Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.223
Filter
1.
Sci Rep ; 14(1): 20659, 2024 09 05.
Article in English | MEDLINE | ID: mdl-39232078

ABSTRACT

Unionid mussels deposit growth rings (annuli) within the shell, which can be used to estimate age and growth. Thin-sectioning is a common technique for counting annuli, wherein a cross-section of a shell valve is taken and evaluated by multiple readers. Correctly identifying annuli can be challenging because ambiguous annuli can bias growth estimates. Staining with calcein, a fluorescent chemical, is a technique that has been used with marine and freshwater species to improve accuracy of growth estimates. This method chelates calcium, causing a permanent mark that fluoresces under ultraviolet light. Calcein has seen limited testing on unionid mussels so it remains unclear if this method has adverse effects on survival and growth. We evaluated calcein against 2 concentrations (125 mg L-1 and 250 mg L-1) at 2 exposure times (12 and 24 h) on Cyclonaias pustulosa, a common North American unionid. Survivorship remained above 80% 6 months post-immersion. Mark quality and retention for 250 mg L-1 were high for both 12- and 24-h immersions, although historical annuli were not highlighted. These findings corroborate studies indicating calcein immersion is generally safe and effective in juveniles and adults and suggest it may be useful in validating new growth.


Subject(s)
Fluoresceins , Animals , Fluoresceins/chemistry , Fresh Water , Unionidae , Staining and Labeling/methods
2.
Chemosphere ; : 143246, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39236920

ABSTRACT

The purpose of the study is to standardize the silver nanoparticle (BP-AgNPs) synthesis and its antibacterial activity and photocatalytic application with the selected dyes using the banana pseudo stem extract. "One-factor analysis (OFTA)" was carried out for the standardization of silver nanoparticle synthesis and nanoparticle-chitosan complex immobilization. The parameters were identified with plant quantity (20 g), silver nitrate concentration (1 mM), the ratio of plant extract and silver nitrate solution (2:8), pH (12), temperature (37°C), dispersed light conditions, shaking conditions (120 rpm), and time (6 h) were analysed. The photocatalytic decolorization efficiency of the standardized BP-AgNPs (immobilized with chitosan complex) has shown 96.92% for methylene blue (10 ppm) at 3 h and 97.55% for safranin (100 ppm) at 15 h. The antibacterial activity for the synthesised BP-AgNPs was determined. MIC value of the BP-AgNPs was determined to be 15.62 µg. mL-1 for S. aureus. The synthesised BP-AgNPs treated with 0.5x, 1x and 2x MIC concentration (x= 15.62 µg. mL-1) showed decreased viable counts of S. aureus (99.6% at 2x concentration having viable count of 22.6 x 102 CFU. mL-1) at 24 h incubation when compared with the control culture. The structural characteristics of the BP-AgNPs were identified as spherical with SEM and the size was identified as 12.19 ± 1.62nm with TEM and as 37.23 ± 17.89nm with XRD. The parameters such as FTIR, Zeta potential, EDS further supports the nanoparticle synthesis with banana pseudostem extract. The current result suggested that, the silver nanoparticles (BP-AgNPs) synthesized using the extract of the banana pseudo stem could be used as an alternative source for dye decolourization and antibacterial activities.

3.
Chemosphere ; 364: 143245, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233302

ABSTRACT

This study presents novel composites of biochar (BC) derived from spinach stalks and zinc oxide (ZnO) synthesized from water hyacinth to be used for the first time in a hybrid system for activating persulfate (PS) with photocatalysis for the degradation of bromothymol blue (BTB) dye. The BC/ZnO composites were characterized using innovative techniques. BC/ZnO (2:1) showed the highest photocatalytic performance and BC/ZnO (2:1)@(PS + light) system attained BTB degradation efficiency of 89.47% within 120 min. The optimum operating parameters were determined as an initial BTB concentration of 17.1 mg/L, a catalyst dosage of 0.7 g/L, and a persulfate initial concentration of 8.878 mM, achieving a BTB removal efficiency of 99.34%. The catalyst showed excellent stability over five consecutive runs. Sulfate radicals were the predominant radicals involved in the degradation of BTB. BC/ZnO (2:1)@(PS + light) system could degrade 88.52%, 84.64%, 81.5%, and 77.53% of methylene blue, methyl red, methyl orange, and Congo red, respectively. Further, the BC/ZnO (2:1)@(PS + light) system effectively activated PS to eliminate 97.49% of BTB and 85.12% of dissolved organic carbon in real industrial effluents from the textile industry. The proposed degradation system has the potential to efficiently purify industrial effluents which facilitates the large-scale application of this technique.

4.
Food Chem ; 463(Pt 1): 141060, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39241421

ABSTRACT

Ion pair-based surfactant-assisted liquid-liquid microextraction with solidification of floating organic drops has been developed to extract Allura red (AR), tartrazine (TAR), and fast green (FG) prior to spectrophotometric determination. Cetyltrimethylammonium bromide (CTAB) was employed as ion-pairing agent to enhance the hydrophobic behavior of anionic dyes. 1-undecanol and ethanol were used as the extraction and dispersion solvents, respectively. The dyes were quantitatively extracted in the presence of KCl (0.15 mol L-1) at pH 4.0. The method exhibits wide linearity (15.0-1500.0 µg L-1 for AR, 35.0-2000.0 µg L-1 for TAR, and 3.0-1200.0 µg L-1 for FG) with preconcentration factors of 19.6, 20.1, and 19.9, respectively. The detection limit was 3.7. 9.5, and 0.83 µg L-1 for AR, TAR, and FG, respectively. The relative standard deviation did not exceed 2.1 %. The procedure was applied for the determination of these dyes in food samples.

5.
Front Cell Neurosci ; 18: 1460219, 2024.
Article in English | MEDLINE | ID: mdl-39234031

ABSTRACT

Once upon a time the statistics of quantal release were fashionable: "n" available vesicles (fusion sites), each with probability "p" of releasing a quantum. The story was not so simple, a nice paradigm to be abandoned. Biophysicists, experimenting with "black films," explained the astonishing rapidity of spike-induced release: calcium can trigger the fusion of lipidic vesicles with a lipid bilayer, by masking the negative charges of the membranes. The idea passed away, buried by the discovery of NSF, SNAPs, SNARE proteins and synaptotagmin, Munc, RIM, complexin. Electrophysiology used to be a field for few adepts. Then came patch clamp, and multielectrode arrays and everybody became electrophysiologists. Now, optogenetics have blossomed, and the whole field has changed again. Nice surprise for me, when Alvarez de Toledo demonstrated that release of transmitters could occur through the transient opening of a pore between the vesicle and the plasma-membrane, no collapse of the vesicle in the membrane needed: my mentor Bruno Ceccarelli had cherished this idea ("kiss and run") and tried to prove it for 20 years. The most impressive developments have probably regarded IT, computers and all their applications; machine learning, AI, and the truly spectacular innovations in brain imaging, especially functional ones, have transformed cognitive neurosciences into a new extraordinarily prolific field, and certainly let us imagine that we may finally understand what is going on in our brains. Cellular neuroscience, on the other hand, though the large public has been much less aware of the incredible amount of information the scientific community has acquired on the cellular aspects of neuronal function, may indeed help us to eventually understand the mechanistic detail of how the brain work. But this is no more in the past, this is the future.

6.
Adv Mater ; : e2409297, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39252667

ABSTRACT

Chemoresponsive dyes offer the potential to selectively detect volatile organic compounds (VOCs) unique to certain disease states. Among different VOC sensing techniques, colorimetric sensing offers the advantage of facile recognition. However, it is often challenging to discern the color changes by the naked eye. Here, highly sensitive colorimetric VOC sensor arrays from dye-incorporated colloidal photonic crystals (dye-cPhCs) are reported. cPhCs are scalably fabricated on a 4-inch wafer by spin-coating of silica nanoparticles (NPs) dispersed in a photo-cross-linkable monomer, where the gradient shear flow along the film thickness creates densely-packed square arrays of NPs in the top layers, whereas the bulk is quasi-amorphous with larger periodicities. The broadened reflection peak allows for augmented dye absorption originating from the overlap between the photonic bandgap edge of the cPhC and the dye absorption peak, leading to a more noticeable color change upon exposure to VOCs. The sensor array generates distinct color difference maps for acetaldehyde, acetone, and acetic acid, respectively, without any data amplification. The limit of detection for acetaldehyde, acetone, and acetic acid is 1, 0.1, and 0.02 ppm, respectively. Moreover, VOC can be diagonalized by visually intuitive pattern recognition, and principal component analysis at reduced dimensionality is demonstrated.

7.
Article in English | MEDLINE | ID: mdl-39259042

ABSTRACT

Single dyes typically exhibit limited light absorption in dye-sensitized solar cells (DSSCs). Thus, cosensitization using two or more dyes to enhance light-harvesting efficiency has been explored; however, the aggregation of dyes can adversely affect electron injection capabilities. This study focused on the design and synthesis of three dyes with a common carbazole donor for DSSCs: DZ102, TZ101, and JM102. JM102 broadens the absorption spectrum by replacing the benzoic acid electron acceptor of TZ101 with acetylenic benzoic acid. A cosensitized DSSC device based on CO-1 [DZ102:TZ101 = 1:1 (50 µM:50 µM)] achieved a short-circuit current density of 19.4 mA/cm2 and a power conversion efficiency of 10.9%. For the first time, the molecular interactions between the dyes in the photoanode were demonstrated using cyclic voltammetry, which revealed the presence of intermolecular forces. Adsorption kinetics further indicated that these forces promoted the self-assembly of dyes during adsorption, which resulted in a cosensitization adsorption amount greater than the sum of the individual dye adsorptions. This study provides novel insights into the selection of cosensitizing dyes for DSSCs.

8.
Front Microbiol ; 15: 1457909, 2024.
Article in English | MEDLINE | ID: mdl-39238890

ABSTRACT

Optimizing the fermentation process of microorganisms with exceptional bioflocculant-producing capabilities is crucial for the production of bioflocculants. The application of bioflocculants to various pollutants highlights their significant advantages in water treatment. Therefore, the culture conditions of Bacillus subtilis 35A with exceptional bioflocculant-producing capabilities were optimized. The bioflocculant (MBF) was obtained by alcohol percipitation from the fermentation supernatant, and its physicochemical properties were analyzed to explore its application in the treatment of dyes, heavy metal ions, and organic wastewater. The results indicate that, using cyclodextrin and yeast extract as carbon and nitrogen sources, after 48 h of fermentation at the initial pH, the bioflocculant (MBF-35A) yielded 10.47 g/L with a flocculation rate of 96.57% for kaolin suspension. The chemical analysis demonstrated that MBF-35A is mainly composed of polysaccharide (81.74%) and protein (16.42%). FITR and XPS analysis indicated that MBF-35A mainly contains major elements such as carbon, nitrogen, and oxygen, with functional groups (-OH, C-O, C-H, and C-O-C) that are beneficial for flocculation. MBF-35A exhibited a dye decolorization efficiency exceeding 95% and removed 41.05 and 48.93% of Cr6+ and Cu2+ ions, respectively. In meat wastewater treatment, the effective removal rates of ammonia nitrogen (26.87%), COD (51.16%), total nitrogen (37.76%), and total phosphorus (55.81%) highlight its potential in organic waste treatment. In brief, not only does MBF-35A exhibit efficient production and excellent flocculation performance as a bioflocculant, but it also shows significant biological and environmental benefits in dye, heavy metal ions, and organic wastewater treatment.

9.
Chempluschem ; : e202400512, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239834

ABSTRACT

The concept of combining mixing of solids by milling (a type of mechanochemistry) with aqueous self-assembly provides interesting possibilities for energy efficient production of advanced nanomaterials. Many proteins are outstanding building blocks for self-assembly, a prominent example being the conversion of proteins into protein nanofibrils (PNFs) - a structure related to amyloid fibrils. PNFs have attractive mechanical properties and have a tendency to form ordered materials. They are accordingly of interest as materials for bioplastics and potentially also for more high-tech applications. In this concept article we highlight our effort on valorization of such proteins with hydrophobic organic compounds such an organic dyes and drug molecules, by developing scalable methodology combining mechanochemistry and self-assembly. Compared to more established methodology, mechanochemical methodology is a valuable complement as it allows potential scalable production of hybrids between e.g. proteins and highly hydrophobic compounds - a class of hybrid material that is difficult to access by other means by conventical means. This may allow for development of sustainable processes for fabrication of advanced protein-based materials derivable from renewable source materials.

10.
Arch Pharm (Weinheim) ; : e2400532, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39239985

ABSTRACT

In the late 19th century, progress in dye chemistry led to advances in industrial organic chemistry in Germany. Over the next few decades, this revealed dyes not just as color agents but as promising lead compounds for drug development. Collaborations between dye chemists and medical researchers were crucial in turning these unexpected discoveries into structured medicinal chemistry efforts. The outcomes included major drug classes like sulfa antibiotics, antifungal azoles, and others, resulting in a legacy where dyes served not only as biological stains but as crucial tools for understanding complex natural products and drug interactions. Today, the impact of dye molecules persists in clinical therapies, molecular probing, pharmacokinetic tracing, and high-throughput screening. This review underscores the historical contributions shaping contemporary pharmaceutical sciences, highlighting the role of dyes as indispensable tools propelling drug discovery across generations.

11.
Carbohydr Polym ; 346: 122578, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245479

ABSTRACT

Estimated 20 % of global clean water pollution is attributed to textile production. Dyeing and finishing processes use an extensive amount of water and chemicals, and most of the effluents and wastewater is released into the environment. In this study, we explore spin-dyeing of man-made cellulosic fibres (MMCFs) with vat dyes using the Ioncell process, circumventing the ubiquitous use of fresh water and potentially reducing effluents streams to a great extent. Spin-dyeing is an established process for synthetic polymers but is not common for MMCFs. Regenerated cellulose fibres were produced through dissolution of dissolving pulp in the ionic liquid 1,5-diazabicyclo[4.3.0]non-5-ene acetate. The produced fibres were processed into yarn and a jersey fabric was knitted. Mechanical and colour fastness properties were tested. The fibres properties were also assessed through SEM, birefringence, and crystallinity measurements. Fibres with excellent mechanical properties (tenacity higher than 50 cN/tex) and colour fastness were produced, with most samples receiving the highest or next highest performance grade. The spun-dyed fibres also hold great potential to be recycled themselves without colour change or loss in colour intensity. Textiles with colours produced in large quantities such as black or navy blue could be the first market entry point.

12.
Carbohydr Polym ; 346: 122669, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39245518

ABSTRACT

Monolithic electrocatalysts are desired for the electro-Fenton oxidation system. We used a hydrogel consisting of TEMPO-oxidized cellulose nanofibers (TOCN) and cationic guar gum (CGG) to disperse and support Fe-rich sludge and finally obtained a Fe-doped biochar (denoted as C-Sludge@TOCN/CGG) after the freeze-drying and carbonization. This C-Sludge@TOCN/CGG exhibited a porous structure with evenly-distributed Fe due to the inherently three-dimensional porous structure of TOCN/CGG hydrogel and the abundant carbon content. Importantly, Fe and FeO existed in C-Sludge@TOCN/CGG due to the presence of TOCN and CGG during the pyrolysis. The electrochemical properties of C-Sludge@TOCN/CGG demonstrated its good electrocatalytic activity and stability with few side reactions. It had good performance in the electrocatalytic degradation of various azo dyes, attributed to the synergistic integration of TOCN/CGG-derived carbon matrix and carbonized Fe-rich sludge particles. Specifically, two transient radicals (i.e. ·OH and ·O2-) primarily improved the electrocatalytic degradation performance of C-Sludge@TOCN/CGG. This C-Sludge@TOCN/CGG also efficiently degraded a papermill-sourced wastewater containing direct red 23, direct yellow 11, direct black 19 and toner, in which the COD value decreased from 365.12 to 179.13 mg/L within 9 h. This work provides an example of utilizing renewable materials and solid waste to design electrocatalysts to address the wastewater issue.

13.
Front Bioeng Biotechnol ; 12: 1397587, 2024.
Article in English | MEDLINE | ID: mdl-39224192

ABSTRACT

In recent years, ion-selective optodes (ISOs) have remarkably progressed, driven by innovative modern designs and nanomaterial integration. This review explored the development of modern ISO by describing state-of-the-art strategies to improve their sensitivity, selectivity, and real-time monitoring capacity. The review reported the traditional membrane based-optodes, and investigated the latest research, current design principles, and the use of essential components, such as ionophores, indicator dyes, polymer membranes, and nanomaterials, in ISO fabrication. Special attention was given to nanomaterials (e.g., quantum dots, polymer dots, nanospheres, nanorods and nanocapsules) and particularly on how rare earth elements can further enhance their potential. It also described innovative ISO designs, including wearable optodes, smartphone-based optodes, and disposable paper-based optodes. As the pursuit of highly sensitive, selective, and adaptable ion sensing devices continues, this summary of the current knowledge sets the stage for upcoming innovations and applications in different domains (pharmaceutical formulations, medical diagnosis, environmental monitoring, and industrial applications).

14.
Environ Res ; : 119908, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233033

ABSTRACT

Recalcitrant chemicals in the environment not only present obstacles to living organisms but also contribute to the degradation of natural resources. One contribution to environmental pollution is the discharge of synthetic dyes from the textile sector. This study investigates the combined effect of microbial cells and biochar on eliminating methyl orange (MO) dye. The immobilization of Aeromonas veronii on peanut shell biochar (APSB) was conducted to investigate its efficacy in removing MO dye from water. PSB synthesized by pyrolysis at 300 °C for 120 min showed maximum bacterial immobilization potential. The highest degradation rate of 96.19 % was achieved in APSB within 96 h using MO dye concentration of 100 mg L-1, incubation temperature of 37 °C, pH 7, and biocatalyst dosage of 1g L-1. In comparison, free cells achieved degradation rates of 72.53 % and 61.56 % for PSB. Moreover, the adsorption process was primarily controlled by PSB, with subsequent dye mineralization by A. veronii, as supported by FTIR and LC-MS studies. Moreover, this innovative approach exhibited the reusability of the biocatalyst, giving 76.23 % removal after fifth cycle, suggesting sustainable alternative in dye remediation and potential option for real-time applications.

15.
ACS Nano ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223995

ABSTRACT

Combined photodynamic and photothermal therapy (PDT and PTT) can achieve more superior therapeutic effects than the sole mode by maximizing the photon utilization, but there remains a significant challenge in the development of related single-molecule photosensitizers (PSs), particularly those with type I photosensitization. In this study, self-assembly of squaraine dyes (SQs) is shown to be a promising strategy for designing PSs for combined type I PDT and PTT, and a supramolecular PS (TPE-SQ7) has been successfully developed through subtle molecular design of an indolenine SQ, which can self-assemble into highly ordered H-aggregates in aqueous solution as well as nanoparticles (NPs). In contrast to the typical quenching effect of H-aggregates on reactive oxygen species (ROS) generation, our results encouragingly manifest that H-aggregates can enhance type I ROS (•OH) generation by facilitating the intersystem crossing process while maintaining a high PTT performance. Consequently, TPE-SQ7 NPs with ordered H-aggregates not only exhibit superior combined therapeutic efficacy than the well-known PS (Ce6) under both normoxic and hypoxic conditions but also have excellent biosafety, making them have important application prospects in tumor phototherapy and antibacterial fields. This study not only proves that the supramolecular self-assembly of SQs is an effective strategy toward high-performance PSs for combined type I PDT and PTT but also provides a different understanding of the effect of H-aggregates on the PDT performance.

16.
Mol Pharm ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225111

ABSTRACT

Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.

17.
3 Biotech ; 14(9): 202, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39157422

ABSTRACT

Synthetic dyes pose a significant environmental threat due to their complex structures and resistance to microbial degradation. S. commune 15R-5-F01 exhibited over 96% degradation efficiency of Methyl Red in a medium with 100 mg L-1 Methyl Red within 3 h. The fungus demonstrated adaptability to various environmental conditions, including different pH levels, temperatures, oxygen concentrations, salinity, and heavy metals. S. commune 15R-5-F01 is capable of achieving repeated cycles of Methyl Red reduction with sustained degradation duration minimum of 6 cycles. It showed a maximum Methyl Red biodegradation capacity of at least 558 mg g-1 dry mycelia and a bioadsorption capacity of 57 mg g-1. Gas chromatography-mass spectrometry analysis confirmed the azo reduction of Methyl Red into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Enzymatic activity assays indicated the involvement of lignin peroxidases, laccases, and manganese peroxidase in the biodegradation process. Phytotoxicity tests on Triticum eastivum, Oryza sativa, and Vigna umbellata seeds revealed reduced toxicity of the degradation products compared to Methyl Red. This study identifies S. commune 15R-5-F01 as a viable candidate for the sustainable degradation of synthetic dyes in industrial wastewater.

18.
Article in English | MEDLINE | ID: mdl-39103577

ABSTRACT

Untreated release of toxic synthetic and colorful dyes is a serious threat to the environment. Every year, several thousand gallons of dyes are being disposed into the water resources without any sustainable detoxification. The accumulation of hazardous dyes in the environment poses a severe threat to the human health, flora, fauna, and microflora. Therefore, in the present study, a lignin peroxidase enzyme from Pseudomonas fluorescence LiP-RL5 has been employed for the maximal detoxification of selected commercially used dyes. The enzyme production from the microorganism was enhanced ~ 20 folds using statistical optimization tool, response surface methodology. Four different combinations (pH, production time, seed age, and inoculum size) were found to be crucial for the higher production of LiP. The crude enzyme showed decolorization action on commonly used commercial dyes such as Crystal violet, Congo red, Malachite green, and Coomassie brilliant blue. Successful toxicity mitigation of these dyes culminated in the improved seed germination in three plant species, Vigna radiate (20-60%), Cicer arietinum (20-40%), and Phaseolus vulgaris (10-25%). The LiP treated dyes also exhibit reduced bactericidal effects against four common resident microbial species, Escherichia coli (2-10 mm), Bacillus sp. (4-8 mm), Pseudomonas sp. (2-8 mm), and Lactobacillus sp. (2-10 mm). Therefore, apart from the tremendous industrial applications, the LiP from Pseudomonas fluorescence LiP-RL5 could be a potential biocatalyst for the detoxification of synthetic dyes.

19.
Water Environ Res ; 96(8): e11101, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39119829

ABSTRACT

A simple method for purifying water using household items has been developed. The solution containing an environmental pollutant was added to the PET bottle. The lid of the PET bottle was closed, and the bottle was then placed with the lid down in a freezer for 9 h. The pourer of the PET bottle was surrounded by shredded paper scraps as a lagging material. Before the solution was completely frozen, the sample was removed from the freezer. The unfrozen portion (liquid) was sampled. The pollutant was concentrated in the liquid. The remaining frozen portion was completely thawed. As results, the concentration of the pollutant (Congo Red, Cr (VI), Pb (II), pentachlorophenol, fluoride, nitrate, or phosphate) in the thawed liquid was decreased by more than 90% compared with the initial concentration (0.10 mM). PRACTITIONER POINTS: A pollutant in a water sample can be removed by freezing a portion of the solution using a PET bottle, shredder scrap, and household freezer. Fluorine and hexavalent chromium can be removed from water to levels that meet water quality standards. The present method can efficiently remove a wide range of contaminants from water, including azo dyes, heavy metals, and pentachlorophenol.


Subject(s)
Freezing , Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Pentachlorophenol/chemistry , Pentachlorophenol/isolation & purification
20.
J Colloid Interface Sci ; 677(Pt B): 120-129, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137561

ABSTRACT

Thermochromic dyes (TCDs) based on a three-component color change system suffer from solid rigidity and liquid leakage issues because of the intrinsic solid-liquid phase change performance, resulting in difficulty in temperature visualization applications for smart wearable fields. Despite considerable efforts in microencapsulation of thermochromic dyes, designing and fabricating essentially flexible thermochromic phase change films still need to be explored. Herein, a one-sided adhesive gradient-crosslinked thermochromic film is reported to address these issues to make a trade-off between stability and flexibility, excellent thermochromic performance, and temperature visualization. The thermochromic wearable films have been fabricated exploiting tea polyphenol thermochromic dyes, vinyl dimethylsiloxane, and hydrosilicone oil via the salt-template-assisted method and gradient crosslinking strategy, which have porous structures with an average pore size of 12.8 µm and a porosity of 28 %. Due to the spatial limiting threshold effect of the porosity structure, interconnected 3D polysiloxane porous networks can provide ample support for tea polyphenol thermochromic dyes and effectively prevent liquid leakage. Upon heating, the thermochromic film changes from blue to white with the K/S value decreasing from 7.69 to 0.78 and the ΔE* increasing from 2.7 to 16.1 at 610 nm, and the color-changing temperature is 42 °C. Gradient crosslinked thermochromic films exhibit excellent temperature-responsive color change properties, desirable one-side adhesion, and thermal energy storage, enabling multicolor temperature displays and temperature-controlled multilevel information transfer.

SELECTION OF CITATIONS
SEARCH DETAIL