Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 367
Filter
1.
Heliyon ; 10(15): e35470, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170531

ABSTRACT

Resident physicians on long-term night shifts often face sleep deprivation, affecting the immune response, notably neutrophils, vital to innate defense mechanisms. Sleep-deprived residents exhibit altered neutrophil counts and reduced phagocytosis and NADPH oxidase activity, critical to combating infections. Our study focused on neutrophil extracellular traps (NETs), a defense process against pathogens not previously linked to sleep loss. Results revealed that sleep-deprived residents exhibited a 19.8 % reduction in NET formation compared to hospital workers with regular sleep patterns (P < 0.01). Additionally, key NETs proteins, Neutrophil Elastase and Myeloperoxidase, were less active in sleep-deprived individuals (1.53mU; P < 0.01 and 0.95U; P < 0.001 decrease, accordingly). Interestingly, the ability to form NETs resumed to normal levels three months post-residency among pediatric residents. The causal relationship between reduced NETs due to sleep deprivation and the increased susceptibility to infections, as well as its implications for infection severity, is a critical area for further investigation.

2.
Front Immunol ; 15: 1425251, 2024.
Article in English | MEDLINE | ID: mdl-39170617

ABSTRACT

Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.


Subject(s)
Colitis, Ulcerative , Extracellular Traps , Neutrophils , Extracellular Traps/immunology , Extracellular Traps/metabolism , Humans , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/therapy , Animals , Neutrophils/immunology , Neutrophils/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism
3.
Chin Med J Pulm Crit Care Med ; 2(1): 34-41, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39170960

ABSTRACT

Neutrophil extracellular traps (NETs), extrusions of intracellular DNA with attached granular material that exert an antibacterial effect through entangling, isolating, and immobilizing microorganisms, have been extensively studied in recent decades. The primary role of NETs is to entrap and facilitate the killing of bacteria, fungi, viruses, and parasites, preventing bacterial and fungal dissemination. NET formation has been described in many pulmonary diseases, including both infectious and non-infectious. NETs are considered a double-edged sword. As innate immune cells, neutrophils release NETs to kill pathogens and remove cellular debris. However, the deleterious effects of excessive NET release in lung disease are particularly important because NETs and by-products of NETosis can directly induce epithelial and endothelial cell death while simultaneously inducing inflammatory cytokine secretion and immune-mediated thrombosis. Thus, NET formation must be tightly regulated to preserve the anti-microbial capability of NETs while minimizing damage to the host. In this review, we summarized the recent updates on the mechanism of NETs formation and pathophysiology associated with excessive NETs, aiming to provide insights for research and treatment of pulmonary infectious diseases.

4.
Cancer Drug Resist ; 7: 28, 2024.
Article in English | MEDLINE | ID: mdl-39143953

ABSTRACT

Neutrophils are recognized active participants in inflammatory responses and are intricately linked to cancer progression. In response to inflammatory stimuli, neutrophils become activated, releasing neutrophils extracellular traps (NETs) for the capture and eradication of pathogens, a phenomenon termed NETosis. With a deeper understanding of NETs, there is growing evidence supporting their role in cancer progression and their involvement in conferring resistance to various cancer therapies, especially concerning tumor reactions to chemotherapy, radiation therapy (RT), and immunotherapy. This review summarizes the roles of NETs in the tumor microenvironment (TME) and their mechanisms of neutrophil involvement in the host defense. Additionally, it elucidates the mechanisms through which NETs promote tumor progression and their role in cancer treatment resistance, highlighting their potential as promising therapeutic targets in cancer treatment and their clinical applicability.

5.
J Thorac Dis ; 16(7): 4319-4328, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39144365

ABSTRACT

Background: Cardiopulmonary bypass (CPB) can trigger a systemic inflammatory response during the perioperative period, which may lead to the consumption of the contact system and the production of neutrophil extracellular traps (NETs). This study attempted to determine whether the formation of NETs and contact activation are a vivid occurrence during CPB and whether they are related to post-operative atrial fibrillation (AF) and survival. Methods: A prospective observational study was conducted in 97 patients who underwent aortic valve and/or aorta replacement surgery with CPB. Circulating markers of NETs [histone-DNA complex, cell-free double stranded DNA (dsDNA), neutrophil elastase] and the contact system [prekallikrein, high molecular weight kininogen (HMWK), activated factor XII (FXIIa)] were measured at four-time points: before surgery (T0), immediately after surgery (T1), 1 day after surgery (T2), and 3 days after surgery (T3). Results: Elevated levels of circulating NETs markers were observed across post-CPB time. Significantly elevated levels of histone-DNA complex and cell-free dsDNA measured T3 were detected in patients with post-operative AF compared to those without. In logistic regression analysis, levels of histone-DNA complex and cell-free dsDNA measured at T3 were significant markers of risk for occurrence of AF. The levels of cell-free dsDNA measured T2 were significantly higher in non-survivors than in survivors. The level of cell-free dsDNA showed significant prognostic value. Conclusions: NETs markers may be useful for the assessment of risk for post-operative AF and mortality. Conduct of additional research regarding the role of NETs as clinical markers and as a therapeutic target in CPB is anticipated.

6.
Int Immunopharmacol ; 141: 112805, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146778

ABSTRACT

During the inflammatory storm of sepsis, a significant quantity of neutrophil extracellular traps (NETs) are generated, which act as a double-edged sword and not only impede the invasion of foreign microorganisms but also exacerbate organ damage. This study provides evidence that NETs can cause damage to alveolar epithelial cells in vitro. The sepsis model developed in this study showed a significant increase in NETs in the bronchoalveolar lavage fluid (BALF). The development of NETs has been shown to increase the lung inflammatory response and aggravate injury to alveolar epithelial cells. Bay-117082, a well-known NF-κB suppressor, is used to modulate inflammation. This analysis revealed that Bay-117082 efficiently reduced total protein concentration, myeloperoxidase activity, and inflammatory cytokines in BALF. Moreover, Bay-117082 inhibited the formation of NETs, which in turn prevented the activation of the pore-forming protein gasdermin D (GSDMD). In summary, these results indicated that excessive NET production during sepsis exacerbated the onset and progression of acute lung injury (ALI). Therefore, Bay-117082 could serve as a novel therapeutic approach for ameliorating sepsis-associated ALI.

7.
Article in English | MEDLINE | ID: mdl-39176450

ABSTRACT

INTRODUCTION: The availability of cystic fibrosis transmembrane conductance regulator (CFTR) modulators opens the possibility of discontinuing some chronic pulmonary therapies to decrease cystic fibrosis (CF) treatment burden. However, CFTR modulators may not adequately address neutrophilic inflammation, which contributes to a self-perpetual cycle of viscous CF sputum, airway obstruction, inflammation, and lung function decline. AREAS COVERED: This review discusses the emerging role of neutrophil extracellular traps in CF and its role in CF sputum viscosity, airway obstruction, and inflammation, based on a literature search of PubMed (1990-present). We summarize clinical trials and real-world studies that support the efficacy of dornase alfa (Pulmozyme) in improving lung function and reducing pulmonary exacerbation in people with CF (PwCF), and we discuss the potential role of dornase alfa in reducing airway inflammation. We also examine the findings of short-term trials evaluating the discontinuation of mucoactive therapy in PwCF receiving CFTR modulators. EXPERT OPINION: Long-term studies are needed to assess the impact of discontinuing mucoactive therapy in PwCF who are clinically stable while receiving CFTR modulatory therapy. Treatment decisions should take into account the severity of underlying lung disease. People with advanced CF will likely require ongoing mucoactive therapy.

8.
Eur Heart J ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39165142

ABSTRACT

BACKGROUND AND AIMS: Heart failure (HF) is a leading cause of mortality worldwide and characterized by significant co-morbidities and dismal prognosis. Neutrophil extracellular traps (NETs) aggravate inflammation in various cardiovascular diseases; however, their function and mechanism of action in HF pathogenesis remain underexplored. This study aimed to investigate the involvement of a novel VWF-SLC44A2-NET axis in HF progression. METHODS: NET levels were examined in patients with HF and mouse models of transverse aortic constriction (TAC) HF. PAD4 knockout mice and NET inhibitors (GSK-484, DNase I, NEi) were used to evaluate the role of NETs in HF. RNA sequencing was used to investigate the downstream mechanisms. Recombinant human ADAMTS13 (rhADAMTS13), ADAMTS13, and SLC44A2 knockouts were used to identify novel upstream factors of NETs. RESULTS: Elevated NET levels were observed in patients with HF and TAC mouse models of HF. PAD4 knockout and NET inhibitors improved the cardiac function. Mechanistically, NETs induced mitochondrial dysfunction in cardiomyocytes, inhibiting mitochondrial biogenesis via the NE-TLR4-mediated suppression of PGC-1α. Furthermore, VWF/ADAMTS13 regulated NET formation via SLC44A2. Additionally, sacubitril/valsartan amplifies the cardioprotective effects of the VWF-SLC44A2-NET axis blockade. CONCLUSIONS: This study established the role of a novel VWF-SLC44A2-NET axis in regulating mitochondrial homeostasis and function, leading to cardiac apoptosis and contributing to HF pathogenesis. Targeting this axis may offer a potential therapeutic approach for HF treatment.

9.
Bull Exp Biol Med ; 177(2): 197-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39090470

ABSTRACT

Type 2 diabetes mellitus (T2DM) is accompanied by halogenative stress resulting from the excessive activation of neutrophils and neutrophilic myeloperoxidase (MPO) generating highly reactive hypochlorous acid (HOCl). HOCl in blood plasma modifies serum albumin (Cl-HSA). We studied the formation of neutrophil extracellular traps (NETs) in the whole blood and by isolated neutrophils under the action of Cl-HSA. It was found that Cl-HSA induces neutrophil priming and NETosis. MPO-containing as well as MPO-free NETs were found. These NETs with different composition can be a product of NETosis of one and the same neutrophil. NET formation in neutrophils with vacuolated cytoplasm was detected. In the presence of Cl-HSA, acceleration of NET degradation was observed. Accelerated NET degradation and neutrophil priming can be the factors contributing to the development of complications in T2DM.


Subject(s)
Extracellular Traps , Hypochlorous Acid , Neutrophils , Peroxidase , Hypochlorous Acid/metabolism , Hypochlorous Acid/pharmacology , Neutrophils/metabolism , Neutrophils/drug effects , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Humans , Peroxidase/metabolism , Diabetes Mellitus, Type 2/blood , Serum Albumin/metabolism , Male
10.
Autoimmun Rev ; 23(6): 103585, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094811

ABSTRACT

OBJECTIVES: This review aims to identify biological markers associated with the risk of recurrence of thrombotic and/or obstetric events in patients with antiphospholipid syndrome (APS). METHODS: A comprehensive review of literature was conducted to evaluate established and potential novel biological markers associated with thrombosis in APS. To this end, a PubMed literature search was conducted for the last twenty years using the following keywords or their combinations: thrombotic risk, recurrence of thrombosis, risk stratification, severity, predictive value. RESULTS: Previous studies showed that multiple aPL positivity correlates with an increased risk of thrombosis in APS. Moreover, the analysis of N-glycosylation of antiphospholipid antibodies (aPL) revealed that low levels of IgG sialylation, fucosylation or galactosylation increases the pro-inflammatory activity of aPL, predisposing to thrombosis. In addition, quantification of neutrophil extracellular traps (NETs) and antibodies directed against NETs (anti-NETs) in serum demonstrates promising prognostic utility in assessing APS severity. Oxidative stress plays a role in the pathogenicity of APS and paraoxonase 1 (PON1) activity emerges as a promising biomarker of thrombotic risk in APS. Furthermore, identification of novel antigenic targets involved in the pathophysiology of APS, such as lysobisphosphatidic acid (LBPA), had led to the discovery of unconventional aPL, antibodies directed against the LBPA (aLBPA), whose clinical value could make it possible to identify APS patients at high risk of thrombotic recurrence. CONCLUSION: The immunological profile of aPL, N-glycosylation of aPL, quantification of NETs and anti-NETs, analysis of biomarkers of oxidative stress and the discovery of aLBPA offer potential prognostic tools for risk stratification in APS patients.

11.
Clin Immunol ; 266: 110334, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098706

ABSTRACT

Historically, neutrophils have been primarily regarded as short-lived immune cells that act as initial responders to antibacterial immunity by swiftly neutralizing pathogens and facilitating the activation of adaptive immunity. However, recent evidence indicates that their roles are considerably more complex than previously recognized. Neutrophils comprise distinct subpopulations and can interact with various immune cells, release granular proteins, and form neutrophil extracellular traps. These functions are increasingly recognized as contributing factors to tissue damage in autoimmune diseases. This review comprehensively examines the physiological functions and heterogeneity of neutrophils, their interactions with other immune cells, and their significance in autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, antiphospholipid syndrome, antineutrophil cytoplasmic antibody-associated vasculitis, multiple sclerosis, and others. This review aims to provide a deeper understanding of the function of neutrophils in the development and progression of autoimmune disorders.


Subject(s)
Autoimmune Diseases , Neutrophils , Humans , Neutrophils/immunology , Autoimmune Diseases/immunology , Animals , Extracellular Traps/immunology
12.
Biomed Pharmacother ; 179: 117289, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151311

ABSTRACT

Cardiovascular diseases (CVDs) continue to pose a significant burden on global health, prominently contributing to morbidity and mortality rates worldwide. Recent years have witnessed an increasing recognition of the intricate involvement of neutrophil extracellular traps (NETs) in the pathology of diverse cardiovascular conditions. This review provides a comprehensive analysis of the multifaceted functions of NETs in cardiovascular diseases, shedding light on the impact on atherosclerosis, myocardial infarction, heart failure, myocarditis, atrial fibrillation, aortic stenosis, and the potential therapeutic avenues targeting NETs.

13.
Transl Oncol ; 49: 102098, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39153366

ABSTRACT

BACKGROUND: Doxorubicin and cisplatin are both first-line chemotherapeutics for osteosarcoma (OS) treatment. However, the efficacy of doxorubicin/cisplatin chemotherapy varies considerably. Thus, identifying an efficient diagnostic biomarker to distinguish patients with good and poor responses to doxorubicin/cisplatin chemotherapy is of paramount importance. METHODS: To predict the efficacy of doxorubicin/cisplatin chemotherapy, we analyzed the differentially expressed proteins in 37 resected OS samples, which were categorized into the primary group (PG), the recurrent group (RG) and the metastatic group (MG). The characteristics of the enriched differentially expressed proteins were assessed via GO and KEGG analyses. Protein‒protein interactions were identified to determine the relationships among the differentially expressed proteins. Receiver operating characteristic (ROC) curve analyses were performed to explore the clinical significance of the differentially expressed proteins. Parallel reaction monitoring (PRM) was used to validate the candidate proteins. Immunohistochemical (IHC) staining was performed to confirm the expression of cathepsin (CTSG) in patients with good and poor response to doxorubicin/cisplatin. RESULTS: A total of 9458 proteins were identified and quantified, among which 143 and 208 exhibited significant changes (|log2FC|>1, p < 0.05) in the RG and MG compared with the PG, respectively. GO and KEGG enrichment led to the identification of neutrophil extracellular traps (NETs). ROC curve analyses revealed 74 and 86 proteins with areas under the curve greater than 0.7 in the RG and MG, respectively. PRM validation revealed the statistical significance of CTSG, which is involved in NET formation, at the protein level in both the RG and MG. IHC staining of another cohort revealed that CTSG was prominently upregulated in the poor response group after treatment with doxorubicin/cisplatin. CONCLUSION: CTSG and its associated NETs are potential biomarkers with which the efficacy of doxorubicin/cisplatin chemotherapy could be predicted in OS patients.

14.
FEBS Lett ; 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155145

ABSTRACT

Acute liver failure (ALF) is an acute liver disease with a high mortality rate in clinical practice, characterized histologically by extensive hepatocellular necrosis and massive neutrophil infiltration. However, the role of these abnormally infiltrating neutrophils during ALF development is unclear. Here, in an ALF mouse model, metabolites were identified that promote the formation of neutrophil extracellular traps (NETs) in the liver, subsequently influencing macrophage differentiation and disease progression. ALF occurs with abnormalities in hepatic and intestinal metabolites. Abnormal metabolites (LTD4 and glutathione) can directly, or indirectly via reactive oxygen species, promote NET formation of infiltrating neutrophils, which subsequently regulate macrophages in a pro-inflammatory M1-like state, inducing an amplification of the destructive effects of inflammation. Together, this study provides new insights into the role of NETs in the pathogenesis of ALF.

15.
Skin Res Technol ; 30(8): e70008, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39167030

ABSTRACT

BACKGROUND: Neutrophil extracellular traps (NETs) are related to the prognosis of cancer patients. Nevertheless, the potential prognostic values of NETs in skin cutaneous melanoma (SKCM) remains largely unknown. MATERIALS AND METHODS: The NET-related gene signature was constructed by LASSO Cox regression analysis using the TCGA-SKCM cohort. The overall survival (OS) and immune status in SKCM patients between the high- and low-NET score (high-score, low-score) groups were explored. The scRNA-seq dataset GSE115978 was used to understand the role of NET score in SKCM at single cell resolution. RESULTS: A five NET genes-based signature (TLR2, CLEC6A, PDE4B, SLC22A4 and CYP4F3) was constructed as the NET-related prognostic model for SKCM. The OS of SKCM patients with low-score was better than that in patients with high-score. Additionally, NET score was negatively associated with infiltration of some immune cells (e.g. type I Macrophages, CD8-T cells, CD4-T cells). Moreover, patients with high-score had low stromal, immune and ESTIMATE scores. Furthermore, drug sensitivity analysis results showed that Lapatinib, Trametinib and Erlotinib may have better therapeutic advantages in patients with high-score. CONCLUSION: We established a NET-related five gene signature in SKCM and found that the NET-related signature may exhibit a good predictive ability for SKCM prognosis. The NET score may not only predict the survival outcome and drug sensitivity in SKCM, but also reflect the immune conditions of SKCM patients.


Subject(s)
Extracellular Traps , Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/mortality , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Prognosis , Male , Female , Middle Aged , Melanoma, Cutaneous Malignant , Aged , Neutrophils
16.
Int Immunopharmacol ; 141: 112923, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39137629

ABSTRACT

BACKGROUND: Exogenous inhibition of neutrophil extracellular traps (NETs) was believed to alleviate acute pancreatitis (AP). This study aimed to comprehensively explore the key biological behavior of NETs including timing and pathogenesis in AP by integrating of single cell RNA sequencing(scRNA-seq) and bulk RNA-seq. METHODS: Differentially expressed NETs-related genes and the hub genes of NETs were screened by bulk RNA-seq. ScRNA-seq was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in neutrophils. The mouse AP models were build to verify the timing of initiation of NETs and underlying pathogenesis of damage on pancreas acinar cells. RESULTS: Tlr4 and Ccl3 were screened for hub genes by bulk RNA-seq. The trajectory analysis of neutrophils showed that high expression of Ccl3, Cybb and Padi4 can be observed in the middle stage during AP. Macrophages might be essential in the biological behavior of neutrophils and NETs. Through animal models, we presented that extensive NETs structures were formed at mid-stage of inflammation, accompanied by more serious pancreas and lung damage. NETs might promote necroptosis and macrophage infiltration in AP, and the damage on pancreatic injury could be regulated by Tlr4 pathway. Ccl3 was considered to recruit neutrophils and promote NETs formation. CONCLUSION: The findings explored the underlying timing and pathogenesis of NETs in AP for the first time, which provided gene targets for further studies.

17.
Mol Nutr Food Res ; : e2400013, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138624

ABSTRACT

SCOPE: Neutrophils play a decisive role during the immediate defense against infections. However, as observed during rheumatoid arthritis, activated neutrophils can also cause tissue damage. Previous studies indicate that zinc supplementation may alter certain neutrophil functions. However, precise underlying mechanisms and possible effects of zinc deficiency remain incompletely understood. The objective of this study is to investigate the effects of changes in zinc status on formation of neutrophil extracellular traps (NETs) and other fundamental neutrophil functions. METHODS AND RESULTS: Interleukin (IL)-17 and tumor necrosis factor (TNF)-α are used to simulate the inflammatory environment observed in autoimmune diseases. The study analyzes the impact of the zinc status on NETs release, using a fluorescence plate reader, and on the expression of peptidylarginine deiminase 4 (PAD4), S100A8/A9, and certain cytokines by PCR and western blot. These results show that zinc supplementation significantly reduces NETs formation and downregulates PAD4 protein expression. Zinc supplementation results in increased protein expression of interleukin-1 receptor antagonist (IL-1RA) and IL-8 in stimulated cells. CONCLUSION: The results suggest that changes in extracellular zinc availability may influence the functions of neutrophils. Therefore, maintaining an appropriate zinc level is advisable for preserving innate immunity and to prevent hyper-activation of neutrophils.

18.
J Crohns Colitis ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126198

ABSTRACT

BACKGROUND AND AIMS: During early phases of inflammation, activated neutrophils extrude neutrophil extracellular traps (NETs) in a PAD4-dependent manner, aggravating tissue injury and remodelling. In this study, we investigated the potential pro-fibrotic properties and signalling of NETs in Crohn's disease (CD). METHODS: NETs and activated fibroblasts were labelled on resected ileum from CD patients by multiplex immunofluorescence staining. NETs-treated human primary intestinal fibroblasts were analysed by bulk RNA-sequencing to uncover cell signalling pathways, and by high-throughput imaging to assess collagen production and migratory activity. Consequentially, TLR2/NF-kB pathway was evaluated by transfection of CCD-18Co fibroblasts with NF-kB-luciferase reporter plasmid, incorporating C29 to block TLR2 signalling. A chronic DSS mouse model was used to define the specific role of PAD4 deletion in neutrophils (MRP8-Cre, Pad4fl/fl). RESULTS: Immunofluorescence showed spatial co-localisation of NETs and activated fibroblasts in ileal ulcerations of CD patients. Transcriptomic analysis revealed upregulation of pro-fibrotic genes and activation of TLR-signalling pathways in NETs-treated fibroblasts. NETs treatment induced fibroblast proliferation, diminished migratory capability, and increased collagen release. Transfection experiments indicated a substantial increase in NF-kB expression with NETs, whereas C29 led to decreased expression and release of collagen. In line, a significantly reduction in collagen content was observed in the colon of MRP8-Cre, Pad4fl/fl mice subjected to chronic DSS colitis. CONCLUSIONS: NETs potentially serve as an initial stimulus for pathological activation of fibroblasts within the intestine via the TLR2/NF-kB pathway. Given their early involvement in inflammation, inhibition of PAD4 might offer a strategy to modulate both inflammation and fibrogenesis in CD.

19.
Int J Mol Sci ; 25(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39126091

ABSTRACT

The innate immune system, composed of neutrophils, basophils, eosinophils, myeloid-derived suppressor cells (MDSCs), macrophages, dendritic cells (DCs), mast cells (MCs), and innate lymphoid cells (ILCs), is the first line of defense. Growing evidence demonstrates the crucial role of innate immunity in tumor initiation and progression. Several studies support the idea that innate immunity, through the release of pro- and/or anti-inflammatory cytokines and tumor growth factors, plays a significant role in the pathogenesis, progression, and prognosis of cutaneous malignant melanoma (MM). Cutaneous melanoma is the most common skin cancer, with an incidence that rapidly increased in recent decades. Melanoma is a highly immunogenic tumor, due to its high mutational burden. The metastatic form retains a high mortality. The advent of immunotherapy revolutionized the therapeutic approach to this tumor and significantly ameliorated the patients' clinical outcome. In this review, we will recapitulate the multiple roles of innate immune cells in melanoma and the related implications for immunotherapy.


Subject(s)
Immunity, Innate , Immunotherapy , Melanoma , Humans , Melanoma/therapy , Melanoma/immunology , Melanoma/pathology , Immunotherapy/methods , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Skin Neoplasms/pathology , Animals , Dendritic Cells/immunology , Melanoma, Cutaneous Malignant , Mast Cells/immunology
20.
Phytomedicine ; 133: 155926, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39128302

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a devastating condition caused by sepsis, pneumonia, trauma, and more recently, COVID-19. SH003, an herbal formula consisted of Astragalus membranaceus, Angelica gigas and Trichosanthes kirilowii, is known for its effects on cancer and immunoregulation. HYPOTHESIS/PURPOSE: Previous studies show SH003 exerts a promising anti-inflammatory effect. This study investigates the effect of modified SH003 on ALI using in silico, in vivo, and in vitro models. STUDY DESIGN AND METHODS: We performed in silico-based analysis of SH003 on ALI-related pathways. C57BL/6 mice were intraperitoneally subjected to lipopolysaccharide (LPS) to induce septic ALI, followed by oral administration of SH003 for 2 weeks. Dexamethasone was used as the positive control. Human peripheral blood-derived polymorphonuclear neutrophils (PMN) were used to investigate the effect and mechanisms of SH003 on neutrophil extracellular trap (NET) formation. RESULTS: Network pharmacology analysis suggested SH003 regulates lung inflammation by modulating NET formation. SH003 significantly reduced mortality in sepsis in vivo by inhibiting local and systemic inflammation, likely via nuclear factor kappa B and mitogen-activated protein kinase pathways-mediated inflammasome suppression. SH003 also decreased NET-related markers in lung tissues and inhibited LPS- and phorbol myristate acetate-induced NET formation in PMN. Cytometry time-of-flight analysis confirmed regulation of NETosis-related pathways by SH003. CONCLUSION: SH003 effectively inhibits excessive immune responses in the lung by suppressing inflammasome activation and NET formation. These findings suggest SH003 as a potential therapeutic agent for septic ALI.

SELECTION OF CITATIONS
SEARCH DETAIL