HCT-8/VCR cells to VCR, while the upregulation of miR-93-5p decreased the sensitivity of HCT-8 cells to VCR. In conclusion, the results of the present study suggest that miR-93-5p serves a role in the development of MDR through downregulating CDKN1A gene expression in CRC.

18.
Oncol Lett ; 14(6): 7473-7482, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29344191

ABSTRACT

Cyclin-dependent kinase inhibitor 1A (CDKN1A) is an important cell cycleregulator, and has been identified to exhibit aberrant expression in various types of cancer tissues. However, the association between CDKN1A expression level and prognosis in patients with resected gastric adenocarcinoma (RGA) requires additional elucidation. In the present study, the CDKN1A expression profile in RGA tissues obtained from 217 patients were analyzed using immunohistochemistry. Its prognostic significance was evaluated by using the χ2 test, Kaplan-Meier curves and the log-rank test, and a multivariate Cox model analysis, during a median follow-up time of 51 months. The results demonstrated that CDKN1A expression was significantly correlated with lymph node metastasis (LNM; P=0.001), recurrence (P<0.001) and overall survival (OS; P<0.001). In addition, the recurrence-free survival (RFS) and OS times were significantly shorter in patients with low CDKN1A expression compared with those with high CDKN1A expression (RFS, 20 months vs. 69 months, P<0.001; and OS, 32 months vs. 70 months, P<0.001, respectively). Multivariate analysis additionally confirmed that low CDKN1A expression was significantly correlated with an increased risk of LNM (P=0.001), recurrence (P<0.001) and mortality (P<0.001). Therefore, these data suggest that low expression of CDKN1A has independent prognostic significance indicative of tumor progression and poor survival in patients with RGA. Evaluation of CDKN1A expression may assist in determining prognosis in patients with RGA.

19.
J Thorac Dis ; 8(10): 2911-2923, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27867568

ABSTRACT

BACKGROUND: The kinesin family member C1 (KIFC1, also known as HSET) is a kinesin superfamily protein (KIFs). Although KIFC1 acts as a crucial role in the development of several human cancers, the KIFC1 expression profile and functional remain unclear in non-small cell lung cancer (NSCLC). METHODS: We collected the fresh NSCLC samples and paired normal lung tissue in patients with lung cancer operation, and detected KIFC1 expression using quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blotting. To expand on previous smaller-scale studies, NSCLC tissue microarrays (TMA) were analyzed by IHC. Finally, cell lines were employed to further probe the potential mechanisms. RESULTS: In this study, we described that KIFC1 was significantly upregulated in NSCLC tissues compared with the corresponding normal tissues. Moreover, KIFC1 overexpression was associated with the poor overall survival (OS) of NSCLC patients, and siRNA-mediated knockdown of KIFC1 significantly suppressed tumor cell proliferation in vitro. Further verification showed that inhibition of KIFC1 gene expression caused the upregulation of the cyclin-dependent kinases inhibitor p21 and downregulation of the cell cycle driver protein cdc2, which arrested cells in the G2-M phase. CONCLUSIONS: we report that increased KIFC1 expression may promote cell proliferation and identified it as a biomarker of unfavorable prognosis in NSCLC patients.

20.
Cell Cycle ; 14(14): 2293-300, 2015.
Article in English | MEDLINE | ID: mdl-25945652

ABSTRACT

Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.


Subject(s)
Cell Proliferation/drug effects , Insulin/pharmacology , Insulysin/metabolism , Liver/metabolism , Adult , Aged , Apoptosis/drug effects , Cohort Studies , Cyclin G2/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Gene Expression Profiling , Hep G2 Cells , Humans , Insulysin/antagonists & inhibitors , Insulysin/genetics , Ki-67 Antigen/metabolism , Male , Middle Aged , Minichromosome Maintenance Complex Component 2/metabolism , Proliferating Cell Nuclear Antigen/metabolism , RNA Interference , Transcriptome/drug effects , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL