Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 11: 866, 2020.
Article in English | MEDLINE | ID: mdl-32636866

ABSTRACT

Three North American Vitis species (V. riparia, V. berlandieri, V. rupestris) became widely used in rootstock breeding programs following the expansion of North American pests and diseases introduced in vineyards of the world during the 19th century. When they escape, they become feral in the most dynamic parts of Mediterranean floodplains. To better understand this ongoing process, we studied the ecology of Vitis species in their native sympatric range. We analyzed in deep 61 plots of 710 m2 containing Vitaceae species along 216 km of the Buffalo River and adjacent plateaus (Arkansas, United States). We investigated the populations structure and genetics of the Vitis complex (i.e., possible hybrids and the Vitis species) and the sharing of habitats with other Vitaceae (Muscadinia rotundifolia and Parthenocissus quinquefolia). Vitaceae share space according to their life strategies and microhabitat along ecological gradients. The plateau niche seems optimal for V. berlandieri and V. aestivalis. V. berlandieri is also found in alluvial zones. The most erosive parts of the river are colonized by V. rupestris, whereas the first terraces include most of the M. rotundifolia populations. Vitis riparia and Parthenocissus live in the largest range of forest habitats, from plateaus to alluvial forests, and from the forest floor to the canopy, with the highest densities along the river. Interestingly, natural hybridization can occur, but establishment success is rare and limited to alluvial forests. In their native range, these populations are controlled by biotic and abiotic conditions. In Europe, the biotic relations among species are different. Our study shows that V. riparia and its hybrids could be the best candidates for a large scale invasion.

2.
New Phytol ; 224(2): 550-551, 2019 10.
Article in English | MEDLINE | ID: mdl-31545886
3.
Pest Manag Sci ; 74(6): 1404-1415, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29205860

ABSTRACT

BACKGROUND: Weed evolution from crops involves changes in key traits, but it is unclear how genetic and phenotypic variation contribute to weed diversification and productivity. Weedy rice is a conspecific weed of rice (Oryza sativa) worldwide. We used principal component analysis and hierarchical clustering to understand how morphologically and evolutionarily distinct US weedy rice populations persist in rice fields in different locations under contrasting management regimes. Further, we used a representative subset of 15 sequence-tagged site fragments of expressed genes from global Oryza to assess genome-wide sequence variation among populations. RESULTS: Crop hull color and crop-overlapping maturity dates plus awns, seed (panicle) shattering (> 50%), pigmented pericarp and stature variation (30.2% of total phenotypic variance) characterize genetically less diverse California weedy rice. By contrast, wild-like hull color, seed shattering (> 50%) and stature differences (55.8% of total phenotypic variance) typify genetically diverse weedy rice ecotypes in Arkansas. CONCLUSION: Recent de-domestication of weedy species - such as in California weedy rice - can involve trait combinations indistinguishable from the crop. This underscores the need for strict seed certification with genetic monitoring and proactive field inspection to prevent proliferation of weedy plant types. In established populations, tillage practice may affect weed diversity and persistence over time. © 2017 Society of Chemical Industry.


Subject(s)
Biological Evolution , Genetic Variation , Oryza/anatomy & histology , Oryza/genetics , Phenotype , Plant Weeds/anatomy & histology , Plant Weeds/genetics , Arkansas , California , Cluster Analysis , Evolution, Molecular , Genes, Plant/genetics , Principal Component Analysis , Weed Control/methods
4.
Breed Sci ; 65(3): 265-75, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26175624

ABSTRACT

Genetically modified, herbicide-tolerant (GMHT) Brassica napus plants originating from seed spill have recently been found along roadsides leading from Japanese ports that unload oilseed rape. Such introductions have potential biodiversity effects (as defined by the Cartagena Protocol): these include replacement of native elements in the biota through competitive suppression or hybridization. We conducted surveys in the period 2006-2011 to assess such threats. We examined shifts in the population distribution and occurrence of GMHT plants in 1,029 volunteer introduced assemblages of B. napus, 1,169 of B. juncea, and 184 of B. rapa around 12 ports. GMHT B. napus was found around 10 of 12 ports, but its proportion in the populations varied greatly by year and location. Over the survey period, the distributions of a pure non-GMHT population around Tobata and a pure GMHT population around Hakata increased significantly. However, there was no common trend of population expansion or contraction around the 12 ports. Furthermore, we found no herbicide tolerant B. juncea and B. rapa plants derived from crosses with GMHT B. napus. Therefore, GMHT B. napus is not invading native vegetation surrounding its populations and not likely to cross with congeners in Japanese environment.

SELECTION OF CITATIONS
SEARCH DETAIL