Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Mol Immunol ; 155: 165-174, 2023 03.
Article in English | MEDLINE | ID: mdl-36812764

ABSTRACT

Previously, it was demonstrated that from the single chain fragment variable (scFv) 3F it is possible to generate variants capable of neutralizing the Cn2 and Css2 toxins, as well as their respective venoms (Centruroides noxius and Centruroides suffusus). Despite this success, it has not been easy to modify the recognition of this family of scFvs toward other dangerous scorpion toxins. The analysis of toxin-scFv interactions and in vitro maturation strategies allowed us to propose a new maturation pathway for scFv 3F to broaden recognition toward other Mexican scorpion toxins. From maturation processes against toxins CeII9 from C. elegans and Ct1a from C. tecomanus, the scFv RAS27 was developed. This scFv showed an increased affinity and cross-reactivity for at least 9 different toxins while maintaining recognition for its original target, the Cn2 toxin. In addition, it was confirmed that it can neutralize at least three different toxins. These results constitute an important advance since it was possible to improve the cross-reactivity and neutralizing capacity of the scFv 3F family of antibodies.


Subject(s)
Scorpion Venoms , Animals , Humans , Amino Acid Sequence , Caenorhabditis elegans , Antibodies, Neutralizing , Immunoglobulin Fragments
2.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Article in English | MEDLINE | ID: mdl-35781918

ABSTRACT

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Subject(s)
Carboxylic Ester Hydrolases , Protein Engineering , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Coumaric Acids/metabolism , Biotechnology , Catalysis , Biocatalysis , Enzymes/metabolism
3.
Methods Mol Biol ; 2406: 35-64, 2022.
Article in English | MEDLINE | ID: mdl-35089549

ABSTRACT

Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.


Subject(s)
Escherichia coli , Proteomics , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Solubility
4.
Biotechnol Appl Biochem ; 69(2): 389-409, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33555054

ABSTRACT

Recently, there has been an increase in the demand for enzymes with modified activity, specificity, and stability. Enzyme engineering is an important tool to meet the demand for enzymes adjusted to different industrial processes. Knowledge of the structure and function of enzymes guides the choice of the best strategy for engineering enzymes. Each enzyme engineering strategy, such as rational design, directed evolution, and semi-rational design, has specific applications, as well as limitations, which must be considered when choosing a suitable strategy. Engineered enzymes can be optimized for different industrial applications by choosing the appropriate strategy. This review features engineered enzymes that have been applied in food, animal feed, pharmaceuticals, medical applications, bioremediation, biofuels, and detergents.


Subject(s)
Biotechnology , Protein Engineering , Animals , Biocatalysis , Biodegradation, Environmental , Enzymes/chemistry , Industry
5.
Molecules ; 24(16)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398877

ABSTRACT

Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.


Subject(s)
Biomass , Protein Engineering , Recombinant Proteins , Biocatalysis , Biodegradation, Environmental , Biotechnology , Biotransformation , Yeasts/genetics , Yeasts/metabolism
6.
Electron. j. biotechnol ; Electron. j. biotechnol;39: 91-97, may. 2019. ilus, graf, tab
Article in English | LILACS | ID: biblio-1052260

ABSTRACT

BACKGROUND: Lipases are extensively exploited in lots of industrial fields; cold-adapted lipases with alkali-resistance are especially desired in detergent industry. Penicillium cyclopium lipase I (PCL) might be suitable for applications of detergent industry due to its high catalytic efficiency at low temperature and relatively good alkali stability. In this study, to better meet the requirements, the alkali stability of PCL was further improved via directed evolution with error-prone PCR. RESULTS: The mutant PCL (N157F) with an improved alkali stability was selected based on a high-throughput activity assay. After incubating at pH 11.0 for 120 min, N157F retained 70% of its initial activity, which was 23% higher than that of wild type PCL. Combined with the three-dimensional structure analysis, N157F exhibited an improved alkali stability under the high pH condition due to the interactions of hydrophilicity and ß-strand propensity. Conclusions: This work provided the theoretical foundation and preliminary data for improving alkali stability of PCL to meet the industrial requirements, which is also beneficial to improving alkali-tolerance ability of other industrial enzymes via molecular modification.


Subject(s)
Penicillium/enzymology , Enzyme Stability , Detergent Industry , Lipase/metabolism , Penicillium/isolation & purification , Penicillium/genetics , Polymerase Chain Reaction/methods , Cold Temperature , Alkalies , Biocatalysis , Hydrophobic and Hydrophilic Interactions , Hydrogen-Ion Concentration , Lipase/isolation & purification , Lipase/genetics , Mutation
7.
Toxins (Basel) ; 11(1)2019 01 10.
Article in English | MEDLINE | ID: mdl-30634620

ABSTRACT

The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization.


Subject(s)
Antibodies, Neutralizing/immunology , Neurotoxins/immunology , Scorpion Venoms/immunology , Single-Chain Antibodies/immunology , Mexico
8.
Mol Biotechnol ; 60(12): 946-974, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30264233

ABSTRACT

Proteins are key biomolecules for most biological processes, their function is related to their conformation that is also dictated by their sequence of amino acids. Through evolution, nature has produced an immense variety of enzymatic tools of high efficiency and selectivity, and thanks to the understanding of the molecular basis of life and the technological advances, scientists have learned to introduce mutations and select mutant enzymes, to optimize and control their molecular fitness characteristics mainly for industrial, medical and environmental applications. The relationship between protein structure and enzymatic functionality is essential, and there are various experimental and instrumental techniques for unravelling the molecular changes, activities and specificities. Protein engineering applies computational tools, in hand with experimental tools for mutations, like directed evolution and rational design, along with screening methods to obtain protein variations with the desired properties under a short time frame. With innovations in technology, it is possible to fine tune properties in proteins and reach new frontiers in their applications. The present review will briefly discuss these points and methods, with a glimpse on their strengths and pitfalls, while giving an overview of the versatility of synthetic proteins and their huge potential for biotechnological and biomedical fields.


Subject(s)
Directed Molecular Evolution , Protein Engineering , Recombinant Proteins , Mutagenesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
Enzyme Microb Technol ; 100: 60-70, 2017 May.
Article in English | MEDLINE | ID: mdl-28284313

ABSTRACT

Enzymes active at low temperature are of great interest for industrial bioprocesses due to their high efficiency at a low energy cost. One of the particularities of naturally evolved cold-active enzymes is their increased enzymatic activity at low temperature, however the low thermostability presented in this type of enzymes is still a major drawback for their application in biocatalysis. Directed evolution of cold-adapted enzymes to a more thermostable version, appears as an attractive strategy to fulfill the stability and activity requirements for the industry. This paper describes the recombinant expression and characterization of a new and highly active cold-adapted xylanase from the GH-family 10 (Xyl-L), and the use of a novel one step combined directed evolution technique that comprises saturation mutagenesis and focused epPCR as a feasible semi-rational strategy to improve the thermostability. The Xyl-L enzyme was cloned from a marine-Antarctic bacterium, Psychrobacter sp. strain 2-17, recombinantly expressed in E. coli strain BL21(DE3) and characterized enzymatically. Molecular dynamic simulations using a homology model of the catalytic domain of Xyl-L were performed to detect flexible regions and residues, which are considered to be the possible structural elements that define the thermolability of this enzyme. Mutagenic libraries were designed in order to stabilize the protein introducing mutations in some of the flexible regions and residues identified. Twelve positive mutant clones were found to improve the T5015 value of the enzyme, in some cases without affecting the activity at 25°C. The best mutant showed a 4.3°C increase in its T5015. The efficiency of the directed evolution approach can also be expected to work in the protein engineering of stereoselectivity.


Subject(s)
Directed Molecular Evolution/methods , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Mutagenesis , Polymerase Chain Reaction/methods , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Cloning, Molecular , Cold Temperature , Endo-1,4-beta Xylanases/chemistry , Enzyme Stability/genetics , Genes, Bacterial , Models, Molecular , Molecular Dynamics Simulation , Protein Engineering/methods , Psychrobacter/enzymology , Psychrobacter/genetics , Structural Homology, Protein
10.
Protein Eng Des Sel ; 27(8): 255-62, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25096197

ABSTRACT

As part of an ongoing directed evolution program, the catalytic performance of the Xylanase A from Bacillus subtilis (XynA), which presents temperature and pH optima of 50°C and 6.0, respectively, has been enhanced to create a highly thermostable and alkali-tolerant enzyme. A library of random XynA mutants generated by error-prone polymerase chain reaction was screened by halo formation on agar containing xylan at pH 8.0. Two mutants showing higher catalytic activity at elevated pH in relation to the wild-type XynA were selected, and pooled with a further 5 XynA variants selected by screening thermostable XynA obtained from a previous directed evolution study for activity at alkaline pH. This pool of variants was used as a template for a further round of error-prone polymerase chain reaction and DNase fragment shuffling, with screening at pH 12.0 at 55°C. Selected mutants were subjected to further DNase shuffling, and a final round of screening at pH 12.0 and 80°C. A XynA variant containing eight mutations was isolated (Q7H/G13R/S22P/S31Y/T44A/I51V/I107L/S179C) that presented a temperature optimum of 80°C, a 3-fold increase in the specific activity compared with the wild-type enzyme at pH 8.0, and a 50% loss of activity (t50) of 60 min at 80°C (wild type <2 min). This directed evolution strategy therefore allows the concomitant adaption of increased thermostability and alkali tolerance of an endo-xylanase.


Subject(s)
Alkalies/metabolism , Bacillus subtilis/enzymology , Directed Molecular Evolution , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Bacillus subtilis/genetics , Enzyme Stability , Models, Molecular , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Temperature
11.
Biol. Res ; 46(4): 395-405, 2013. ilus, tab
Article in English | LILACS | ID: lil-700402

ABSTRACT

Enzymes have been long used in man-made biochemical processes, from brewing and fermentation to current industrial production of fine chemicals. The ever-growing demand for enzymes in increasingly specific applications requires tailoring naturally occurring enzymes to the non-natural conditions found in industrial processes. Relationships between enzyme sequence, structure and activity are far from understood, thus hindering the capacity to design tailored biocatalysts. In the field of protein engineering, directed enzyme evolution is a powerful algorithm to generate and identify novel and improved enzymes through iterative rounds of mutagenesis and screening applying a specific evolutive pressure. In practice, critical checkpoints in directed evolution are: selection of the starting point, generation of the mutant library, development of the screening assay and analysis of the output of the screening campaign. Each step in directed evolution can be performed using conceptually and technically different approaches, all having inherent advantages and challenges. In this article, we present and discuss in a general overview, challenges of designing and performing a directed enzyme evolution campaign, current advances in methods, as well as highlighting some examples of its applications in industrially relevant enzymes.


Subject(s)
Biotechnology/methods , Directed Molecular Evolution/methods , Enzymes/metabolism , Protein Engineering/methods , Biocatalysis , Enzymes/chemistry , Enzymes/genetics , Mutagenesis
SELECTION OF CITATIONS
SEARCH DETAIL