Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
1.
J Cell Mol Med ; 28(14): e18533, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034442

ABSTRACT

Hepatitis B Virus (HBV) infection significantly elevates the risk of hepatocellular carcinoma (HCC), with the HBV X protein (HBx) playing a crucial role in cancer progression. Sorafenib, the primary therapy for advanced HCC, shows limited effectiveness in HBV-infected patients due to HBx-related resistance. Numerous studies have explored combination therapies to overcome this resistance. Sodium diethyldithiocarbamate (DDC), known for its anticancer effects and its inhibition of superoxide dismutase 1 (SOD1), is hypothesized to counteract sorafenib (SF) resistance in HBV-positive HCCs. Our research demonstrates that combining DDC with SF significantly reduces HBx and SOD1 expressions in HBV-positive HCC cells and human tissues. This combination therapy disrupts the PI3K/Akt/mTOR signalling pathway and promotes apoptosis by increasing reactive oxygen species (ROS) levels. These cellular changes lead to reduced tumour viability and enhanced sensitivity to SF, as evidenced by the synergistic suppression of tumour growth in xenograft models. Additionally, DDC-mediated suppression of SOD1 further enhances SF sensitivity in HBV-positive HCC cells and xenografted animals, thereby inhibiting cancer progression more effectively. These findings suggest that the DDC-SF combination could serve as a promising strategy for overcoming SF resistance in HBV-related HCC, potentially optimizing therapy outcomes.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B virus , Liver Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Signal Transduction , Sorafenib , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases , Sorafenib/pharmacology , Sorafenib/therapeutic use , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Animals , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Mice , Hepatitis B virus/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Hepatitis B/complications , Hepatitis B/drug therapy , Hepatitis B/virology , Ditiocarb/pharmacology , Drug Resistance, Neoplasm/drug effects , Mice, Nude , Cell Proliferation/drug effects , Trans-Activators , Viral Regulatory and Accessory Proteins
2.
Int J Biol Sci ; 20(9): 3393-3411, 2024.
Article in English | MEDLINE | ID: mdl-38993566

ABSTRACT

Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.


Subject(s)
Epithelial Cells , NIMA-Related Kinases , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Prostate , Prostatitis , Pyroptosis , Animals , Humans , Male , Mice , Autoimmune Diseases/metabolism , Epithelial Cells/metabolism , Gasdermins , Mice, Inbred C57BL , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Prostate/metabolism , Prostatitis/metabolism , Pyroptosis/drug effects , Receptors, Purinergic P2X7/metabolism
3.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38998738

ABSTRACT

Disulfiram (DS) has been shown to have potent anti-cancer activity; however, it is also characterised by its low water solubility and rapid metabolism in vivo. Biodegradable polylactic-co-glycolic acid (PLGA) polymers have been frequently employed in the manufacturing of PLGA nano-carrier drug delivery systems. Thus, to develop DS-loaded PLGA nanoparticles (NPs) capable of overcoming DS's limitations, two methodologies were used to formulate the NPs: direct nanoprecipitation (DNP) and single emulsion/solvent evaporation (SE), followed by particle size reduction. The DNP method was demonstrated to produce NPs of superior characteristics in terms of size (151.3 nm), PDI (0.083), charge (-37.9 mV), and loading efficiency (65.3%). Consequently, NPs consisting of PLGA and encapsulated DS coated with mPEG2k-PLGA at adjustable ratios were prepared using the DNP method. Formulations were then characterised, and their stability in horse serum was assessed. Results revealed the PEGylated DS-loaded PLGA nano-carriers to be more efficient; hence, in-vitro studies testing these formulations were subsequently performed using two distinct breast cancer cell lines, showing great potential to significantly enhance cancer therapy.

4.
Int J Biol Macromol ; 276(Pt 2): 133955, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025177

ABSTRACT

Coronaviruses (CoV) are highly pathogenic single-strand RNA viruses. CoV infections cause fatal respiratory symptoms and lung injuries in humans and significant economic losses in livestock. Since the SARS-2 outbreak in 2019, the highly conserved main protease (Mpro), also termed 3-chymotrypsin-like protease (3CLpro), has been considered an attractive drug target for treating CoV infections. Mpro mediates the proteolytic cleavage of eleven sites in viral polypeptides necessary for virus replication. Here, we report that disulfiram, an FDA-approved drug for alcoholic treatment, exhibits a broad-spectrum inhibitory effect on CoV Mpros. Analytical ultracentrifugation and circular dichroism analyses indicated that disulfiram treatment blocks the dimeric formation of SARS and PEDV Mpros and decreases the thermostability of SARS, SARS-2, and PEDV Mpros, whereas it facilitates the dimerization and stability of MERS Mpro. Furthermore, mass spectrometry and structural alignment revealed that disulfiram targets the Cys44 residue of Mpros, which is located at the substrate entrance and close to the catalytic His41. In addition, molecular docking analysis suggests that disulfiram conjugation interferes with substrate entry to the catalytic center. In agreement, mutation of Cys44 modulates the disulfiram sensitivity of CoV Mpros. Our study suggests a broad-spectrum inhibitory function of disulfiram against CoV Mpros.

5.
Daru ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963538

ABSTRACT

BACKGROUND: Melanoma poses a significant threat to human health, making the development of a safe and effective treatment a crucial challenge. Disulfiram (DS) is a proven anticancer drug that has shown effectiveness when used in combination with copper (DS-Cu complex). OBJECTIVES: This study focuses on encapsulation of DS-copper complex into nanofiber scaffold from polyvinyl alcohol (PVA) (DS-Cu@PVA). In order to increase bioavailability towards melanoma cell lines and decrease its toxicity. METHODS: The scaffold was fabricated through an electrospinning process using an aqueous solution, and subsequently analyzed using ART-Fourier transform infrared spectroscopy (ART-FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Additionally, cellular cytotoxicity, flow cytometry analysis, and determination of caspase 3 activity were conducted to further characterize the scaffold. RESULTS: The results confirmed that encapsulation of DS-Cu complex into PVA was successful via different characterization. The scanning electron microscopy (SEM) analysis revealed that the diameter of the nanofibers remained consistent despite the addition of DS-Cu. Additionally, ATR-FTIR confirmed that the incorporation of DS-Cu into PVA did not significantly alter the characteristic peaks of PVA. Furthermore, the cytotoxicity assessment of the DS-Cu@PVA nanofibrous scaffold using human normal skin cells (HFB4) demonstrated its superior biocompatibility compared to DS-Cu-free counterparts. Notably, the presence of DS-Cu maintained its effectiveness in promoting apoptosis by increasing cellular reactive oxygen species, proapoptotic gene expression, and caspase 3 activity, while simultaneously reducing glutathione levels and oncogene expression in human and mouse melanoma cell lines (A375 and B16F10, respectively). Overall, these findings suggest that the addition of DS-Cu to PVA nanofibers enhances their biocompatibility and cytotoxic effects on melanoma cells, making them a promising candidate for biomedical applications. CONCLUSION: The findings indicate that the targeted delivery of DS-Cu onto a PVA nanofiber scaffold holds potential approach to enhance the efficacy of DS-Cu in combating melanoma.

6.
Ther Deliv ; : 1-24, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949622

ABSTRACT

Aim: The current study aims to develop and optimize microemulsions (ME) through Quality-by-Design (QbD) approach to improve the aqueous solubility and dissolution of poorly water-soluble drug disulfiram (DSF) for repurposing in melanoma and breast cancer therapy. Materials & methods: The ME was formulated using Cinnamon oil & Tween® 80, statistically optimized using a D-optimal mixture design-based QbD approach to develop the best ME with low vesicular size (Zavg) and polydispersity index (PDI). Results: The DSF-loaded optimized stable ME showed enhanced dissolution, in-vitro cytotoxicity and improved cellular uptake in B16F10 and MCF-7 cell lines compared with their unformulated free DSF. Conclusion: Our investigations suggested the potential of the statistically designed DSF-loaded optimized ME for repurposing melanoma and breast cancer therapy.


Identifying new medicinal uses of an existing marketed drug can save both money and time in the process of drug development. From many of the recently reported literature, disulfiram (a drug used for alcoholism) has shown its activity against various cancers, including breast and skin cancer. However, it possesses poor water solubility and absorption, leading to low medicinal activity. The current study aims to develop a novel microemulsion dosage form through a statistical design approach to enhance the solubility, dissolution and anticancer activity for repurposing in melanoma and breast cancer treatment. The novel microemulsion was prepared, statistically analyzed and optimized. The optimized microemulsion was found to be stable and showed improved medicinal activity against breast and skin cancer compared with the pure drug. Our research showed the potential of the developed microemulsion of the disulfiram for its new therapeutic use in skin cancer and breast cancer.

7.
Pharmacol Res ; 205: 107256, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866263

ABSTRACT

Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.


Subject(s)
Myocardial Infarction , Neutrophils , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/immunology , Neutrophils/immunology , Neutrophils/drug effects , Animals , Myocardium/pathology , Myocardium/immunology , Myocardium/metabolism
8.
Acta Pharm Sin B ; 14(6): 2698-2715, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828135

ABSTRACT

Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.

9.
J Colloid Interface Sci ; 674: 9-18, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908062

ABSTRACT

Disulfiram (DSF) metabolites exhibit antitumor properties when bound to Cu2+. This combination also promotes the generation of reactive oxygen species (ROS), ultimately leading to tumor cell death. In this study, CuO2 served as a carrier for DSF, forming a dual-drug delivery system with Cu2+ and DSF encapsulated in polydopamine (PDA). In the final delivery system, CuO2 (DSF-CuO2@PDA) was hydrolyzed at the tumor site, releasing both Cu2+ and H2O2. Cu2+ reacts with DSF metabolites to form Bis(diethyldithiocarbamate)-Cu (CuET), which triggers a Fenton-like reaction that generates ROS. Chemotherapy and chemodynamic therapy exhibited significant tumor-suppressive capabilities, with an inhibition rate of 61 %. In addition, the DSF-CuO2@PDA complex demonstrated superlative tumor-targeting ability and biocompatibility.

10.
Free Radic Biol Med ; 222: 130-148, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866192

ABSTRACT

The clinical application of the therapeutic approach in myelodysplastic syndromes (MDS) remains an insurmountable challenge for the high propensity for progressing to acute myeloid leukemia and predominantly affecting elderly individuals. Thus, the discovery of molecular mechanisms underlying the regulatory network of different programmed cell death holds great promise for the identification of therapeutic targets and provides insights into new therapeutic avenues. Herein, we found that disulfiram/copper (DSF/Cu) significantly repressed the cell viability, increased reactive oxygen species (ROS) accumulation, destroyed mitochondrial morphology, and altered oxygen consumption rate. Further studies verified that DSF/Cu induces cuproptosis, as evidenced by the depletion of glutathione (GSH), aggregation of lipoylated DLAT, and induced loss of Fe-S cluster-containing proteins, which could be rescued by tetrathiomolybdate and knockdown of ferredoxin 1 (FDX1). Additionally, GSH contributed to the tolerance of DSF/Cu-mediated cuproptosis, while pharmacological chelation of GSH triggered ROS accumulation and sensitized cell death. The xCT-GSH-GPX4 axis is the ideal downstream component of ferroptosis that exerts a powerful protective mechanism. Notably, classical xCT inhibitors were capable of leading to the catastrophic accumulation of ROS and exerting synergistic cell death, while xCT overexpression restored these phenomena. Simvastatin, an inhibitor of HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase, has beneficial effects in repurposing for inhibiting GPX4. Similarly, the combination treatment of DSF/Cu and simvastatin dramatically decreased the expression of GPX4 and Fe-S proteins, ultimately accelerating cell death. Moreover, we identified that the combination treatment of DSF/Cu and simvastatin also had a synergistic antitumor effect in the MDS mouse model, with the reduced GPX4, increased COX-2 and accumulated lipid peroxides. Overall, our study provided insight into developing a novel synergistic strategy to sensitize MDS therapy by targeting ferroptosis and cuproptosis.

11.
Pharmacol Res ; 206: 107264, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876443

ABSTRACT

Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.


Subject(s)
Copper , Diabetes Complications , Humans , Copper/metabolism , Animals , Diabetes Complications/metabolism , Diabetes Complications/drug therapy , Homeostasis
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167320, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936515

ABSTRACT

Postmenopausal women experience bone loss and weight gain. To date, crosstalk between estrogen receptor signals and nuclear factor-κB (NF-κB) has been reported, and estrogen depletion enhances bone resorption by osteoclasts via NF-κB activation. However, it is unclear when and in which tissues NF-κB is activated after menopause, and how NF-κB acts as a common signaling molecule for postmenopausal weight gain and bone loss. Therefore, we examined the role of NF-κB in bone and energy metabolism following menopause. NF-κB reporter mice, which can be used to measure NF-κB activation in vivo, were ovariectomized (OVX) and the luminescence intensity after OVX increased in the metaphyses of the long bones and perigonadal white adipose tissue, but not in the other tissues. OVX was performed on wild-type (WT) and p65 mutant knock-in (S534A) mice, whose mutation enhances the transcriptional activity of NF-κB. Weight gain with worsening glucose tolerance was significant in S534A mice after OVX compared with those of WT mice. The bone density of the sham group in WT or S534A mice did not change, whereas in the S534A-OVX group it significantly decreased due to the suppression of bone formation and increase in bone marrow adipocytes. Disulfiram, an anti-alcoholic drug, suppressed OVX-induced activation of NF-κB in the metaphyses of long bones and white adipose tissue (WAT), as well as weight gain and bone loss. Overall, the activation of NF-κB in the metaphyses of long bones and WAT after OVX regulates post-OVX weight gain and bone loss.

13.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931416

ABSTRACT

The treatment adherence of narcotics-addicted individuals with reduced incidences of relapse can be enhanced by a sustained drug release formulation of antinarcotics. So far, different drug formulations have been reported with sustained drug release periods of 28 and 35 days. To further enhance this duration, different formulations of injectable hydrogels (IHs) have been developed by combining low molecular weight (LMW) and high molecular weight (HMW) chitosan (CS) with guar gum (GG) and crosslinking them by sodium bi phosphate dibasic. The structural, morphological, and physicochemical properties of LMW-CS IH, and HMW-CS IH were evaluated using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and rheological, swelling, and biodegradation analysis. The HMW-CS IH showed high crosslinking, increased thermal stability, high mechanical strength, elevated swelling, and low biodegradation. The antinarcotic drugs naltrexone (NTX) and disulfiram (DSF) were loaded separately into the HMW-CS IH and LMW-CS IH. The release of NTX and DSF was investigated in phosphate buffer saline (PBS) and ethanol (0.3%, 0.4%, and 0.5%) over a 56-day period using an UV spectrophotometer. The drug release data were tested in zero-order, first-order, and Korsemeyer-Peppas mathematical models. In PBS, all prepared formulations followed non-Fickian drug release, while in ethanol, only NTX HMW-CS IH followed non-Fickian release in all three different concentrations of ethanol.

14.
Int J Pharm ; 658: 124213, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38729382

ABSTRACT

Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.


Subject(s)
Copper , Delayed-Action Preparations , Drug Liberation , Folic Acid , Liposomes , Folic Acid/chemistry , Folic Acid/administration & dosage , Animals , Copper/chemistry , Copper/administration & dosage , Cell Line, Tumor , Humans , Glycyrrhizic Acid/chemistry , Glycyrrhizic Acid/administration & dosage , Hydrogels/chemistry , Nanoparticles/chemistry , Mice, Inbred BALB C , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice , Temperature , Cell Survival/drug effects , Female , Mice, Nude , Drug Carriers/chemistry , Polyethylene Glycols/chemistry
15.
Int J Pharm ; 657: 124187, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38697585

ABSTRACT

Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-ß-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-ß-cyclodextrin, randomly methylated-ß-cyclodextrin and sulfobutylether-ß-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.


Subject(s)
Antineoplastic Agents , Disulfiram , Drug Repositioning , Solubility , beta-Cyclodextrins , Disulfiram/pharmacology , Disulfiram/chemistry , Disulfiram/administration & dosage , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , beta-Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Cell Proliferation/drug effects , Drug Compounding/methods , Glioblastoma/drug therapy
16.
Int Immunopharmacol ; 134: 112159, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692018

ABSTRACT

CONTEXT: Medical treatment plays a critical role in pituitary neuroendocrine tumour (PitNET) treatment. Dopamine agonists and somatostatin receptor agonists are the only known drugs for effectively treating PitNET. Thus, the identification of potential therapeutic targets and drugs is urgently needed. OBJECTIVE: To discover potential drugs that can suppress PitNET growth and to further investigate the underlying mechanism involved. METHODS: High-throughput drug screening of primary cultures of 17 patient-derived PitNETs was performed to identify potential therapeutic compounds. Cell viability assays, Western blot analysis and flow cytometry were used to investigate pituitary neuroendocrine tumour cell lines and patient-derived PitNET cultures in vitro. In vivo drug efficacy was examined in a mouse xenograft model. RESULTS: Seventeen primary PitNET samples were collected for high-throughput drug screening, and a class of copper ionophores that can effectively inhibit cell growth, such as zinc pyrithione, elesclomol, and disulfiram (DSF), was identified. Subsequent experiments initially validated the dose-dependent cell growth-suppressing effect of these copper ionophores on AtT20, GH3, and MMQ cells and several primary PitNET cell lines. Moreover, we confirmed that the cytotoxic effect of DSF depends on the presence of copper. Additionally, we determined that cell death occurs via cuproptosis, with events such as Fe-S cluster protein loss, dihydrolipoyl transacetylase oligomerization and heat shock protein 70 upregulation. Finally, we verified the cytotoxic effects of DSF in vivo. CONCLUSION: The present study revealed copper ionophores as a potential class of drugs for PitNET treatment. DSF induced PitNET cell death via cuproptosis and might be a promising option for PitNET therapy.


Subject(s)
Antineoplastic Agents , Disulfiram , Neuroendocrine Tumors , Pituitary Neoplasms , Xenograft Model Antitumor Assays , Disulfiram/pharmacology , Disulfiram/therapeutic use , Animals , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/pathology , Humans , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Male , Middle Aged , Mice, Nude , Cell Proliferation/drug effects , Adult , Cell Survival/drug effects
17.
Int J Pharm X ; 7: 100248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689600

ABSTRACT

Disulfiram (DSF) is a second-line drug for the clinical treatment of alcoholism and has long been proven to be safe for use in clinical practice. In recent years, researchers have discovered the cancer-killing activity of DSF, which is highly dependent on the presence of metal ions, particularly copper ions. Additionally, free DSF is highly unstable and easily degraded within few minutes in blood circulation. Therefore, an ideal DSF formulation should facilitate the co-delivery of metal ions and safeguard the DSF throughout its biological journey before reaching the targeted site. Extensive research have proved that nanotechnology based formulations can effectively realize this goal by strategic encapsulation therapeutic agents within nanoparticle. To be more specific, this is accomplished through precise delivery, coordinated release of metal ions at the tumor site, thereby amplifying its cytotoxic potential. Beyond traditional co-loading techniques, innovative approaches such as DSF-metal complex and metal nanomaterials, have also demonstrated promising results at the animal model stage. This review aims to elucidate the anticancer mechanism associated with DSF and its reliance on metal ions, as well as to provide a comprehensive overview of recent advances in the arena of nanomedicine based co-delivery strategies for DSF and metal ion in the context of cancer therapy.

18.
J Am Heart Assoc ; 13(8): e033881, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563369

ABSTRACT

BACKGROUND: Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS: We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1ß release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS: Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.


Subject(s)
Atherosclerosis , Gastrointestinal Microbiome , Male , Female , Mice , Humans , Animals , Disulfiram , Efferocytosis , Endothelial Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Autophagy
19.
Drug Alcohol Rev ; 43(5): 1183-1193, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38653552

ABSTRACT

INTRODUCTION: We assessed the prevalence of prescribing of certain medications for alcohol dependence and the extent of any inequalities in receiving prescriptions for individuals with such a diagnosis. Further, we compared the effectiveness of two of the most prescribed medications (acamprosate and disulfiram) for alcohol dependence and assessed whether there is inequality in prescribing either of them. METHODS: We used a nationwide dataset on prescriptions and hospitalisations in Scotland, UK (N = 19,748). We calculated the percentage of patients receiving alcohol dependence prescriptions after discharge, both overall and by socio-economic groups. Binary logistic regressions were used to assess the odds of receiving any alcohol-dependence prescription and the comparative odds of receiving acamprosate or disulfiram. Comparative effectiveness in avoiding future alcohol-related hospitalisations (N = 11,239) was assessed using Cox modelling with statistical adjustment for potential confounding. RESULTS: Upto 7% of hospitalised individuals for alcohol use disorder received prescriptions for alcohol dependence after being discharged. Least deprived socio-economic groups had relatively more individuals receiving prescriptions. Inequalities in prescribing for alcohol dependence existed, especially across sex and comorbidities: males had 12% (odds ratio [OR] 0.88, 95% confidence interval [CI] 0.81-0.96) and those with a history of mental health hospitalisations had 10% (OR 0.90, 95% CI 0.82-0.98) lower odds of receiving prescriptions after an alcohol-related hospitalisation. Prescribing disulfiram was superior to prescribing acamprosate in preventing alcohol-related hospitalisations (hazard ratio ranged between 0.60 and 0.81 across analyses). Disulfiram was relatively less likely prescribed to those from more deprived areas. DISCUSSION AND CONCLUSIONS: Inequalities in prescribing for alcohol dependence exists in Scotland with lower prescribing to men and disulfiram prescribed more to those from least deprived areas.


Subject(s)
Acamprosate , Alcohol Deterrents , Alcoholism , Disulfiram , Taurine , Humans , Male , Acamprosate/therapeutic use , Disulfiram/therapeutic use , Female , Alcoholism/drug therapy , Alcoholism/epidemiology , Alcohol Deterrents/therapeutic use , Adult , Middle Aged , Taurine/therapeutic use , Taurine/analogs & derivatives , Scotland/epidemiology , Cohort Studies , Socioeconomic Factors , Hospitalization/statistics & numerical data , Young Adult , Healthcare Disparities , United Kingdom/epidemiology , Aged , Treatment Outcome
20.
Gynecol Oncol ; 186: 42-52, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38582027

ABSTRACT

BACKGROUND: Low grade serous ovarian carcinoma (LGSOC) is a distinct histotype of ovarian cancer characterised high levels of intrinsic chemoresistance, highlighting the urgent need for new treatments. High throughput screening in clinically-informative cell-based models represents an attractive strategy for identifying candidate treatment options for prioritisation in clinical studies. METHODS: We performed a high throughput drug screen of 1610 agents across a panel of 6 LGSOC cell lines (3 RAS/RAF-mutant, 3 RAS/RAF-wildtype) to identify novel candidate therapeutic approaches. Validation comprised dose-response analysis across 9 LGSOC models and 5 high grade serous comparator lines. RESULTS: 16 hits of 1610 screened compounds were prioritised for validation based on >50% reduction in nuclei counts in over half of screened cell lines at 1000 nM concentration. 11 compounds passed validation, and the four agents of greatest interest (dasatinib, tyrosine kinase inhibitor; disulfiram, aldehyde dehydrogenase inhibitor; carfilzomib, proteasome inhibitor; romidepsin, histone deacetylase inhibitor) underwent synergy profiling with the recently approved MEK inhibitor trametinib. Disulfiram demonstrated excellent selectivity for LGSOC versus high grade serous ovarian carcinoma comparator lines (P = 0.003 for IC50 comparison), while the tyrosine kinase inhibitor dasatinib demonstrated favourable synergy with trametinib across multiple LGSOC models (maximum zero interaction potency synergy score 46.9). The novel, highly selective Src family kinase (SFK) inhibitor NXP900 demonstrated a similar trametinib synergy profile to dasatinib, suggesting that SFK inhibition is the likely driver of synergy. CONCLUSION: Dasatinib and other SFK inhibitors represent novel candidate treatments for LGSOC and demonstrate synergy with trametinib. Disulfiram represents an additional treatment strategy worthy of investigation.


Subject(s)
Cystadenocarcinoma, Serous , Dasatinib , Drug Synergism , High-Throughput Screening Assays , Ovarian Neoplasms , Pyridones , Pyrimidinones , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/genetics , Pyridones/pharmacology , Pyridones/administration & dosage , Pyrimidinones/pharmacology , Pyrimidinones/administration & dosage , Cell Line, Tumor , Dasatinib/pharmacology , Dasatinib/administration & dosage , Cystadenocarcinoma, Serous/drug therapy , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Neoplasm Grading , Protein Kinase Inhibitors/pharmacology , Disulfiram/pharmacology , Drug Screening Assays, Antitumor
SELECTION OF CITATIONS
SEARCH DETAIL