Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Cardiovasc Disord ; 17(1): 220, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28793864

ABSTRACT

BACKGROUND: Our study aimed to evaluate changes in the contractile behavior of human myocardium after exposure to caffeine and taurine, the main active ingredients of energy drinks (EDs), and to evaluate whether taurine exhibits any inotropic effect at all in the dosages commonly used in EDs. METHODS: Myocardial tissue was removed from the right atrial appendages of patients undergoing cardiac surgery and prepared to obtain specimens measuring 4 mm in length. A total of 92 specimens were exposed to electrical impulses at a frequency of 75 bpm for at least 40 min to elicit their maximum contractile force before measuring the isometric contractile force (ICF) and duration of contraction (CD). Following this, each specimen was treated with either taurine (group 1, n = 29), or caffeine (group 2, n = 31) or both (group 3, n = 32). After exposure, ICF and CD measuring were repeated. Post-treatment values were compared with pre-treatments values and indicated as percentages. RESULTS: Exposure to taurine did not alter the contraction behavior of the specimens. Exposure to caffeine, in contrast, led to a significant increase in ICF (118 ± 03%, p < 0.01) und a marginal decrease in CD (95 ± 1.6%, p < 0.01). Exposure to a combination of caffeine and taurine also induced a statistically significant increase in ICF (124 ± 4%, p < 0.01) and a subtle reduction in CD (92 ± 1.4%, p < 0.01). The increase in ICF achieved by administration of caffeine was similar to that achieved by a combination of both caffeine and taurine (p = 0.2). The relative ICF levels achieved by administration of caffeine and a combination of taurine and caffeine, respectively, were both significantly higher (p < 0.01) than the ICF resulting from exposure to taurine only. CONCLUSION: While caffeine altered the contraction behavior of the specimen significantly in our in-vitro model, taurine did not exhibit a significant effect. Adding taurine to caffeine did not significantly enhance or reduce the effect of caffeine.


Subject(s)
Atrial Appendage/drug effects , Caffeine/pharmacology , Cardiotonic Agents/pharmacology , Energy Drinks , Myocardial Contraction/drug effects , Taurine/pharmacology , Aged , Atrial Appendage/physiopathology , Cardiac Pacing, Artificial , Humans , In Vitro Techniques , Middle Aged , Time Factors
2.
J Jpn Phys Ther Assoc ; 7(1): 15-22, 2004.
Article in English | MEDLINE | ID: mdl-25792933

ABSTRACT

Even though many investigators have analyzed the functional difference of the three heads of triceps surae in human, none of them succeeded to clarify the distinctive functional difference of those three muscles. The aim of this study was to investigate whether the integrated EMGs (IEMGs) of the triceps surae muscle, gastrocnemius and soleus, were task dependent. IEMGs of the medial head of the gastrocnemius (GM), lateral head of the gastrocnemius (GL), and soleus (SO) were investigated at three different knee joint angles, at four different duration of ramp contraction, with the generation of a single ongoing force, from 0 to the maximum voluntary contraction (MVC). Three-way ANOVAs for repeated measures were used to estimate differences in IEMG values in each of the GM, GL, and SO, taken at four different durations of ramp contraction (5, 10, 15 and 20 s), at three different knee joint angles (0 deg, 30 deg and 90 deg), across ankle plantar flexion levels of force (10, 20, 30, 40, 50, 60 and 70% MVC). According to three-way ANOVAs for repeated measures, IEMG of the GM muscle showed a first-order interaction between force and knee joint angle. In addition, IEMG of the GL muscle showed first-order interactions between the level of force and knee joint angle, and between the level of force and duration of ramp contraction. Furthermore, IEMG of the SO showed a main effect only on level of force. These results suggest that the each head of the triceps surae may work task dependently.

SELECTION OF CITATIONS
SEARCH DETAIL