Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
J Allergy Clin Immunol Glob ; 3(4): 100335, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39328577

ABSTRACT

The use of erythritol as a food sweetener has spread significantly from Japan throughout the world. We describe a case of severe anaphylaxis due to immediate-type allergy to erythritol that was diagnosed with in vitro basophil activation tests and in vivo skin tests.

2.
Nutrients ; 16(18)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39339699

ABSTRACT

Erythritol occurs naturally in some fruits and fermented foods, and has also been used as an artificial sweetener since the 1990s. Although there have been questions and some studies regarding its potential adverse health effects, the association between serum erythritol and long-term mortality has not been evaluated. To examine the association between serum erythritol's biochemical status and risk of overall and cause-specific mortality, a prospective cohort analysis was conducted using participants in the ATBC Study (1985-1993) previously selected for metabolomic sub-studies. The analysis included 4468 participants, among whom 3377 deaths occurred during an average of 19.1 years of follow-up. Serum erythritol was assayed using an untargeted, global, high-resolution, accurate-mass platform of ultra-high-performance liquid and gas chromatography. Cause-specific deaths were identified through Statistics Finland and defined by the International Classification of Diseases. After adjustment for potential confounders, serum erythritol was associated with increased risk of overall mortality (HR = 1.50 [95% CI = 1.17-1.92]). We found a positive association between serum erythritol and cardiovascular disease mortality risk (HR = 1.86 [95% CI = 1.18-2.94]), which was stronger for heart disease mortality than for stroke mortality risk (HR = 3.03 [95% CI = 1.00-9.17] and HR = 2.06 [95% CI = 0.72-5.90], respectively). Cancer mortality risk was also positively associated with erythritol (HR = 1.54 [95% CI = 1.09-2.19]). The serum erythritol-overall mortality risk association was stronger in men ≥ 55 years of age and those with diastolic blood pressure ≥ 88 mm Hg (p for interactions 0.045 and 0.01, respectively). Our study suggests that elevated serum erythritol is associated with increased risk of overall, cardiovascular disease, and cancer mortality. Additional studies clarifying the role of endogenous production and dietary/beverage intake of erythritol in human health and mortality are warranted.


Subject(s)
Cardiovascular Diseases , Erythritol , Humans , Erythritol/blood , Male , Middle Aged , Prospective Studies , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Aged , Cause of Death , Risk Factors , Finland/epidemiology , Cohort Studies , Sweetening Agents/adverse effects , Neoplasms/mortality , Neoplasms/blood
3.
BMC Oral Health ; 24(1): 1105, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294663

ABSTRACT

BACKGROUND: The aim of the randomized controlled clinical trial study was to evaluate the effectiveness in reducing pathologically increased pocket probing depths (PPD > 3 mm) using the Guided Biofilm Therapy (GBT) protocol (adapted to the clinical conditions in non-surgical periodontal therapy (NSPT): staining, air-polishing, ultrasonic scaler, air-polishing) compared to conventional instrumentation (staining, hand curettes/sonic scaler, polishing with rotary instruments) both by less experienced practitioners (dental students). METHODS: All patients were treated according to a split-mouth design under supervision as diseased teeth of quadrants I/III and II/IV randomly assigned to GBT or conventional treatment. In addition to the treatment time, periodontal parameters such as PPD and bleeding on probing (BOP) before NSPT (T0) and after NSPT (T1: 5 ± 2 months after T0) were documented by two calibrated and blinded examiners (Ethics vote/ Trial-register: Kiel-D509-18/ DRKS00026041). RESULTS: Data of 60 patients were analyzed (stage III/IV: n = 36/ n = 24; grade A/ B/ C: n = 1/ n = 31/ n = 28). At T1, a PPD reduction of all diseased tooth surfaces was observed in 57.0% of the GBT group and 58.7% of the control group (p = 0.067). The target endpoint (PPD ≤ 4 mm without BOP) was achieved in 11.5% for GBT (conventional treatment: 11.2%; p = 0.714). With the exception for number of sites with BOP, which was at T1 15.9% in the GBT group and 14.3% in the control group (p < 0.05) no significant differences between the outcomes of the study were found. At 30.3(28.3) min, the treatment time was significantly shorter in GBT than in the control group at 34.6(24.5) min (p < 0.001). CONCLUSIONS: With both protocols (GBT/ conventional instrumentation) comparably good clinical treatment results can be achieve in NSPT in stage III-IV periodontitis patients. TRIAL REGISTRATION: The study was registered before the start of the study and can be found under the number DRKS00026041 in the German Clinical Trials Register. The registration date was 19/08/2021.


Subject(s)
Biofilms , Dental Scaling , Periodontal Index , Periodontal Pocket , Humans , Female , Male , Middle Aged , Treatment Outcome , Dental Scaling/methods , Adult , Periodontal Pocket/therapy , Single-Blind Method , Ultrasonic Therapy/methods , Chronic Periodontitis/therapy , Chronic Periodontitis/microbiology , Follow-Up Studies , Periodontal Debridement/methods , Aged
4.
Eur J Prev Cardiol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230875

ABSTRACT

BACKGROUND AND AIMS: Erythritol, a sugar alcohol (polyol), has recently been linked to the risks of major adverse cardiovascular events. We investigated whether plasma erythritol and other polyols (mannitol/sorbitol) were associated with the risk of incident coronary heart disease (CHD). METHODS: This prospective nested case-control study included 762 incident cases of CHD and 762 controls from the Nurses' Health Study. Plasma concentrations of polyols were measured at baseline (1989-90 or 2000-02). Associations of erythritol with cardiometabolic risk factors were also analyzed in the Women's Lifestyle Validation Study (n=728; blood collected in 2010-12). RESULTS: Higher erythritol levels were related to more adverse cardiometabolic risk factor status. The relative risk (RR) for CHD per 1-SD increment was 1.15 [95% CI: 1.04, 1.28] for erythritol and 1.16 [1.05, 1.28] for mannitol/sorbitol, after adjusting for diet quality, lifestyles, and adiposity. Compared with women in the lowest quartile, those in the highest quartile (Q4) of erythritol had a RR 1.55 [1.13, 2.14] for CHD. The RR in Q4 of erythritol was 1.61 [1.15, 2.24; p=0.006] when hypertension and dyslipidemia were further added to the model; the RR was 1.21 [0.86, 1.70] after adjustment for diabetes. For mannitol/sorbitol, the RR in the Q4 was 1.42 [1.05, 1.91; p=0.022] for CHD in the multivariable-adjusted model including diabetes. CONCLUSIONS: Higher plasma erythritol and mannitol/sorbitol were related to elevated risks of CHD even after adjustment for diet, lifestyles, adiposity, and other risk factors. The unfavorable association of mannitol/sorbitol, but not erythritol, with CHD risk remained significant independently of diabetes/hyperglycemia.


The present study shows unfavorable associations of circulating erythritol and mannitol/sorbitol with long-term coronary heart disease (CHD) risk even after adjustments for overall diet quality, lifestyle factors, and several other traditional CHD risk factors among women at usual risk. In contrast to mannitol/sorbitol, the association between high erythritol levels and increased CHD risk was no longer significant upon additional inclusion of diabetes in the multivariable-adjusted model. Our findings from the two independent study populations of women without prior CHD suggest endogenous and exogenous erythritol levels are related to unfavorable cardiometabolic risk factor status.

5.
Yeast ; 41(10): 605-614, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39262092

ABSTRACT

Engineering the glycerol-3-phosphate pathway could enhance erythritol production by accelerating glycerol uptake. However, little work has been conducted on the alternative dihydroxyacetone (DHA) pathway in Yarrowia lipolytica. Herein, this route was identified and characterized in Y. lipolytica by metabolomic and transcriptomic analysis. Moreover, the reaction catalyzed by dihydroxyacetone kinase encoded by dak2 was identified as the rate-limiting step. By combining NHEJ-mediated insertion mutagenesis with a push-and-pull strategy, Y. lipolytica strains with high-yield erythritol synthesis from glycerol were obtained. Screening of a library of insertion mutants allows the identification of a mutant with fourfold increased erythritol production. Overexpression of DAK2 and glycerol dehydrogenase GCY3 together with gene encoding transketolase and transaldolase from the nonoxidative part of the pentose phosphate pathway led to a strain with further increased productivity with a titer of 53.1 g/L and a yield 0.56 g/g glycerol, which were 8.1- and 4.2-fold of starting strain.


Subject(s)
Erythritol , Glycerol , Metabolic Engineering , Yarrowia , Yarrowia/genetics , Yarrowia/metabolism , Glycerol/metabolism , Erythritol/metabolism , Metabolic Networks and Pathways/genetics , Pentose Phosphate Pathway , Fungal Proteins/genetics , Fungal Proteins/metabolism , Dihydroxyacetone/metabolism , Sugar Alcohol Dehydrogenases
6.
Arch Microbiol ; 206(10): 392, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230673

ABSTRACT

Numerous works have reported that magnetic fields serve as signals capable of influencing microbial metabolism. However, little is known about the effect of magnetic field on erythritol production by the model microorganism Yarrowia lipolytica (Y. lipolytica). Therefore, we investigated the effect of low-frequency alternating magnetic fields (LF-AMF) with different magnetic field intensities (0-1.5 mT) and different magnetic field treatment times (1-10 days) on the production of erythritol by Y. lipolytica -JZ204. The optimal treatment condition was 0.5 mT for 8 days. As a result, a maximal erythritol yield was achieved 63.74 g/L, the biomass was reached 37 g/L, and the specific erythritol yield per unit of biomass was 1.7227 g/g, which were 60.72%, 32.09%, and 24.85% higher than the control, respectively. We investigated the internal mechanism of magnetic fields impact by using transcriptomics and RT-qPCR technology. This study demonstrated the effectiveness of LF-AMF in enhancing erythritol production by Y. lipolytica JZ-204, providing insights for the application of magnetic field in assisting microbial fermentation and improving the synthesis of beneficial products.


Subject(s)
Erythritol , Magnetic Fields , Yarrowia , Yarrowia/metabolism , Yarrowia/genetics , Yarrowia/growth & development , Erythritol/metabolism , Erythritol/biosynthesis , Fermentation , Biomass
7.
Food Chem ; 459: 140343, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39018621

ABSTRACT

This study investigated the effects of various binary sweetener mixtures on sweetness enhancement and their interactions with sweet or bitter taste receptors, focusing on sensory perception and receptor activity. Acesulfame K or saccharin was mixed with allulose, aspartame, erythritol, fructose, glucose, or sucrose to match a target sucrose sweetness. The effects of the mixtures on sweet and bitter taste receptors (in the human embryonic kidney -293 cells) and sensory taste intensities were evaluated. Sweetness enhancement at the sweet taste receptor level was observed in some cases, with several monosaccharides reducing the acesulfame K- or saccharin-induced bitter taste receptor activity. Combining acesulfame K or saccharin with any of the six sweeteners perceptually enhanced sweetness (60% âˆ¼ 100% in 50:50 ratio), correlating with a reduction in inherent bitterness (-35% âˆ¼ -63% in 50:50 ratio). This finding suggests that sweetness perception likely increased because the monosaccharides mitigate the activation of bitter receptors caused by high-potency sweeteners.


Subject(s)
Receptors, G-Protein-Coupled , Sweetening Agents , Taste Buds , Taste Perception , Taste , Humans , Receptors, G-Protein-Coupled/metabolism , Taste Perception/drug effects , Taste Buds/metabolism , Taste Buds/drug effects , HEK293 Cells , Saccharin/pharmacology , Thiazines
8.
BMC Oral Health ; 24(1): 763, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965550

ABSTRACT

BACKGROUND: There is insufficient clinical and microbiological evidence to support the use of diode laser and air-polishing with erythritol as supplements to scaling and root planning(SRP). The aim of the current study is to evaluate the clinical and microbiologic efficacy of erythritol subgingival air polishing and diode laser in treatment of periodontitis. METHODS: The study encompassed twenty-four individuals seeking periodontal therapy and diagnosed with stage I and stage II periodontitis. Eight patients simply underwent SRP. Eight more patients had SRP followed by erythritol subgingival air polishing, and eight patients had SRP followed by diode laser application. At baseline and six weeks, clinical periodontal parameters were measured, including Plaque Index (PI), Gingival Index (GI), periodontal Probing Depth (PPD), and Clinical Attachment Level (CAL). The bacterial count of Aggregatibacter actinomycetemcomitans(A.A), Porphyromonas gingivalis (P.G) was evaluated at different points of time. RESULTS: The microbiological assessment revealed significant differences in the count of A.A. between the laser and erythritol groups immediately after treatment, indicating a potential impact on microbial levels. However, the microbial levels showed fluctuations over the subsequent weeks, without statistically significant differences. Plaque indices significantly decreased post-treatment in all groups, with no significant inter-group differences. Gingival indices decreased, and the laser group showed lower values than erythritol and control groups. PPD and CAL decreased significantly across all groups, with the laser group exhibiting the lowest values. CONCLUSION: The supplementary use of diode laser and erythritol air polishing, alongside SRP, represents an expedited periodontal treatment modality. This approach leads to a reduction in bacteria and improvement in periodontal health. TRIAL REGISTRATION: This clinical trial was registered on Clinical Trials.gov (Registration ID: NCT06209554) and released on 08/01/2024.


Subject(s)
Aggregatibacter actinomycetemcomitans , Bacterial Load , Dental Plaque Index , Dental Scaling , Erythritol , Lasers, Semiconductor , Periodontal Index , Porphyromonas gingivalis , Root Planing , Adult , Female , Humans , Male , Middle Aged , Aggregatibacter actinomycetemcomitans/isolation & purification , Aggregatibacter actinomycetemcomitans/drug effects , Air Abrasion, Dental/methods , Bacterial Load/drug effects , Dental Scaling/methods , Erythritol/therapeutic use , Follow-Up Studies , Lasers, Semiconductor/therapeutic use , Periodontal Attachment Loss/therapy , Periodontal Attachment Loss/microbiology , Periodontal Pocket/therapy , Periodontal Pocket/microbiology , Periodontitis/microbiology , Periodontitis/therapy , Periodontitis/drug therapy , Porphyromonas gingivalis/isolation & purification , Porphyromonas gingivalis/drug effects , Root Planing/methods , Treatment Outcome
9.
Bioprocess Biosyst Eng ; 47(10): 1659-1668, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38969832

ABSTRACT

Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ERK26N/V295M (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.


Subject(s)
Erythritol , Yarrowia , Erythritol/biosynthesis , Erythritol/metabolism , Yarrowia/genetics , Yarrowia/metabolism , Yarrowia/enzymology , Fungal Proteins/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/metabolism , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Aldehyde Reductase/biosynthesis , Protein Engineering/methods , Metabolic Engineering/methods , Molecular Docking Simulation
10.
Pest Manag Sci ; 80(10): 5180-5185, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38872579

ABSTRACT

BACKGROUND: Development of insecticide resistance in the major malaria vectors has necessitated the development of novel vector control tools. One such strategy involves the use of toxic sugar baits that targets the sugar-feeding behaviour of mosquito vectors. In this study, we investigated the potential of polyols, as a toxic food (sugar) source in toxic sugar baits against the malaria vector Anopheles stephensi Liston. We examined the acute toxicity of six polyols, namely, erythritol, glycerol, mannitol, propylene glycol (PG), sorbitol, and xylitol on adult female An. stephensi mosquitoes at two different concentrations - 2% and 10%. We also studied changes in fecundity, egg hatchability and mid-gut peroxide levels induced by polyol exposure. RESULTS: Among the six polyol compounds tested, PG was most toxic and lethal followed by glycerol and erythritol (P < 0.001) compared to the control (sucrose). PG induced acute mortality at different tested concentrations. In the erythritol- and glycerol-fed groups, a dose-dependent effect on mortality was observed. Glycerol evidently reduced fecundity and egg-hatchability in gonotrophic cycles G1 and G2. Sucrose was the preferred food source (48%), followed by erythritol (18%), PG (10%) and glycerol (8%). Ingestion of polyols increased peroxide levels in mosquito guts, which persisted for extended durations ultimately resulting in rapid mortality (P < 0.05). CONCLUSION: The present study highlights the usefulness of sugar polyols for the development of toxic sugar baits with minimal yet effective ingredients. Further research could be focused on field experiments and on the exploration of synergistic effects of different polyols for optimization of field applications. © 2024 Society of Chemical Industry.


Subject(s)
Anopheles , Mosquito Control , Oxidative Stress , Polymers , Animals , Oxidative Stress/drug effects , Female , Anopheles/drug effects , Anopheles/physiology , Insecticides , Mosquito Vectors/drug effects , Sugars , Fertility/drug effects
11.
World J Microbiol Biotechnol ; 40(8): 240, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38867081

ABSTRACT

Erythritol, as a new type of natural sweetener, has been widely used in food, medical, cosmetics, pharmaceutical and other fields due to its unique physical and chemical properties and physiological functions. In recent years, with the continuous development of strategies such as synthetic biology, metabolic engineering, omics-based systems biology and high-throughput screening technology, people's understanding of the erythritol biosynthesis pathway has gradually deepened, and microbial cell factories with independent modification capabilities have been successfully constructed. In this review, the cheap feedstocks for erythritol synthesis are introduced in detail, the environmental factors affecting the synthesis of erythritol and its regulatory mechanism are described, and the tools and strategies of metabolic engineering involved in erythritol synthesis are summarized. In addition, the study of erythritol derivatives is helpful in expanding its application field. Finally, the challenges that hinder the effective production of erythritol are discussed, which lay a foundation for the green, efficient and sustainable production of erythritol in the future and breaking through the bottleneck of production.


Subject(s)
Erythritol , Metabolic Engineering , Erythritol/metabolism , Erythritol/biosynthesis , Metabolic Engineering/methods , Biosynthetic Pathways , Synthetic Biology/methods , Sweetening Agents/metabolism , Bacteria/metabolism , Bacteria/genetics
12.
Biotechnol Biofuels Bioprod ; 17(1): 90, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937852

ABSTRACT

BACKGROUND: Erythritol, a natural polyol, is a low-calorie sweetener synthesized by a number of microorganisms, such as Moniliella pollinis. Yet, a widespread use of erythritol is limited by high production costs due to the need for cultivation on glucose-rich substrates. This study explores the potential of using Trichoderma reesei as an alternative host for erythritol production, as this saprotrophic fungus can be cultivated on lignocellulosic biomass residues. The objective of this study was to evaluate whether such an alternative host would lead to a more sustainable and economically viable production of erythritol by identifying suitable carbon sources for erythritol biosynthesis, the main parameters influencing erythritol biosynthesis and evaluating the feasibility of scaling up the defined process. RESULTS: Our investigation revealed that T. reesei can synthesize erythritol from glucose but not from other carbon sources like xylose and lactose. T. reesei is able to consume erythritol, but it does not in the presence of glucose. Among nitrogen sources, urea and yeast extract were more effective than ammonium and nitrate. A significant impact on erythritol synthesis was observed with variations in pH and temperature. Despite successful shake flask experiments, the transition to bioreactors faced challenges, indicating a need for further scale-up optimization. CONCLUSIONS: While T. reesei shows potential for erythritol production, reaching a maximum concentration of 1 g/L over an extended period, its productivity could be improved by optimizing the parameters that affect erythritol production. In any case, this research contributes valuable insights into the polyol metabolism of T. reesei, offering potential implications for future research on glycerol or mannitol production. Moreover, it suggests a potential metabolic association between erythritol production and glycolysis over the pentose phosphate pathway.

13.
Int J Dent Hyg ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825804

ABSTRACT

OBJECTIVES: Professional oral hygiene is essential to prevent peri-implant disease. Appropriate instruments should be employed for implant-supported restorations: they should effectively remove deposits without damaging dental implant surface. The aim of the present systematic review is to investigate the efficacy and safety of erythritol air-polishing in implant-supported rehabilitations, compared to alternative hygienic techniques. MATERIALS AND METHODS: The guidelines reported in the indications of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) were employed for this systematic review. The focused question was: 'what is the effect of erythritol air-polishing on dental implant surfaces regarding its cleansing efficacy and/or safety?' The final online search was conducted on 13 August 2023; MEDLINE-PubMed, Scopus and Cochrane Library were employed. Comparative in vitro or in vivo original studies were included. RESULTS: The initial database search yielded 128 entries; the final selection comprised 15 articles. The risk of bias was evaluated using the Newcastle Ottawa scale (NOS), the Cochrane Handbook for Systematic Reviews of Interventions, GRADE method. Ultrasonic scaling with PEEK tips, glycine air-polishing and cold atmospheric plasma were the devices most frequently compared to erythritol powder in the included studies. Erythritol air-polishing appeared to be significantly more effective in reducing biofilm compared to other treatments, without causing any significant damage to the implant surface and peri-implant tissues, promoting a good biological response. CONCLUSION: Erythritol air-polishing showed promising results for professional oral hygiene in implant-supported restorations. According to this systematic review, it is effective and safe for removing biofilm from titanium dental implants.

14.
Front Bioeng Biotechnol ; 12: 1392556, 2024.
Article in English | MEDLINE | ID: mdl-38827034

ABSTRACT

Zymomonas mobilis is an ethanologenic bacterium that can produce hopanoids using farnesyl pyrophosphate (FPP), which can be used as the precursor by ß-farnesene synthase for ß-farnesene production. To explore the possibility and bottlenecks of developing Z. mobilis for ß-farnesene production, five heterologous ß-farnesene synthases were selected and screened, and AaBFS from Artemisia annua had the highest ß-farnesene titer. Recombinant strains with AaBFS driven by the strong constitutive promoter Pgap (Pgap-AaBFS) doubled its ß-farnesene production to 25.73 ± 0.31 mg/L compared to the recombinant strain with AaBFS driven by Ptet (Ptet-AaBFS), which can be further improved by overexpressing the Pgap-AaBFS construct using the strategies of multiple plasmids (41.00 ± 0.40 mg/L) or genomic multi-locus integration (48.33 ± 3.40 mg/L). The effect of cofactor NADPH balancing on ß-farnesene production was also investigated, which can be improved only in zwf-overexpressing strains but not in ppnK-overexpressing strains, indicating that cofactor balancing is important and sophisticated. Furthermore, the ß-farnesene titer was improved to 73.30 ± 0.71 mg/L by overexpressing dxs, ispG, and ispH. Finally, the ß-farnesene production was increased to 159.70 ± 7.21 mg/L by fermentation optimization, including the C/N ratio, flask working volume, and medium/dodecane ratio, which was nearly 13-fold improved from the parental strain. This work thus not only generated a recombinant ß-farnesene production Z. mobilis strain but also unraveled the bottlenecks to engineer Z. mobilis for farnesene production, which will help guide the future rational design and construction of cell factories for terpenoid production in non-model industrial microorganisms.

15.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792051

ABSTRACT

Erythritol is a polyol with a sweet taste but low energy value. Thanks to its valuable properties, as well as growing social awareness and nutritional trends, its popularity is growing rapidly. The aim of this study was to increase the effectiveness of erythritol production from glucose using new UV mutants of the yeast Yarrowia lipolytica obtained in the Wratislavia K1 strain. The ability of the new strains to biosynthesize erythritol and utilize this polyol was examined in shake-flask cultures and fed-batch processes conducted in a stirred tank reactor with a total glucose concentration of 300 and 400 g/L. The Wratislavia K1 strain produced erythritol most efficiently (97.5 g/L; 192 h) at an initial glucose concentration of 250 g/L (total: 300 g/L). New strains were assessed under such conditions, and it was noted that the highest erythritol concentration (145 g/L; 183 h) was produced by the K1UV15 strain. A significant improvement in the erythritol biosynthesis efficiency (148 g/L; 150 h) was achieved upon the increase in (NH4)2SO4 to 3.6 g/L. Further, in the culture with such a concentration of the nitrogen source and increased total glucose level (400 g/L), the K1UV15 strain produced 226 g/L of erythritol within 281 h.


Subject(s)
Erythritol , Glucose , Mutation , Yarrowia , Erythritol/metabolism , Yarrowia/metabolism , Yarrowia/genetics , Yarrowia/growth & development , Glucose/metabolism , Fermentation , Ultraviolet Rays , Bioreactors
16.
Prep Biochem Biotechnol ; : 1-12, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742596

ABSTRACT

In order to improve the utilization value of the erythritol mother liquor, the separation and purification of the erythritol mother liquor was selected in this study. The selected chromatographic separation programme for erythritol crystallizing mother liquor is as follows: Firstly, erythritol is resolved from mannitol and arabitol with DTF-01Ca (Suqing Group) resin and then mannitol is resolved from arabitol with 99Ca/320 (Dowex) resin. At the same time, the chromatographic conditions of the DTF-01Ca (Suqing Group) and 99Ca/320 (Dowex) resins were optimized, resulting in an optimal separation temperature and mobile phase flow rate of 70 °C, 10 ml/min. On this basis, a single-column chromatographic model was used to calculate the TD model parameter (N) and the mass transfer coefficient (km ) of the separation of erythritol mother liquor by DTF-01Ca (Suqing Group) and 99Ca/320 (Dowex) resins. The adsorption isotherms, TD model parameter (N) and the mass transfer coefficient (km ) provides data references for the design and operation of the simulated moving beds (SMB) separation system for the industrial-scale separation of erythritol crystallizing mother liquor.

17.
Int J Dent Hyg ; 22(4): 982-990, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38659293

ABSTRACT

OBJECTIVES: Peri-implant mucositis is a biofilm-related, reversible inflammatory disease that can evolve into peri-implantitis if not adequately treated. The aim of the present randomized controlled clinical trial was to evaluate the efficacy of air-abrasive powder as compared to chlorhexidine (CHX) for the treatment of peri-implant mucositis, in terms of clinical and patient-reported outcomes (PROMs) and occurrence of peri-implantitis 12 months after treatment. METHODS: In the control group, full-mouth calculus and plaque removal was performed with ultrasound and manual devices, and a 1.0% CHX gel was applied; in the test group, supra- and subgingival biofilm removal was performed using erythritol powder with a dedicated nozzle and calculus removal was performed with ultrasonic instruments if needed. Bleeding and plaque indexes, peri-implant probing depth and tissue level were measured at 1 week, and 1, 3, 6 and 12 months after treatment, while PROMs were evaluated up to 7 days after treatment. RESULTS: Among 80 included implants, 70 were analysed at 12 months follow-up (30 in the test group, 40 in the control group, and 20 subjects). Success rates (implant-level) in terms of bleeding index were significantly different between the test (96.7%) and control group (92.5%); as for PROMs, only taste sensation was significantly better in the test group. The test group was significantly correlated to the smallest changes in peri-implant probing depth between baseline and 3 months. CONCLUSIONS: The study showed that both treatment strategies are effective. This suggests that the use of air-abrasive powders could be used as an alternative biofilm removal method instead of adjunctive treatments with antiseptics.


Subject(s)
Chlorhexidine , Erythritol , Peri-Implantitis , Powders , Humans , Erythritol/therapeutic use , Erythritol/administration & dosage , Male , Female , Chlorhexidine/therapeutic use , Chlorhexidine/administration & dosage , Middle Aged , Peri-Implantitis/drug therapy , Biofilms/drug effects , Treatment Outcome , Aged , Periodontal Index , Anti-Infective Agents, Local/therapeutic use , Anti-Infective Agents, Local/administration & dosage , Dental Implants/adverse effects , Dental Plaque Index , Air Abrasion, Dental/methods , Adult , Dental Calculus/therapy
18.
Nanomaterials (Basel) ; 14(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38607178

ABSTRACT

Dendrite formation and water-triggered side reactions on the surface of Zn metal anodes severely restrict the commercial viability of aqueous zinc-ion batteries (AZIBs). In this work, we introduce erythritol (Et) as an electrolyte additive to enhance the reversibility of zinc anodes, given its cost-effectiveness, mature technology, and extensive utilization in various domains such as food, medicine, and other industries. By combining multiscale theoretical simulation and experimental characterization, it was demonstrated that Et molecules can partially replace the coordination H2O molecules to reshape the Zn2+ solvation sheath and destroy the hydrogen bond network of the aqueous electrolyte. More importantly, Et molecules tend to adsorb on the zinc anode surface, simultaneously inhibit water-triggered side reactions by isolating water and promote uniform and dense deposition by accelerating the Zn2+ diffusion and regulating the nucleation size of the Zn grain. Thanks to this synergistic mechanism, the Zn anode can achieve a cycle life of more than 3900 h at 1 mA cm-2 and an average Coulombic efficiency of 99.77%. Coupling with δ-MnO2 cathodes, the full battery delivers a high specific capacity of 228.1 mAh g-1 with a capacity retention of 76% over 1000 cycles at 1 A g-1.

19.
Int J Mol Sci ; 25(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612549

ABSTRACT

Erythritol has shown excellent insecticidal performance against a wide range of insect species, but the molecular mechanism by which it causes insect mortality and sterility is not fully understood. The mortality and sterility of Drosophila melanogaster were assessed after feeding with 1M erythritol for 72 h and 96 h, and gene expression profiles were further compared through RNA sequencing. Enrichment analysis of GO and KEGG revealed that expressions of the adipokinetic hormone gene (Akh), amylase gene (Amyrel), α-glucosidase gene (Mal-B1/2, Mal-A1-4, Mal-A7/8), and triglyceride lipase gene (Bmm) were significantly up-regulated, while insulin-like peptide genes (Dilp2, Dilp3 and Dilp5) were dramatically down-regulated. Seventeen genes associated with eggshell assembly, including Dec-1 (down 315-fold), Vm26Ab (down 2014-fold) and Vm34Ca (down 6034-fold), were significantly down-regulated or even showed no expression. However, there were no significant differences in the expression of three diuretic hormone genes (DH44, DH31, CAPA) and eight aquaporin genes (Drip, Big brain, AQP, Eglp1, Eglp2, Eglp3, Eglp4 and Prip) involved in osmolality regulation (all p value > 0.05). We concluded that erythritol, a competitive inhibitor of α-glucosidase, severely reduced substrates and enzyme binding, inhibiting effective carbohydrate hydrolysis in the midgut and eventually causing death due to energy deprivation. It was clear that Drosophila melanogaster did not die from the osmolality of the hemolymph. Our findings elucidate the molecular mechanism underlying the mortality and sterility in Drosophila melanogaster induced by erythritol feeding. It also provides an important theoretical basis for the application of erythritol as an environmentally friendly pesticide.


Subject(s)
Drosophila Proteins , Infertility , Animals , Female , Transcriptome , Drosophila melanogaster/genetics , Oviposition , alpha-Glucosidases , Gene Expression Profiling , Erythritol/pharmacology , Amylases , Drosophila Proteins/genetics
20.
Front Vet Sci ; 11: 1328293, 2024.
Article in English | MEDLINE | ID: mdl-38601913

ABSTRACT

Brucellosis is a worldwide extended zoonosis caused by pathogens of the genus Brucella. While most B. abortus, B. melitensis, and B. suis biovars grow slowly in complex media, they multiply intensely in livestock genitals and placenta indicating high metabolic capacities. Mutant analyses in vitro and in infection models emphasize that erythritol (abundant in placenta and genitals) is a preferred substrate of brucellae, and suggest hexoses, pentoses, and gluconeogenic substrates use in host cells. While Brucella sugar and erythritol catabolic pathways are known, growth on 3-4 carbon substrates persists in Fbp- and GlpX-deleted mutants, the canonical gluconeogenic fructose 1,6-bisphosphate (F1,6bP) bisphosphatases. Exploiting the prototrophic and fast-growing properties of B. suis biovar 5, we show that gluconeogenesis requires fructose-bisphosphate aldolase (Fba); the existence of a novel broad substrate bisphosphatase (Bbp) active on sedoheptulose 1,7-bisphosphate (S1,7bP), F1,6bP, and other phosphorylated substrates; that Brucella Fbp unexpectedly acts on S1,7bP and F1,6bP; and that, while active in B. abortus and B. melitensis, GlpX is disabled in B. suis biovar 5. Thus, two Fba-dependent reactions (dihydroxyacetone-phosphate + glyceraldehyde 3-phosphate ⇌ F1,6bP; and dihydroxyacetone-phosphate + erythrose 4-phosphate ⇌ S1,7bP) can, respectively, yield fructose 6-phosphate and sedoheptulose 7-phosphate for classical gluconeogenesis and the Pentose Phosphate Shunt (PPS), the latter reaction opening a new gluconeogenic route. Since erythritol generates the PPS-intermediate erythrose 4-phosphate, and the Fba/Fbp-Bbp route predicts sedoheptulose 7-phosphate generation from erythrose 4-phosphate, we re-examined the erythritol connections with PPS. Growth on erythritol required transaldolase or the Fba/Fbp-Bbp pathway, strongly suggesting that Fba/Fbp-Bbp works as a PPS entry for both erythritol and gluconeogenic substrates in Brucella. We propose that, by increasing erythritol channeling into PPS through these peculiar routes, brucellae proliferate in livestock genitals and placenta in the high numbers that cause abortion and infertility, and make brucellosis highly contagious. These findings could be the basis for developing attenuated brucellosis vaccines safer in pregnant animals.

SELECTION OF CITATIONS
SEARCH DETAIL