Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1420183, 2024.
Article in English | MEDLINE | ID: mdl-39175618

ABSTRACT

Introduction: Parkinson's disease (PD) presents a significant challenge in medical science, as current treatments are limited to symptom management and often carry significant side effects. Our study introduces an innovative approach to evaluate the effects of gdnf overexpression mediated by CRISPRa in an in vitro model of Parkinson's disease. The expression of gdnf can have neuroprotective effects, being related to the modulation of neuroinflammation and pathways associated with cell survival, differentiation, and growth. Methods: We have developed a targeted delivery system using a magnetite nanostructured vehicle for the efficient transport of genetic material. This system has resulted in a substantial increase, up to 200-fold) in gdnf expression in an In vitro model of Parkinson's disease using a mixed primary culture of astrocytes, neurons, and microglia. Results and Discussion: The delivery system exhibits significant endosomal escape of more than 56%, crucial for the effective delivery and activation of the genetic material within cells. The increased gdnf expression correlates with a notable reduction in MAO-B complex activity, reaching basal values of 14.8 µU/µg of protein, and a reduction in reactive oxygen species. Additionally, there is up to a 34.6% increase in cell viability in an In vitro Parkinson's disease model treated with the neurotoxin MPTP. Our study shows that increasing gdnf expression can remediate some of the cellular symptoms associated with Parkinson's disease in an in vitro model of the disease using a novel nanostructured delivery system.

2.
Plant Physiol ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140753

ABSTRACT

Mitogen-activated protein kinase kinases (MAPKKs) play a critical role in the mitogen-activated protein kinase (MAPK) signaling pathway, transducing external stimuli into intracellular responses and enabling plant adaptation to environmental challenges. Most research has focused on the model plant Arabidopsis (Arabidopsis thaliana). The systematic analysis and characterization of MAPKK genes across different plant species, particularly in cotton (Gossypium hirsutum), are somewhat limited. Here, we identified MAPKK family members from 66 different species, which clustered into 5 different sub-groups, and MAPKKs from four cotton species clustered together. Through further bioinformatic and expression analysis, GhMAPKK5 was identified as the most responsive MAPKK member to salt and drought stress among the 23 MAPKKs identified in Gossypium hirsutum. Silencing GhMAPKK5 in cotton through virus-induced gene silencing (VIGS) led to quicker wilting under salt and drought conditions, while overexpressing GhMAPKK5 in Arabidopsis enhanced root growth and seed germination under these stresses, demonstrating GhMAPKK5's positive role in stress tolerance. Transcriptomics and Yeast-Two-Hybrid assays revealed a MAPK cascade signal module comprising GhMEKK (Mitogen-activated protein kinase kinase kinases)3/8/31-GhMAPKK5-GhMAPK11/23. This signaling cascade may play a role in managing drought and salt stress by regulating transcription factor genes, such as WRKYs, which are involved in the biosynthesis and transport pathways of ABA, proline, and RALF. This study is highly important for further understanding the regulatory mechanism of MAPKK in cotton, contributing to its stress tolerance and offering potential in targets for genetic enhancement.

3.
Food Chem X ; 23: 101653, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39108626

ABSTRACT

The luxS/AI-2 quorum sensing (QS) system of Streptococcus thermophilus regulates strain acid tolerance, yet its impact on milk fermentation remains unclear. This study aimed to elucidate the mechanism of luxS and pfs gene overexpression in the luxS/AI-2 system of S. thermophilus ABT-T on fermented milk quality using metabolomics. Results showed that pfs gene overexpression had a greater impact on milk quality than the wild-type strain or luxS gene overexpression strain. Overexpression of the pfs gene significantly enhanced AI-2 secretion, reducing fermented milk pH, increasing acidity, improving fermented milk protein hydrolysis, and altering texture and water-holding capacity. Nineteen volatile flavor compounds were identified, with decreased ketone compounds due to the pfs gene overexpression. KEGG analysis suggested significant alterations in amino acid metabolism pathways due to the pfs gene overexpression. This study provides insights into the role of QS in fermented foods.

4.
Plant Cell Rep ; 43(8): 195, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008098

ABSTRACT

KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.


Subject(s)
Gene Expression Regulation, Plant , Hydrogen Peroxide , Magnesium , Plant Proteins , Seedlings , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/drug effects , Hydrogen Peroxide/metabolism , Seedlings/genetics , Seedlings/drug effects , Seedlings/metabolism , Gene Expression Regulation, Plant/drug effects , Magnesium/metabolism , Magnesium/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Starch/metabolism , Gene Expression Profiling , Plant Shoots/metabolism , Plant Shoots/genetics , Plant Shoots/drug effects , Plants, Genetically Modified
5.
J Glob Antimicrob Resist ; 38: 231-235, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009134

ABSTRACT

OBJECTIVES: A Salmonella enterica subsp. diarizonae (hereafter S. diarizonae) clinical strain S499 demonstrated unique genomic features. The strain S499 was treated with polymyxin B in vitro to investigate the mechanism of resistance. METHODS: S499 was treated with polymyxin B by increasing concentration gradually to obtain a resistant mutant S499V. Whole genomes of the two strains were sequenced using Illumina HiSeq X-10 and PacBio RS II platforms. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to compare the gene expression. RESULTS: The chromosome of strain S499 contained a 40-kb DNA region that was replicated after treatment with polymyxin B and generated a triple tandem DNA repeat region in the chromosome of mutant strain S499V. This repeat region in S499V was flanked by IS1 and contained pmrD, pmrG, and arnBCADTEF operon. In comparison to the homologous 40-kb DNA region of strain S499, a few genes in the repeat DNA region of strain S499V contained truncating mutations that generate two open reading frames (ORFs). The expression of pmrD, pmrG, and arnT was significantly upregulated in S499V. CONCLUSION: The duplication and overexpression of pmrD, pmrG, and arnT operon may be responsible for the polymyxin B resistance of mutant strain S499V.

6.
Genes (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38927629

ABSTRACT

MYB transcription factors (TFs) play vital roles in plant growth, development, and response to adversity. Although the MYB gene family has been studied in many plant species, there is still little known about the function of R2R3 MYB TFs in sweet potato in response to abiotic stresses. In this study, an R2R3 MYB gene, IbMYB330 was isolated from sweet potato (Ipomoea batatas). IbMYB330 was ectopically expressed in tobacco and the functional characterization was performed by overexpression in transgenic plants. The IbMYB330 protein has a 268 amino acid sequence and contains two highly conserved MYB domains. The molecular weight and isoelectric point of IbMYB330 are 29.24 kD and 9.12, respectively. The expression of IbMYB330 in sweet potato is tissue-specific, and levels in the root were significantly higher than that in the leaf and stem. It showed that the expression of IbMYB330 was strongly induced by PEG-6000, NaCl, and H2O2. Ectopic expression of IbMYB330 led to increased transcript levels of stress-related genes such as SOD, POD, APX, and P5CS. Moreover, compared to the wild-type (WT), transgenic tobacco overexpression of IbMYB330 enhanced the tolerance to drought and salt stress treatment as CAT activity, POD activity, proline content, and protein content in transgenic tobacco had increased, while MDA content had decreased. Taken together, our study demonstrated that IbMYB330 plays a role in enhancing the resistance of sweet potato to stresses. These findings lay the groundwork for future research on the R2R3-MYB genes of sweet potato and indicates that IbMYB330 may be a candidate gene for improving abiotic stress tolerance in crops.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Ipomoea batatas , Nicotiana , Plant Proteins , Plants, Genetically Modified , Transcription Factors , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Tolerance/genetics , Stress, Physiological/genetics , Salt Stress/genetics
7.
Biochemistry (Mosc) ; 89(5): 853-861, 2024 May.
Article in English | MEDLINE | ID: mdl-38880646

ABSTRACT

Tumor necrosis factor (TNF) is one of many cytokines - protein molecules responsible for communication between the cells of immune system. TNF was discovered and given its grand name because of its striking antitumor effects in experimental systems, but its main physiological functions in the context of whole organism turned out to be completely unrelated to protection against tumors. This short review discusses "man-made" mouse models generated by early genome-editing technologies, which enabled us to establish true functions of TNF in health and certain diseases as well as to unravel potential strategies for improving therapy of TNF-dependent diseases.


Subject(s)
Tumor Necrosis Factor-alpha , Animals , Humans , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Mice , Gene Editing/methods , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/therapy
8.
Mol Biol Rep ; 51(1): 731, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869677

ABSTRACT

BACKGROUND: Chitinase (Chi) is a pathogenesis-related protein, also reported to play an important role in plant responses to abiotic stress. However, its role in response to abiotic stress in barley is still unclear. RESULTS: In this study, a total of 61 Chi gene family members were identified from the whole genome of wild barley EC_S1. Phylogenetic analysis suggested that these family genes were divided into five groups. Among these genes, four pairs of collinearity genes were discovered. Besides, abundant cis-regulatory elements, including drought response element and abscisic acid response element were identified in the promoter regions of HvChi gene family members. The expression profiles revealed that most HvChi family members were significantly up-regulated under drought stress, which was also validated by RT-qPCR measurements. To further explore the role of Chi under drought stress, HvChi22 was overexpressed in Arabidopsis. Compared to wild-type plants, overexpression of HvChi22 enhanced drought tolerance by increasing the activity of oxidative protective enzymes, which caused less MDA accumulation. CONCLUSION: Our study improved the understanding of the Chi gene family under drought stress in barley, and provided a theoretical basis for crop improvement strategies to address the challenges posed by changing environmental conditions.


Subject(s)
Chitinases , Droughts , Gene Expression Regulation, Plant , Hordeum , Multigene Family , Phylogeny , Plant Proteins , Stress, Physiological , Hordeum/genetics , Chitinases/genetics , Chitinases/metabolism , Gene Expression Regulation, Plant/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Promoter Regions, Genetic/genetics , Plants, Genetically Modified/genetics , Gene Expression Profiling/methods , Drought Resistance
9.
Dent Mater ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38942710

ABSTRACT

OBJECTIVE: Streptococcus mutans (S. mutans) is a major contributor to dental caries, with its ability to synthesize extracellular polysaccharides (EPS) and biofilms. The gcrR gene is a regulator of EPS synthesis and biofilm formation. The objectives of this study were to investigate a novel strategy of combining gcrR gene over-expression with dimethylaminohexadecyl methacrylate (DMAHDM), and to determine their in vivo efficacy in reducing caries in rats for the first time. METHODS: Two types of S. mutans were tested: Parent S. mutans; and gcrR gene over-expressed S. mutans (gcrR OE S. mutans). Bacterial minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were measured with DMAHDM and chlorhexidine (CHX). Biofilm biomass, polysaccharide, lactic acid production, live/dead staining, colony-forming units (CFUs), and metabolic activity (MTT) were evaluated. A Sprague-Dawley rat model was used with parent S. mutans and gcrR OE S. mutans colonization to determine caries-inhibition in vivo. RESULTS: Drug-susceptibility of gcrR OE S. mutans to DMAHDM or CHX was 2-fold higher than that of parent S. mutans. DMAHDM reduced biofilm CFU by 3-4 logs. Importantly, the combined gcrR OE S. mutans+ DMAHDM dual strategy reduced biofilm CFU by 5 logs. In the rat model, the parent S. mutans group had a higher cariogenicity in dentinal (Dm) and extensive dentinal (Dx) regions. The DMAHDM + gcrR OE group reduced the Dm and Dx caries to only 20 % and 0 %, those of parent S. mutans + PBS control group (p < 0.05). The total caries severity of gcrR OE + DMAHDM group was decreased to 51 % that of parent S. mutans control (p < 0.05). SIGNIFICANCE: The strategy of combining S. mutans gcrR over-expression with antibacterial monomer reducing biofilm acids by 97 %, and reduced in vivo total caries in rats by 48 %. The gcrR over-expression + DMAHDM strategy is promising for a wide range of dental applications to inhibit caries and protect tooth structures.

10.
Front Oncol ; 14: 1340909, 2024.
Article in English | MEDLINE | ID: mdl-38720804

ABSTRACT

Background: Molecular testing plays a pivotal role in monitoring measurable residual disease (MRD) in acute myeloid leukemia (AML), aiding in the refinement of risk stratification and treatment guidance. Wilms tumor gene 1 (WT1) is frequently upregulated in pediatric AML and serves as a potential molecular marker for MRD. This study aimed to evaluate WT1 predictive value as an MRD marker and its impact on disease prognosis. Methods: Quantification of WT1 expression levels was analyzed using the standardized European Leukemia Network real-time quantitative polymerase chain reaction assay (qRT-PCR) among a cohort of 146 pediatric AML patients. Post-induction I and intensification I, MRD response by WT1 was assessed. Patients achieving a ≥2 log reduction in WT1MRD were categorized as good responders, while those failing to reach this threshold were classified as poor responders. Results: At diagnosis, WT1 overexpression was observed in 112 out of 146 (76.7%) patients. Significantly high levels were found in patients with M4- FAB subtype (p=0.018) and core binding fusion transcript (CBF) (RUNX1::RUNX1T1, p=0.018, CBFB::MYH11, p=0.016). Following induction treatment, good responders exhibited a reduced risk of relapse (2-year cumulative incidence of relapse [CIR] 7.9% vs 33.2%, p=0.008). Conversely, poor responders' post-intensification I showed significantly lower overall survival (OS) (51% vs 93.2%, p<0.001), event-free survival (EFS) (33.3% vs 82.6%, p<0.001), and higher CIR (66.6% vs 10.6%, p<0.001) at 24 months compared to good responders. Even after adjusting for potential confounders, it remained an independent adverse prognostic factor for OS (p=0.04) and EFS (p=0.008). High concordance rates between WT1-based MRD response and molecular MRD were observed in CBF patients. Furthermore, failure to achieve either a 3-log reduction by RT-PCR or a 2-log reduction by WT1 indicated a high risk of relapse. Combining MFC-based and WT1-based MRD results among the intermediate-risk group identified patients with unfavorable prognosis (positive predictive value [PPV] 100%, negative predictive value [NPV] 85%, and accuracy 87.5%). Conclusion: WT1MRD response post-intensification I serves as an independent prognostic factor for survival in pediatric AML. Integration of WT1 and MFC-based MRD results enhances the reliability of MRD-based prognostic stratification, particularly in patients lacking specific leukemic markers, thereby influencing treatment strategies.

11.
Front Plant Sci ; 15: 1372477, 2024.
Article in English | MEDLINE | ID: mdl-38638349

ABSTRACT

Introduction: Seed coat color is a significant agronomic trait in horticultural crops such as Brassica rapa which is characterized by brown or yellow seed coat coloration. Previous Brassica rapa studies have shown that BrTTG1 is responsible for seed coat proanthocyanidin formation, which is dependent on the MYB-bHLH-WD40 complex, whereas some studies have reported that TRANSPARENT TESTA GLABRA 1 (TTG1) directly interacts with the structural gene promoters of the flavonoid pathway. Methods: Herein, the brown-seeded inbred B147 and ttg1 yellow-seeded inbred B80 mutants were used as plant materials for gene expression level analysis, gene promoter clone and transient overexpression. Results: The analysis identified eleven structural genes involved in the flavonoid biosynthesis pathway, which are potentially responsible for BrTTG1- dependent seed coat proanthocyanidin formation. The promoters of these genes were cloned and cis-acting elements were identified. Yeast one-hybrid and dual-luciferase assays confirmed that BrTTG1 directly and independently interacted with proCHS-Bra008792, proDFR-Bra027457, proTT12-Bra003361, proTT19-Bra008570, proTT19-Bra023602 and proAHA10-Bra016610. A TTG1-binding motif (RTWWGTRGM) was also identified. Overexpression of TTG1 in the yellow-seed B. rapa inbred induced proanthocyanidin accumulation by increasing the expression levels of related genes. Discussion: Our study unveiled, for the first time, the direct interaction between TTG1 and the promoters of the flavonoid biosynthesis pathway structural genes and glutathione S-transferases in Brassica rapa. Additionally, we have identified a novel TTG1-binding motif, providing a basis for further exploration into the function of TTG1 and the accumulation of proanthocyanidins in seed coats.

12.
Methods Mol Biol ; 2781: 93-103, 2024.
Article in English | MEDLINE | ID: mdl-38502446

ABSTRACT

The placenta is a vital organ that regulates nutrient supply to the developing embryo during gestation. In mice, the placenta is composed of trophoblast lineage and mesodermal derivatives, which merge through the chorioallantoic fusion process in a critical event for the progression of placenta development. The trophoblast lineage is derived from self-renewing, multipotent cells known as mouse trophoblast stem cells (mTSCs). These cells are a valuable tool that allows scientists to comprehend the signals regulating major placental cell types' self-renewal and differentiation capacity. Recent advances in CRISPR-Cas9 genome editing applied in mTSCs have provided novel insights into the molecular networks involved in placentation. Here, we present a comprehensive CRISPR activation (CRISPRa) protocol based on the CRISPR/gRNA-directed synergistic activation mediator (SAM) method to overexpress specific target genes in mTSCs.


Subject(s)
Placenta , RNA, Guide, CRISPR-Cas Systems , Pregnancy , Female , Animals , Mice , Trophoblasts , Placentation/physiology , Cell Differentiation/genetics , Stem Cells
13.
Bioresour Technol ; 399: 130604, 2024 May.
Article in English | MEDLINE | ID: mdl-38499206

ABSTRACT

The biofilm of an engineered strain is limited by slow growth and low yield, resulting in an unsatisfactory ability to resist external stress and promote catalytic efficiency. Here, biofilms used as robust living catalysts were manipulated through dual functionalized gene regulation and carrier modification strategies. The results showed that gene overexpression regulates the autoinducer-2 activity, extracellular polymeric substance content and colony behavior of Escherichia coli, and the biofilm yield of csgD overexpressed strains increased by 79.35 % compared to that of the wild type strains (p < 0.05). In addition, the hydrophilicity of polyurethane fibres modified with potassium dichromate increased significantly, and biofilm adhesion increased by 105.80 %. Finally, the isoquercitrin yield in the catalytic reaction of the biofilm reinforced by the csgD overexpression strain and the modified carrier was 247.85 % higher than that of the untreated group. Overall, this study has developed engineered strains biofilm with special functions, providing possibilities for catalytic applications.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/genetics , Extracellular Polymeric Substance Matrix/metabolism , Gene Expression Regulation, Bacterial , Biofilms , Escherichia coli/genetics , Bacterial Proteins/metabolism
14.
Plant Sci ; 341: 112012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311248

ABSTRACT

Cold stress is one of the most destructive abiotic stresses limiting plant growth and development. CBF (C-repeat binding factor) transcription factors and their roles in cold response have been identified in Arabidopsis as well as several other plant species. However, the biological functions and related molecular mechanisms of CBFs in birch (Betula platyphylla Suk.) remain undetermined. In this study, five cold-responsive BpCBF genes, BpCBF1, BpCBF2, BpCBF7, BpCBF10 and BpCBF12 were cloned. Via protoplast transformation, BpCBF7 was found to be localized in nucleus. The result of yeast one hybrid assay validated the binding of BpCBF7 to the CRT/DRE (C-repeat/dehydration responsive element) elements in the promoter of BpERF1.1 gene. By overexpressing and repressing BpCBFs in birch plants, it was proven that BpCBFs play positive roles in the cold tolerance. At the metabolic level, BpCBFs OE lines had lower ROS accumulation, as well as higher activities of antioxidant enzymes (SOD, POD and CAT) and higher accumulation of protective substances (soluble sugar, soluble protein and proline). Via yeast one hybrid and co-transformation of effector and reporter vectors assay, it was proven that BpCBF7 can regulate the expression of BpERF5 and BpZAT10 genes by directly binding to their promoters. An interacting protein of BpCBF7, BpWRKY17, was identified by yeast two hybrid library sequencing and the interaction was validated with in vivo methods. These results indicates that BpCBFs can increase the cold tolerance of birch plants, partly by gene regulation and protein interaction. This study provides a reference for the research on CBF transcription factors and genetic improvement of forest trees upon abiotic stresses.


Subject(s)
Arabidopsis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Betula/physiology , Cold-Shock Response/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Cold Temperature , Plants, Genetically Modified/metabolism
15.
Plants (Basel) ; 13(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38337892

ABSTRACT

The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.

16.
Synth Syst Biotechnol ; 9(1): 43-54, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234413

ABSTRACT

Gut microbes are closely related with human health, but remain much to learn. Clostridium symbiosum is a conditionally pathogenic human gut bacterium and regarded as a potential biomarker for early diagnosis of intestinal tumors. However, the absence of an efficient toolbox that allows diverse genetic manipulations of this bacterium limits its in-depth studies. Here, we obtained the complete genome sequence of C. symbiosum ATCC 14940, a representative strain of C. symbiosum. On this basis, we further developed a series of genetic manipulation methods for this bacterium. Firstly, following the identification of a functional replicon pBP1 in C. symbiosum ATCC 14940, a highly efficient conjugative DNA transfer method was established, enabling the rapid introduction of exogenous plasmids into cells. Next, we constructed a dual-plasmid CRISPR/Cas12a system for genome editing in this bacterium, reaching over 60 % repression for most of the chosen genes as well as efficient deletion (>90 %) of three target genes. Finally, this toolbox was used for the identification of crucial functional genes, involving growth, synthesis of important metabolites, and virulence of C. symbiosum ATCC 14940. Our work has effectively established and optimized genome editing methods in intestinal C. symbiosum, thereby providing strong support for further basic and application research in this bacterium.

17.
Front Plant Sci ; 14: 1221519, 2023.
Article in English | MEDLINE | ID: mdl-38250442

ABSTRACT

Introduction: Zinc finger protein 3 (ZFP3) and closely related C2H2 zinc finger proteins have been identified as regulators of abscisic acid signals and photomorphogenic responses during germination. Whether ZFP3 and related ZFP factors regulate plant development is, however, not known. Results: ZFP3 overexpression reduced plant growth, limited cell expansion in leaves, and compromised root hair development. The T-DNA insertion zfp3 mutant and transgenic lines with silenced ZFP1, ZFP3, ZFP4, and ZFP7 genes were similar to wild-type plants or had only minor differences in plant growth and morphology, probably due to functional redundancy. RNAseq transcript profiling identified ZFP3-controlled gene sets, including targets of ABA signaling with reduced transcript abundance. The largest gene set that was downregulated by ZFP3 encoded regulatory and structural proteins in cell wall biogenesis, cell differentiation, and root hair formation. Chromatin immunoprecipitation confirmed ZFP3 binding to several target promoters. Discussion: Our results suggest that ZFP3 and related ZnF proteins can modulate cellular differentiation and plant vegetative development by regulating the expression of genes implicated in cell wall biogenesis.

18.
J Fungi (Basel) ; 10(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38248923

ABSTRACT

Pleurotus ostreatus is a typical tetrapolar heterologous edible mushroom, and its growth and development regulatory mechanism has become a research hotspot in recent years. The MAC1 protein is a transcription factor that perceives copper and can regulate the expression of multiple genes, thereby affecting the growth and development of organisms. However, its function in edible mushrooms is still unknown. In this study, two transcription factor genes, PoMCA1a and PoMAC1b, were identified. Afterwards, PoMAC1 overexpression (OE) and RNA interference (RNAi) strains were constructed to further explore gene function. The results showed that the PoMAC1 mutation had no significant effect on the growth rate of mycelia. Further research has shown that OE-PoMAC1a strains and RNAi-PoMAC1b strains exhibit strong tolerance under 32 °C heat stress. However, under 40 °C heat stress, the OE of PoMAC1a and PoMAC1b promoted the recovery of mycelial growth after heat stress. Second, the OE of PoMAC1a can promote the rapid formation of primordia and shorten the cultivation cycle. In summary, this study indicated that there are functional differences between PoMAC1a and PoMAC1b under different heat stresses during the vegetative growth stage, and PoMAC1a has a positive regulatory effect on the formation of primordia during the reproductive growth stage.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-928687

ABSTRACT

OBJECTIVE@#To analyze the characteristics of gene mutation and overexpression in newly diagnosed multiple myeloma (NDMM) patients.@*METHODS@#Bone marrow cells from 208 NDMM patients were collected and analyzed. The gene mutation of 28 genes and overexpression of 6 genes was detected by DNA sequencing. Chromosome structure abnormalities were detected by fluorescence in situ hybridization (FISH).@*RESULTS@#Gene mutations were detected in 61 (29.33%) NDMM patients. Some mutations occurred in 5 or more cases, such as NRAS, PRDM1, FAM46C, MYC, CCND1, LTB, DIS3, KRAS, and CRBN. Overexpression of six genes (CCND1, CCND3, BCL-2, CCND2, FGFR3, and MYC) were detected in 83 (39.9%) patients, and cell cycle regulation gene was the most common. Single nucleotide polymorphisms (SNP) changes were detected in 169 (81.25%) patients, the TP53 P72R gene SNP (70.17%) was the most common. Abnormality in chromosome structure was correlated to gene overexpression. Compared to the patients with normal chromosome structure, patients with 14q32 deletion showed higher proportion of CCND1 overexpression. Similarly, patients with 13q14 deletion showed higher proportion of FGFR3 overexpression, whereas patients with 1q21 amplification showed higher proportion of CCND2, BCL-2 and FGFR3 overexpression.@*CONCLUSION@#There are multiple gene mutations and overexpression in NDMM. However, there is no dominated single mutation or overexpression of genes. The most common gene mutations are those in the RAS/MAPK pathway and the genes of cyclin family CCND are overexpression.


Subject(s)
Humans , Chromosome Aberrations , In Situ Hybridization, Fluorescence , Multiple Myeloma/genetics , Mutation
20.
Acta Pharmaceutica Sinica ; (12): 2025-2032, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-887016

ABSTRACT

1-Deoxy-D-xylulose-5-phosphate synthase (DXS) is a rate-limiting enzyme involved in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for terpenoid precursor biosynthesis. DXS plays an essential role in glycyrrhizic acid (GA) biosynthesis. Based on our previous transcriptome study, there was a negative correlation between DXS expression and GA content. Therefore, we explored the regulatory role of DXS in GA biosynthesis using both gene overexpression and gene knockout in a hairy root culture system. DXS was cloned from Glycyrrhiza glabra L. (GenBank Accession No. MN158121). A plant binary expression vector pCA-DXS was constructed by a gene fusion method. The sgRNA sequence was designed based on the first exon of DXS to construct the gene editing vector pHSE-DXS. Hairy roots overexpressing or knocking out DXS were generated through an Agrobacterium-mediated method with licorice hypocotyls as explants. Wild-type hairy roots and negative control hairy roots containing empty plasmids were also evaluated. UPLC was used to determine the GA content in each licorice hairy root line. Results showed that the content of GA in the hairy root group knocking out DXS was significantly higher than that in the wild-type and negative control groups, while in the hairy root group overexpressing DXS was significantly lower, suggesting that DXS plays a negative role in GA biosynthesis. This study provides a foundation for determining the function of DXS in terpenoid metabolism and for further establishment of a molecular regulatory network of GA biosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL