Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters











Publication year range
1.
Int Immunopharmacol ; 142(Pt B): 113164, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39288622

ABSTRACT

INTRODUCTION: Fibroblast-like synoviocytes (FLSs) play critical roles in synovial inflammation and aggression in rheumatoid arthritis (RA). Here, we explored the role of eukaryotic translation initiation factor 6 (eIF6) in regulating the biological behaviors of FLSs from patients with RA. METHODS: FLSs were isolated from the synovial tissues of RA patients. Gene expression was assessed via RT-qPCR, and protein expression was evaluated via Western blotting or immunohistochemistry. Proliferation and nascent peptide synthesis were evaluated via EdU incorporation and HPG labeling, respectively. Cell migration and invasion were observed via Transwell assays. Polysome profiling was conducted to analyze the distribution of ribosomes and combined mRNAs. The in vivo effect of eIF6 inhibition was evaluated in a collagen-induced arthritis (CIA) rat model. RESULTS: We found that eIF6 expression was elevated in FLSs and synovial tissues from RA patients compared to those from healthy controls and osteoarthritis patients. Knockdown of eIF6 inhibited the migration, invasion, inflammation, and proliferation of FLSs from patients with RA. Mechanistically, eIF6 knockdown downregulated ribosome biogenesis in FLSs from with RA, leading to a decrease in the proportion of polysome-associated specificity protein 1 (SP1) mRNA and a subsequent reduction in the translation initiation efficiency of SP1 mRNA. Thus, eIF6 controls SP1 expression through translation-mediated mechanisms. Interestingly, intra-articular eIF6 siRNA treatment attenuated symptoms and histological manifestations in CIA rats. CONCLUSIONS: Our findings suggest that an increase in synovial eIF6 might contribute to rheumatoid synovial inflammation and aggression and that targeting eIF6 may have therapeutic potential in RA patients.

2.
mSystems ; : e0059524, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225466

ABSTRACT

Altered composition of the gut microbiota affects immunity and metabolism. This study previously found that eIF6 gene knockdown changes the composition of the intestinal flora in the eIF6 gene knockdown mouse model. Lactobacillus acidophilus is significantly increased in the model. This study was designed to investigate the role of L. acidophilus in the pathogenesis of atherosclerosis. Transcriptomic data from 117 patients with coronary artery disease (CAD) and 79 healthy individuals were obtained. ApoE-/- and ApoE-/-/eIF6+/- mice on normal chow diet or a high-fat diet were treated for 16 weeks; eIF6 deficiency was evaluated atherosclerosis. ApoE-/- mice on normal chow diet or a high-fat diet were treated with L. acidophilus by daily oral gavage for 16 weeks. Moreover, one group was treated with lipopolysaccharide at 12 weeks. The levels of eIF6, RNASE3, and RSAD2 were notably higher in the patients with CAD than in the healthy individuals. eIF6 deficiency altered the composition of gut microbiota. eIF6 deficiency reduced the atherosclerotic lesion formation in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. The microbial sequencing and metabolomics analysis demonstrated some beneficial bacterial (L. acidophilus, Ileibacterium, and Bifidobacterium) and metabolic levels significantly had deference in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. Correlational studies indicated that L. acidophilus had close correlations with low-density lipoprotein cholesterol, lesion area, and necrotic area. L. acidophilus inhibited high-fat diet-induced inflammation and atherosclerotic lesion, increasing the expression of tight junction proteins (ZO-1 and claudin-1) and reducing the gut permeability. However, lipopolysaccharide reversed the protective effect of L. acidophilus against atherosclerosis. eIF6 deficiency protected against atherosclerosis by regulating the composition of gut microbiota and metabolites. L. acidophilus attenuated atherosclerotic lesions by reducing inflammation and increasing gut permeability.IMPORTANCEeIF6 deficiency modulates the gut microbiota and multiple metabolites in atherosclerotic ApoE-/- mice. L. acidophilus was reduced in the gut of atherosclerotic ApoE-/- mice, but administration of Lactobacillus acidophilus reversed intestinal barrier dysfunction and vascular inflammation. Our findings suggest that targeting individual species is a beneficial therapeutic strategy to prevent inflammation and atherosclerosis.

3.
Cancers (Basel) ; 16(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39001453

ABSTRACT

Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.

4.
Mol Plant Pathol ; 25(2): e13434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38388027

ABSTRACT

Viruses rely completely on host translational machinery to produce the proteins encoded by their genes. Controlling translation initiation is important for gaining translational advantage in conflicts between the host and virus. The eukaryotic translation initiation factor 4E (eIF4E) has been reported to be hijacked by potyviruses for virus multiplication. The role of translation regulation in defence and anti-defence between plants and viruses is not well understood. We report that the transcript level of eIF6 was markedly increased in turnip mosaic virus (TuMV)-infected Nicotiana benthamiana. TuMV infection was impaired by overexpression of N. benthamiana eIF6 (NbeIF6) either transiently expressed in leaves or stably expressed in transgenic plants. Polysome profile assays showed that overexpression of NbeIF6 caused the accumulation of 40S and 60S ribosomal subunits, the reduction of polysomes, and also compromised TuMV UTR-mediated translation, indicating a defence role for upregulated NbeIF6 during TuMV infection. However, the polysome profile in TuMV-infected leaves was not identical to that in leaves overexpressing NbeIF6. Further analysis showed that TuMV NIb protein, the RNA-dependent RNA polymerase, interacted with NbeIF6 and interfered with its effect on the ribosomal subunits, suggesting that NIb might have a counterdefence role. The results propose a possible regulatory mechanism at the translation level during plant-virus interaction.


Subject(s)
Potyvirus , Virus Diseases , Nicotiana/genetics , Potyvirus/genetics , Protein Processing, Post-Translational , Plant Diseases
5.
Int J Biol Macromol ; 256(Pt 1): 128316, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000606

ABSTRACT

The silkworm is a lepidopteran domesticated from the wild silkworm, mostly valued for its efficient synthesis of silk protein. This species' ability to spin silk has supported the 5500-year-old silk industry and the globally known "Silk Road", making the transformation of mulberry leaves into silk of great concern. Therefore, research on the silk-related genes of silkworms and their regulatory mechanisms has attracted increasing attention. Previous studies have revealed that domestic silk gland cells are endoreduplication cells, and their high-copy genome and special chromatin conformation provide conditions for the high expression of silk proteins. In this study, we systematically investigate the expression pattern of eukaryotic initiation factors (eIFs) and identified the eIF6 as a eukaryotic translation initiation factor involved in the synthesis of silk proteins. We generated an eIF6 gene deletion mutant strain of silkworm using the CRISPR/Cas9 system and investigated the function of eIF6 in silk gland development and silk protein synthesis. The results showed that deletion of eIF6 inhibited the individual development of silkworm larvae, inhibited the development of silk glands, and significantly reduced the cocoon layer ratio. Therefore, we elucidated the function of eIF6 in the development of silk glands and the synthesis of silk proteins, which is important for further elucidation of the developmental process of silk glands and the mechanism underlying the ultra-high expression of silk proteins.


Subject(s)
Bombyx , Animals , Bombyx/metabolism , Silk/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/genetics , Larva/metabolism
6.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902316

ABSTRACT

The liver is a metabolic hub characterized by high levels of protein synthesis. Eukaryotic initiation factors, eIFs, control the first phase of translation, initiation. Initiation factors are essential for tumor progression and, since they regulate the translation of specific mRNAs downstream of oncogenic signaling cascades, may be druggable. In this review, we address the issue of whether the massive translational machinery of liver cells contributes to liver pathology and to the progression of hepatocellular carcinoma (HCC); it represents a valuable biomarker and druggable target. First, we observe that the common markers of HCC cells, such as phosphorylated ribosomal protein S6, belong to the ribosomal and translational apparatus. This fact is in agreement with observations that demonstrate a huge amplification of the ribosomal machinery during the progression to HCC. Some translation factors, such as eIF4E and eIF6, are then harnessed by oncogenic signaling. In particular, the action of eIF4E and eIF6 is particularly important in HCC when driven by fatty liver pathologies. Indeed, both eIF4E and eIF6 amplify at the translational level the production and accumulation of fatty acids. As it is evident that abnormal levels of these factors drive cancer, we discuss their therapeutic value.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Liver Neoplasms/metabolism , Cell Division , Ribosomes/metabolism
7.
Insect Mol Biol ; 32(2): 106-117, 2023 04.
Article in English | MEDLINE | ID: mdl-36366777

ABSTRACT

Eukaryotic initiation factor 6 (eIF6) is necessary for ribosome biogenesis and translation, but eIF6 has been poorly elucidated in insects. Phylogenetic analysis demonstrated that eIF6 originated from one ancestral gene among animals and exhibited specific duplication in Tribolium, yielding three homologues in Tribolium castaneum, eIF6, eIF6-like 1 (eIF6l1), and eIF6-like 2 (eIF6l2). It was found that eIF6 was highly expressed in the embryonic and early adult stages, eIF6l1 had peak expression at the adult stage, and eIF6l2 showed peak expression in late adults of T. castaneum. Tissue-specific analyses in late-stage larvae demonstrated that eIF6 was abundantly expressed in all tissues, while eIF6l1 and eIF6l2 had the highest expression in the gut and the lowest expression in the head of T. castaneum. Knockdown of eIF6 caused precocious pupation and eclosion, impaired ovary and testis development and completely repressed egg production. The expression levels of vitellogenin 1 (Vg1), Vg2 and Vg receptor (VgR) significantly decreased in ds-eIF6 females 5 days post-adult emergence. Silencing eIF6 activated ecdysteroid biosynthesis and juvenile hormone degradation but reduced the activity of insulin signalling in T. castaneum, which might mediate its roles in metamorphosis, reproduction and gene expression regulation. However, silence of eIF6l1 or eIF6l2 had no effects on metamorphosis and reproduction in T. castaneum. This study provides comprehensive information for eIF6 evolution and function in the insect.


Subject(s)
Tribolium , Female , Male , Animals , Tribolium/genetics , Phylogeny , Metamorphosis, Biological/genetics , Reproduction
8.
IUBMB Life ; 75(5): 440-452, 2023 05.
Article in English | MEDLINE | ID: mdl-36469534

ABSTRACT

Atherosclerosis, a chronic inflammatory disease that often leads to myocardial infarction and stroke, is mainly caused by lipid accumulation. Eukaryotic initiation factor 6 (Eif6) is a rate-limiting factor in protein translation of transcription factors necessary for lipogenesis. To determine whether Eif6 affects atherosclerosis, Eif6+/- mice were crossed into Apoe-/- background. Apoe-/-/Eif6+/- mice on high fat diet showed significant reduction in atherosclerotic lesions and necrotic core content in aortic root sections in comparison with Apoe-/- mice. RNA-Seq was used to investigate the effect of Eif6 in aorta. Deficiency of Eif6 shows broad effect on cell metabolism. Expression of genes for fatty acid synthesis including Fatty acid synthase (Fasn), Elovl3, Elovl6 and Acaca are down-regulated in aortas. Importantly, Fasn is decreased in macrophages. Results suggest that Eif6 deficiency may decrease atherosclerosis through inhibition of Fasn and lipids metabolism in macrophages.


Subject(s)
Atherosclerosis , Mice , Animals , Mice, Knockout, ApoE , Atherosclerosis/metabolism , Macrophages/metabolism , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Inbred C57BL , Mice, Knockout , Disease Models, Animal
9.
Am J Transl Res ; 14(7): 5040-5049, 2022.
Article in English | MEDLINE | ID: mdl-35958479

ABSTRACT

BACKGROUND: Among various glioma types, glioblastoma multiforme (GBM) is one of those with the highest malignancy. Although overexpression of eukaryotic translation initiation factor 6 (eIF6), a factor that regulates protein translation initiation, is believed to promote tumor development, its function and potential molecular mechanisms in glioma progression remain uncharacterized. Consequently, we evaluated its diagnostic and prognostic utility in GBM patients. METHODS: Sample data from two databases, The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA), were utilized to investigate the role of eIF6 as well as its mechanism of action in gliomas. We analyzed eIF6 expression in normal tissues as well as cancerous samples of different stages of glioma. The diagnostic and prognostic value of eIF6 were analyzed using the Receiver Operating Characteristic Curve (ROC) and Kaplan-Meier analysis, respectively. Furthermore, its underlying molecular mechanism in GBM was further revealed by gene set enrichment analysis (GSEA). RESULTS: Transcriptome data analyses of the two databases showed that eIF6 was upregulated in glioma tissues compared with normal counterparts. eIF6 was at high levels in WHO grade IV gliomas versus grade II and III gliomas (P<0.05). In addition, eIF6 was highly expressed in elderly and Asian glioma patients. Furthermore, eIF6 expression was found to be lower in isocitrate dehydrogenase (IDH)-mutated tumors. Patients with high eIF6 level presented shorter overall survival than cases with low eIF6 level (P<0.05), and eIF6 had favorable accuracy in predicting the prognosis of glioma patients. GSEA revealed that high eIF6 expression was mainly concentrated in cell cycle and DNA repair related pathways. CONCLUSIONS: eIF6 is highly expressed in gliomas and positively associated with the degree of malignancy. Patients with high eIF6 expression present poor survival. Therefore, eIF6 has the potential to be a diagnostic biomarker and a potential therapeutic target for glioma development and GBM.

10.
Front Genet ; 13: 896749, 2022.
Article in English | MEDLINE | ID: mdl-36035165

ABSTRACT

Background: Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients. Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study. Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal. Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy.

11.
Int J Mol Sci ; 23(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35887068

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by the accumulation of lipids in the liver. Given the high prevalence of NAFLD, its evolution to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) is of global concern. Therapies for managing NASH-driven HCC can benefit from targeting factors that play a continuous role in NAFLD evolution to HCC. Recent work has shown that postprandial liver translation exacerbates lipid accumulation through the activity of a translation factor, eukaryotic initiation factor 6 (eIF6). Here, we test the effect of eIF6 inhibition on the progression of HCC. Mice heterozygous for eIF6 express half the level of eIF6 compared to wt mice and are resistant to the formation of HCC nodules upon exposure to a high fat/high sugar diet combined with liver damage. Histology showed that nodules in eIF6 het mice were smaller with reduced proliferation compared to wt nodules. By using an in vitro model of human HCC, we confirm that eIF6 depletion reduces the growth of HCC spheroids. We also tested three pharmacological inhibitors of eIF6 activity-eIFsixty-1, eIFsixty-4, and eIFsixty-6-and all three reduced eIF6 binding to 60S ribosomes and limited the growth of HCC spheroids. Thus, inhibition of eIF6 activity is feasible and limits HCC formation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Eukaryotic Initiation Factors/antagonists & inhibitors , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Peptide Initiation Factors/antagonists & inhibitors , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism
12.
J Transl Med ; 20(1): 303, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794622

ABSTRACT

BACKGROUND: Although eukaryotic initiation factor 6 (eIF6) is a novel therapeutic target, data on its importance in the development of esophageal carcinoma (ESCA) remains limited. This study evaluated the correlation between eIF6 expression and metabolic analysis using fluorine-18 fluorodeoxyglucose (18F-FDG) -Positron emission tomography (PET) and immune gene signatures in ESCA. METHODS: This study employed The Cancer Genome Atlas (TCGA) to analyze the expression and prognostic value of eIF6, as well as its relationship with the immune gene signatures in ESCA patients. The qRT-PCR and Western blot analyses were used to profile the expression of eIF6 in ESCA tissues and different ESCA cell lines. The expression of tumor eIF6 and glucose transporter 1 (GLUT1) was examined using immunohistochemical tools in fifty-two ESCA patients undergoing routine 18F-FDG PET/CT before surgery. In addition, the cellular responses to eIF6 knockdown in human ESCA cells were assessed via the MTS, EdU, flow cytometry and wound healing assays. RESULTS: Our data demonstrated that compared with the normal esophageal tissues, eIF6 expression was upregulated in ESCA tumor tissues and showed a high diagnostic value with an area under curve of 0.825 for predicting ESCA. High eIF6 expression was significantly correlated with shorter overall survival of patients with esophagus adenocarcinoma (p = 0.038), but not in squamous cell carcinoma of the esophagus (p = 0.078). In addition, tumor eIF6 was significantly associated with 18F-FDG PET/CT parameters: maximal and mean standardized uptake values (SUVmax and SUVmean) and total lesion glycolysis (TLG) (rho = 0.458, 0.460, and 0.300, respectively, p < 0.01) as well as GLUT1 expression (rho = 0.453, p < 0.001). A SUVmax cutoff of 18.2 led to prediction of tumor eIF6 expression with an accuracy of 0.755. Functional analysis studies demonstrated that knockdown of eIF6 inhibited ESCA cell growth and migration, and fueled cell apoptosis. Moreover, the Bulk RNA gene analysis revealed a significant inverse association between eIF6 and the tumor-infiltrating immune cells (macrophages, T cells, or Th1 cells) and immunomodulators in the ESCA microenvironment. CONCLUSION: Our study suggested that eIF6 might serve as a potential prognostic biomarker associated with metabolic variability and immune gene signatures in ESCA tumor microenvironment.


Subject(s)
Carcinoma, Squamous Cell , Fluorodeoxyglucose F18 , Biomarkers , Glucose Transporter Type 1 , Humans , Peptide Initiation Factors , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prognosis , Tumor Microenvironment
13.
Front Oncol ; 12: 848346, 2022.
Article in English | MEDLINE | ID: mdl-35707354

ABSTRACT

Background: Skin cutaneous melanoma (SKCM) is the deadliest skin cancer and has the most rapidly increasing incidences among all cancer types. Previous research elucidated that melanoma can only be successfully treated with surgical abscission in the early stage. Therefore, reliable and specific biomarkers are crucial to melanoma diagnosis since it often looks like nevi in the clinical manifestations. Moreover, identifying key genes contributing to melanoma progression is also highly regarded as a potential strategy for melanoma therapy. In this respect, translation initiator eIF6 has been proved as a pro-tumor factor in several cancers. However, the role of eIF6 in the skin cutaneous melanoma progression and its potential as a prognostic marker is still unexplored. Methods: The immunochemical analysis of clinical specimens were served to assess eIF6 expression levels. Gene Expression Profiling Interactive Analysis (GEPIA) database consultations allowed us to find the survival rates of the eIF6-overexpressed patients. eIF6 cellular effects were evaluated in an eIF6-overexpressed A375 cell line constructed with a lentivirus. The analysis of down-stream effectors or pathways was conducted using C-Bioportal and STRING databases. Results: Our results revealed that eIF6 was highly over-expressed in melanomas compared to normal skin specimens, and thus the abnormally high level of eIF6 can be a diagnostic marker for melanoma. The in silica analysis indicated that patients with eIF6 over-expression had lower survival rates than that low-expression in SKCM. Meanwhile, similar results also could be found in the other four types of cancers. In vitro, over-expression of eIF6 increased the proliferation and migration of melanoma cells. Correspondingly, pan-cancer clustering analysis indicated the expression level of intermediate filament proteins was correlated with that of eIF6 expression. In our study, all over-expressed keratin proteins, in accordance with over-expressed eIF6, had a negative correlation with melanoma prognosis. Moreover, the decreased methylation level of keratin genes suggested a new potential regulation mode of eIF6. Conclusions: The up-regulated eIF6 could be a potential diagnostic and prognostic biomarker of melanoma. This study also provides insights into the potential role of eIF6 in pan-cancer epigenetic regulation.

14.
Cell Commun Signal ; 19(1): 121, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922580

ABSTRACT

BACKGROUND: Eukaryotic translation initiation factor 6 (eIF6), also known as integrin ß4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. METHODS: The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. RESULTS: We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. CONCLUSION: These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future. Video abstract.


Subject(s)
Proto-Oncogene Proteins c-akt
15.
J Transl Med ; 19(1): 216, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34016142

ABSTRACT

BACKGROUND: Eukaryotic translation initiation factor 6 (eIF6) has a crucial function in the maturation of 60S ribosomal subunits, and it controls the initiation of protein translation. Although emerging studies indicate that eIF6 is aberrantly expressed in various types of cancers, the functions and underlying molecular mechanisms of eIF6 in the pathological progression of hepatocellular carcinoma (HCC) remain unclear. This study aimed to evaluate the potential diagnostic and prognostic value of eIF6 in patients with HCC. METHODS: HCC samples enrolled from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and our cohort were used to explore the role and mechanism of eIF6 in HCC. The diagnostic power of eIF6 was verified by receiver operating characteristic curve (ROC) analysis and its prognostic value was assessed by Kaplan-Meier analysis, and then related biological functions of eIF6 were determined in vitro and in vivo cancer models. In addition, potential molecular mechanism of eIF6 in HCC was unveiled by the gene set enrichment analysis and western blot assay. RESULTS: We demonstrated that eIF6 expression was markedly increased in HCC, and elevated eIF6 expression correlated with pathological progression of HCC. Besides, eIF6 served as not only a new diagnostic biomarker but also an independent risk factor for OS in HCC patients. Functional studies indicated that the deletion of eIF6 displayed tumor-suppressor activity in HCC cells. Furthermore, we found that eIF6 could activate the mTOR-related signaling pathway and regulate the expression level of its target genes, such as CCND1, CDK4, CDK6, MYC, CASP3 and CTNNBL1, and these activities promoted proliferation and invasion of HCC cells. CONCLUSIONS: The findings of this study provided a novel basis for understanding the potential role of eIF6 in promoting tumor growth and invasion, and exploited a promising strategy for improving diagnosis and prognosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Eukaryotic Initiation Factors , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , Prognosis , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
16.
Best Pract Res Clin Haematol ; 34(1): 101252, 2021 03.
Article in English | MEDLINE | ID: mdl-33762106

ABSTRACT

Identifying germline mutations responsible for genetic predisposition to myeloid malignancies would be useful in creating opportunities for early intervention. Recent genomic and functional studies in Shwachman-Diamond syndrome (SDS) have deciphered distinct roles for heterozygous mutations in EIF6 and TP53 in alleviating germline genetic stress and a role for biallelic TP53 mutations in malignant progression. This review has summarized evidence for a mechanistic framework underlying SDS that can potentially be applied to the study of other germline myelodysplastic syndromes (MDS) predisposition disorders.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Genetic Predisposition to Disease , Humans , Mutation , Myelodysplastic Syndromes/genetics , Shwachman-Diamond Syndrome
17.
Cancer Manag Res ; 13: 247-258, 2021.
Article in English | MEDLINE | ID: mdl-33469368

ABSTRACT

BACKGROUND: Accruing evidences have pointed out that abnormal expression of circular RNAs (circRNAs) was closely related to the development of many malignancies. The present study intended to disclose the role of circRNA eukaryotic translation initiation factor 6 (circEIF6; hsa_circ_0060055) in pancreatic cancer progression. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the expression of circEIF6, EIF6 messenger RNA (mRNA), microRNA-557 (miR-557) and solute carrier family 7 member 11 (SLC7A11) mRNA. Cell proliferation ability, migration and invasion abilities and apoptosis were evaluated by Cell Counting Kit 8 (CCK8) assay, transwell migration and invasion assays and flow cytometry. Western blot assay was performed for the expression determination of all proteins. The predicted interaction between miR-557 and circEIF6 or SLC7A11 was confirmed by dual-luciferase reporter assay. Xenograft tumor model was used for exploring the biological function of circEIF6 in vivo. RESULTS: CircEIF6 abundance was aberrantly up-regulated in pancreatic tumor tissues and cell lines. Cell proliferation, migration and invasion were significantly restrained while cell apoptosis was induced with the silencing of circEIF6 in pancreatic cancer cells. CircEIF6 silencing also hampered the activation of phosphatidylinositol 3-kinase (PI3K)/AKT serine/threonine kinase (AKT) pathway. CircEIF6 bound to miR-557, and circEIF6 silencing elevated the expression of miR-557 in pancreatic cancer cells. MiR-557 knockdown partly overturned circEIF6 silencing-induced effects in pancreatic cancer cells. SLC7A11 was a target of miR-557, and miR-557 overexpression suppressed malignant potential of pancreatic cancer cells partly through reducing the expression of SLC7A11. CircEIF6 knockdown blocked xenograft tumor growth in vivo. CONCLUSION: CircEIF6 aggravated pancreatic cancer development through promoting cell proliferation, migration and invasion and suppressing cell apoptosis through targeting miR-557/SLC7A11/PI3K/AKT signaling.

18.
Cancer Sci ; 111(11): 4118-4128, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32860321

ABSTRACT

Accumulating evidence has identified long noncoding RNAs (lncRNAs) as regulators in tumor progression and development. Here, we elucidated the function and possible molecular mechanisms of the effect of lncRNA-PICSAR (p38 inhibited cutaneous squamous cell carcinoma associated lincRNA) on the biological behaviors of HCC. In the present study, we found that PICSAR was upregulated in HCC tissues and cells and correlated with progression and poor prognosis in HCC patients. Gain- and loss-of-function experiments indicated that PICSAR enhanced cell proliferation, colony formation, and cell cycle progression and inhibited apoptosis of HCC cells. PICSAR could function as a competing endogenous RNA by sponging microRNA (miR)-588 in HCC cells. Mechanically, miR-588 inhibited HCC progression and alternation of miR-588 reversed the promotive effects of PICSAR on HCC cells. In addition, we confirmed that eukaryotic initiation factor 6 (EIF6) was a direct target of miR-588 in HCC and mediated the biological effects of miR-588 and PICSAR in HCC, resulting in PI3K/AKT/mTOR pathway activation. Our data identified PICSAR as a novel oncogenic lncRNA associated with malignant clinical outcomes in HCC patients. PICSAR played an oncogenic role by targeting miR-588 and subsequently promoted EIF6 expression and PI3K/AKT/mTOR activation in HCC. Our results revealed that PICSAR could be a potential prognostic biomarker and therapeutic target for HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Signal Transduction , Animals , Apoptosis/genetics , Biomarkers, Tumor , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Models, Animal , Female , Humans , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Mice , MicroRNAs/genetics , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , TOR Serine-Threonine Kinases/metabolism
19.
J Biol Chem ; 295(36): 12796-12813, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32703900

ABSTRACT

Eukaryotic translation initiation factor 6 (eIF6) is essential for the synthesis of 60S ribosomal subunits and for regulating the association of 60S and 40S subunits. A mechanistic understanding of how eIF6 modulates translation in response to stress, specifically starvation-induced stress, is lacking. We here show a novel mode of eIF6 regulation by glycogen synthase kinase 3 (GSK3) that is predominantly active in response to serum starvation. Both GSK3α and GSK3ß phosphorylate human eIF6. Multiple residues in the C terminus of eIF6 are phosphorylated by GSK3 in a sequential manner. In response to serum starvation, eIF6 accumulates in the cytoplasm, and this altered localization depends on phosphorylation by GSK3. Disruption of eIF6 phosphorylation exacerbates the translation inhibitory response to serum starvation and stalls cell growth. These results suggest that eIF6 regulation by GSK3 contributes to the attenuation of global protein synthesis that is critical for adaptation to starvation-induced stress.


Subject(s)
Cytoplasm/metabolism , Eukaryotic Initiation Factors/metabolism , Protein Biosynthesis , Cytoplasm/genetics , Eukaryotic Initiation Factors/genetics , Glycogen Synthase Kinase 3/genetics , HCT116 Cells , Humans , Phosphorylation , Protein Domains
20.
Dev Comp Immunol ; 109: 103697, 2020 08.
Article in English | MEDLINE | ID: mdl-32330465

ABSTRACT

The transition from a naïve to an effector T cell is an essential event that requires metabolic reprogramming. We have recently demonstrated that the rapid metabolic changes that occur following stimulation of naïve T cells require the translation of preexisting mRNAs. Here, we provide evidence that translation regulates the metabolic asset of effector T cells. By performing ribosome profiling in human CD4+ Th1 cells, we show that the metabolism of glucose, fatty acids and pentose phosphates is regulated at the translational level. In Th1 cells, each pathway has at least one enzyme regulated at the translational level and selected enzymes have high translational efficiencies. mRNA expression does not predict protein expression. For instance, PKM2 mRNA is equally present in naïve T and Th1 cells, but the protein is abundant only in Th1. 5'-untranslated regions (UTRs) may partly account for this regulation. Overall we suggest that immunometabolism is controlled by translation.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Gene Expression Profiling/methods , Metabolic Networks and Pathways/genetics , Protein Biosynthesis/genetics , Ribosomes/genetics , Th1 Cells/metabolism , 5' Untranslated Regions/genetics , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Cells, Cultured , Gene Ontology , High-Throughput Nucleotide Sequencing/methods , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq/methods , Ribosomes/metabolism , Th1 Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL