Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 443
Filter
1.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39131367

ABSTRACT

Group B Streptococcus (GBS) is a Gram-positive pathobiont that commonly colonizes the gastrointestinal and lower female genital tracts but can cause sepsis and pneumonia in newborns and is a leading cause of neonatal meningitis. Despite the resulting disease severity, the pathogenesis of GBS is not completely understood, especially during the early phases of infection. To investigate GBS factors necessary for blood stream survival, we performed a transposon (Tn) mutant screen in our bacteremia infection model using a GBS mariner transposon mutant library previously developed by our group. We identified significantly underrepresented mutations in 628 genes that contribute to survival in the blood, including those encoding known virulence factors such as capsule, the ß-hemolysin, and inorganic metal ion transport systems. Most of the underrepresented genes have not been previously characterized or studied in GBS, including gloA and gloB, which are homologs for genes involved in methylglyoxal (MG) detoxification. MG is a byproduct of glycolysis and a highly reactive toxic aldehyde that is elevated in immune cells during infection. Here, we observed MG sensitivity across multiple GBS isolates and confirm that gloA contributes to MG tolerance and invasive GBS infection. We show specifically that gloA contributes to GBS survival in the presence of neutrophils and depleting neutrophils in mice abrogates the decreased survival and infection of the gloA mutant. The requirement of the glyoxalase pathway during GBS infection suggests that MG detoxification is important for bacterial survival during host-pathogen interactions.

2.
Biochem Biophys Res Commun ; 736: 150516, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121674

ABSTRACT

Cancer cells exhibit high glycolytic activity, metabolizing glucose as their primary energy substrate. Toxic metabolites produced during glycolysis, such as methylglyoxal, induce carbonyl stress (CS), promoting inflammation and oxidative stress. The elevated glucose metabolism in cancer cells creates this toxic environment. However, little research has focused on the molecules mediating these reactions and stresses, and their role in selecting and enriching apoptosis-resistant cells. This study investigated the impact of constitutively suppressing oxidized lipid receptor G2A (GPR132) expression on the relationship between CS and oxidative stress in glucose-loaded cancer cells. G2A has recently attracted attention as a tumor promoter. However, our study shows that G2A suppression under glucose loading significantly reduces CS and associated oxidative stress, thereby enhancing cancer cell survival. This suggests a new mechanism contrary to conventional thinking, involving the acute induction of glyoxalase 1 (Glo1). G2A may thus play a role in selecting and enriching apoptosis-resistant cell populations under high glucose conditions by regulating Glo1 expression. These findings improve our understanding of the adaptive capacity of cancer cells to glucose toxicity.

3.
Brain ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001866

ABSTRACT

Mitochondrial and synaptic dysfunction are pathological features of brain aging and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigate the mechanisms of advanced glycation endproducts (AGEs)-mediated mitochondrial and synaptic stress and evaluate the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analyzed alterations in accumulation/buildup of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrate for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGEs-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in aging brain. Importantly, clearance of AGEs-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification/of AGEs, reduces synaptic mitochondrial AGEs accumulation and improves mitochondrial and cognitive function in aging and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex-vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGEs-induced synaptic plasticity and transmission by fully recovery of decline in LTP or frequency of mEPSC. These studies explore crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain aging and cognitive decline. Synaptic mitochondria are particularly susceptible to AGEs-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGEs accumulation and to improve mitochondrial function and learning and memory.

4.
Article in English | MEDLINE | ID: mdl-39043487

ABSTRACT

The sbiT-sbiR-sbiS operon of Stenotrophomonas maltophilia encodes an inner-membrane protein SbiT and a SbiS-SbiR two-component regulatory system. A sbiT mutant displayed a growth defect in LB agar. Mechanism studies revealed that sbiT deletion resulted in SbiSR activation and gloIo upregulation, which increased intracellular ROS level and caused growth defect.

5.
Int J Mol Sci ; 25(13)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39000424

ABSTRACT

Cardiomyocyte dysfunction and cardiovascular diseases (CVDs) can be classified as ischemic or non-ischemic. We consider the induction of cardiac tissue dysfunction by intracellular advanced glycation end-products (AGEs) in cardiomyocytes as a novel type of non-ischemic CVD. Various types of AGEs can be generated from saccharides (glucose and fructose) and their intermediate/non-enzymatic reaction byproducts. Recently, certain types of AGEs (Nε-carboxymethyl-lycine [CML], 2-ammnonio-6-[4-(hydroxymetyl)-3-oxidopyridinium-1-yl]-hexanoate-lysine [4-hydroxymethyl-OP-lysine, hydroxymethyl-OP-lysine], and Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine [MG-H1]) were identified and quantified in the ryanodine receptor 2 (RyR2) and F-actin-tropomyosin filament in the cardiomyocytes of mice or patients with diabetes and/or heart failure. Under these conditions, the excessive leakage of Ca2+ from glycated RyR2 and reduced contractile force from glycated F-actin-tropomyosin filaments induce cardiomyocyte dysfunction. CVDs are included in lifestyle-related diseases (LSRDs), which ancient people recognized and prevented using traditional medicines (e.g., Kampo medicines). Various natural compounds, such as quercetin, curcumin, and epigallocatechin-3-gallate, in these drugs can inhibit the generation of intracellular AGEs through mechanisms such as the carbonyl trap effect and glyoxalase 1 activation, potentially preventing CVDs caused by intracellular AGEs, such as CML, hydroxymethyl-OP, and MG-H1. These investigations showed that bioactive herbal extracts obtained from traditional medicine treatments may contain compounds that prevent CVDs.


Subject(s)
Cardiovascular Diseases , Glycation End Products, Advanced , Myocytes, Cardiac , Glycation End Products, Advanced/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Humans , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/drug therapy , Mice
6.
Vitam Horm ; 125: 47-88, 2024.
Article in English | MEDLINE | ID: mdl-38997172

ABSTRACT

Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging. Thus, how protein glycation impacts the cardiomyocyte is of particular interest, to both understand how these conditions increase the risk of cardiovascular disease and how glycation might be targeted therapeutically. Glycation can affect the cardiomyocyte through extracellular mechanisms, including RAGE-based signaling, glycation of the extracellular matrix that modifies the mechanical environment, and signaling from the vasculature. Intracellular glycation of the cardiomyocyte can impact calcium handling, protein quality control and cell death pathways, as well as the cytoskeleton, resulting in a blunted contractility. While reducing protein glycation and its impact on the heart has been an active area of drug development, multiple clinical trials have had mixed results and these compounds have not been translated to the clinic-highlighting the challenges of modulating myocyte glycation. Here we will review protein glycation and its effects on the cardiomyocyte, therapeutic attempts to reverse these, and offer insight as to the future of glycation studies and patient treatment.


Subject(s)
Glycation End Products, Advanced , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Glycosylation , Animals , Glycation End Products, Advanced/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Protein Processing, Post-Translational , Cardiovascular Diseases/metabolism
7.
bioRxiv ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39071394

ABSTRACT

DJ-1 (PARK7) is an intensively studied protein whose cytoprotective activities are dysregulated in multiple diseases. DJ-1 has been reported as having two distinct enzymatic activities in defense against reactive carbonyl species that are difficult to distinguish in conventional biochemical experiments. Here, we establish the mechanism of DJ-1 using a synchrotron-compatible version of mix-and-inject-serial crystallography (MISC), which was previously performed only at XFELs, to directly observe DJ-1 catalysis. We designed and used new diffusive mixers to collect time-resolved Laue diffraction data of DJ-1 catalysis at a pink beam synchrotron beamline. Analysis of structurally similar methylglyoxal-derived intermediates formed through the DJ-1 catalytic cycle shows that the enzyme catalyzes nearly two turnovers in the crystal and defines key aspects of its glyoxalase mechanism. In addition, DJ-1 shows allosteric communication between a distal site at the dimer interface and the active site that changes during catalysis. Our results rule out the widely cited deglycase mechanism for DJ-1 action and provide an explanation for how DJ-1 produces L-lactate with high chiral purity.

8.
Nutrients ; 16(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38892513

ABSTRACT

BACKGROUND: Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS: An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS: These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.


Subject(s)
Antioxidants , Diabetes Mellitus, Experimental , Glycation End Products, Advanced , Insulin , Kidney , Lycopene , Oxidative Stress , Rats, Wistar , Animals , Lycopene/pharmacology , Kidney/drug effects , Kidney/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Glycation End Products, Advanced/metabolism , Antioxidants/pharmacology , Male , Insulin/blood , Insulin/metabolism , Oxidative Stress/drug effects , Rats , Blood Glucose/metabolism , Blood Glucose/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Aryldialkylphosphatase/metabolism , Receptor for Advanced Glycation End Products/metabolism , Insulin Resistance , Lactoylglutathione Lyase/metabolism , Drug Therapy, Combination , Hypoglycemic Agents/pharmacology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism
9.
Plant Physiol Biochem ; 213: 108809, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875778

ABSTRACT

The primary goal of this research is to investigate the mitigating effect of silicon (Si; 2 mM) on the growth of tomato seedlings under vanadium (V; 40 mg) stress. V stress caused higher V uptake in leaf, and enhanced concentration of leaf anthocyanin, H2O2, O2•-, and MDA, but a decreased in plant biomass, root architecture system, leaf pigments content, mineral elements, and Fv/Fm (PSII maximum efficiency). Si application increased the concentrations of crucial antioxidant molecules such as AsA and GSH, as well as the action of key antioxidant enzymes comprising APX, GR, DHAR, and MDHAR. Importantly, oxidative damage was remarkably alleviated by upregulation of these antioxidant enzymes genes. Moreover, Si application enhanced the accumulation of secondary metabolites as well as the expression their related-genes, and these secondary metabolites may restricted the excessive accumulation of H2O2. In addition, Si rescued tomato plants against the damaging effects of MG by boosting the Gly enzymes activity. The results confirmed that spraying Si to plants might diminish the V accessibility to plants, along with promotion of V stress resistance.


Subject(s)
Antioxidants , Seedlings , Silicon , Solanum lycopersicum , Vanadium , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Silicon/pharmacology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/metabolism , Vanadium/metabolism , Vanadium/toxicity , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Lactoylglutathione Lyase/metabolism , Lactoylglutathione Lyase/genetics , Up-Regulation/drug effects , Oxidative Stress/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/drug effects , Plant Leaves/metabolism
10.
Cancer Lett ; 598: 217094, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38945204

ABSTRACT

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.


Subject(s)
Electroacupuncture , Glycolysis , Lactoylglutathione Lyase , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Proliferation , Electroacupuncture/methods , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Lactoylglutathione Lyase/metabolism , Lactoylglutathione Lyase/genetics , Mice, Inbred BALB C , Neovascularization, Pathologic/metabolism , Paclitaxel/pharmacology , Pyruvaldehyde/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/therapy , Xenograft Model Antitumor Assays , Zebrafish
11.
Antioxidants (Basel) ; 13(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38929087

ABSTRACT

Acetaminophen (APAP) overdose triggers a cascade of intracellular oxidative stress events, culminating in acute liver injury. The clinically used antidote, N-acetylcysteine (NAC), has a narrow therapeutic window, and early treatment is essential for a satisfactory therapeutic outcome. For more versatile therapies that can be effective even at late presentation, the intricacies of APAP-induced hepatotoxicity must be better understood. Accumulation of advanced glycation end products (AGEs) and the consequent activation of the receptor for AGEs (RAGE) are considered one of the key mechanistic features of APAP toxicity. Glyoxalase 1 (Glo-1) regulates AGE formation by limiting the levels of methylglyoxal (MEG). In this study, we studied the relevance of Glo-1 in the APAP-mediated activation of RAGE and downstream cell death cascades. Constitutive Glo-1-knockout mice (GKO) and a cofactor of Glo-1, ψ-GSH, were used as tools. Our findings showed elevated oxidative stress resulting from the activation of RAGE and hepatocyte necrosis through steatosis in GKO mice treated with high-dose APAP compared to wild-type controls. A unique feature of the hepatic necrosis in GKO mice was the appearance of microvesicular steatosis as a result of centrilobular necrosis, rather than the inflammation seen in the wild type. The GSH surrogate and general antioxidant ψ-GSH alleviated APAP toxicity irrespective of the Glo-1 status, suggesting that oxidative stress is the primary driver of APAP toxicity. Overall, the exacerbation of APAP hepatotoxicity in GKO mice suggests the importance of this enzyme system in antioxidant defense against the initial stages of APAP overdose.

12.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785990

ABSTRACT

The glyoxalase system, comprising GLO1 and GLO2 enzymes, is integral in detoxifying methylglyoxal (MGO) generated during glycolysis, with dysregulation implicated in various cancer types. The MEK/ERK/SMAD1 signaling pathway, crucial in cellular processes, influences tumorigenesis, metastasis, and angiogenesis. Altered GLO1 expression in cancer showcases its complex role in cellular adaptation and cancer aggressiveness. GLO2 exhibits context-dependent functions, contributing to both proapoptotic and antiapoptotic effects in different cancer scenarios. Research highlights the interconnected nature of these systems, particularly in ovarian cancer and breast cancer. The glyoxalase system's involvement in drug resistance and its impact on the MEK/ERK/SMAD1 signaling cascade underscore their clinical significance. Furthermore, this review delves into the urgent need for effective biomarkers, exemplified in ovarian cancer, where the RAGE-ligand pathway emerges as a potential diagnostic tool. While therapeutic strategies targeting these pathways hold promise, this review emphasizes the challenges posed by context-dependent effects and intricate crosstalk within the cellular milieu. Insights into the molecular intricacies of these pathways offer a foundation for developing innovative therapeutic approaches, providing hope for enhanced cancer diagnostics and tailored treatment strategies.


Subject(s)
Breast Neoplasms , Lactoylglutathione Lyase , MAP Kinase Signaling System , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Lactoylglutathione Lyase/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Smad1 Protein/metabolism , Signal Transduction , Animals
13.
J Med Life ; 17(1): 87-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38737655

ABSTRACT

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Subject(s)
Amides , Anthraquinones , Enzyme Inhibitors , Lactoylglutathione Lyase , Humans , Amides/chemistry , Amides/pharmacology , Anthraquinones/pharmacology , Anthraquinones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Lactoylglutathione Lyase/antagonists & inhibitors , Lactoylglutathione Lyase/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship
14.
Metabolites ; 14(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38668337

ABSTRACT

The underlying molecular mechanisms for the development of non-alcoholic fatty liver (NAFL) and its progression to advanced liver diseases remain elusive. Glyoxalase 1 (Glo1) loss, leading to elevated methylglyoxal (MG) and dicarbonyl stress, has been implicated in various diseases, including obesity-related conditions. This study aimed to investigate changes in the glyoxalase system in individuals with non-pathological liver fat. Liver biopsies were obtained from 30 individuals with a narrow range of BMI (24.6-29.8 kg/m2). Whole-body insulin sensitivity was assessed using HOMA-IR. Liver biopsies were analyzed for total triglyceride content, Glo1 and Glo2 mRNA, protein expression, and activity. Liquid chromatography-tandem mass spectrometry determined liver dicarbonyl content and oxidation and glycation biomarkers. Liver Glo1 activity showed an inverse correlation with HOMA-IR and liver triglyceride content, but not BMI. Despite reduced Glo1 activity, no associations were found with elevated liver dicarbonyls or glycation markers. A sex dimorphism was observed in Glo1, with females exhibiting significantly lower liver Glo1 protein expression and activity, and higher liver MG-H1 content compared to males. This study demonstrates that increasing liver fat, even within a non-pathological range, is associated with reduced Glo1 activity.

15.
Pak J Med Sci ; 40(4): 652-656, 2024.
Article in English | MEDLINE | ID: mdl-38545031

ABSTRACT

Objective: To determine the association of diabetic nephropathy with glyoxalase-1 enzyme levels and a genetic missense variation (SNP rs4746) in its gene (GLO-1). Methods: This cross-sectional comparative study was conducted at the Department of Biochemistry and Molecular Biology, Army Medical College, Rawalpindi from November 2020 to December 2022. One hundred patients and one hundred and thirteen healthy controls were enrolled using the nonprobability convenience sampling method. Medical history and 10ml blood were obtained from each individual after written informed consent. Blood samples were subjected to biochemical tests and DNA extraction which was later used for single nucleotide polymorphism (SNP) analysis (C332C variant of rs4741 GLO-1 gene) using Tetra primer ARMS PCR and gel electrophoresis. Glyoxalase-1 enzyme activity in serum was measured using ELISA. Results: There was a significant difference in serum glyoxalase-1 levels in the two groups (p-value< 0.001). The patient group had lower levels (16.24 ± 22.51mg/dl) of glyoxalase-1 as compared to the control group (48.70 ± 42.54mg/dl). In genotypic analysis, 98 out of 100 control individuals had AA genotype-while only one had CC and another AC genotype. In the patient group, 94 out of 100 patients showed AA genotype, three AC, and three CC genotypes. As the statistical significance (p-value) was 0.37, there was no significant association found between AC or CC genotype and diabetic nephropathy. Conclusion: Glyoxalase-1 levels are linked to the development of diabetic nephropathy in our patients while a known missense variant rs4746 in the GLO-1 gene is not associated with increased risk.

16.
Noncoding RNA Res ; 9(2): 330-340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38505306

ABSTRACT

In previous study we characterized the oncogenic role of long non-coding RNA MALAT1 in esophageal squamous cell carcinoma (ESCC), but the detailed mechanism remains obscure. Here we identified glyoxalase 1 (GLO1) as the most possible executor of MALAT1 by microarray screening. GLO1 is responsible for degradation of cytotoxic methylglyoxal (MGO), which is by-product of tumor glycolysis. Accumulated MGO may lead to glycation of DNA and protein, resulting in elevated advanced glycation end products (AGEs), while glyoxalase 1 detoxify MGO to alleviate its cytotoxic effect to tumor cells. GLO1 interfering led to accumulation of AGEs and following activation of DNA injury biomarkers, which lead to cell cycle arrest and growth inhibition. In silico analysis based on online database revealed abundant enrichment of histone acetylation marker H3K27ac in GLO1 promotor, and acetyltransferase inhibitor C646 declined GLO1 expression. Acetyltransferase KAT2B, which was also identified as a target of MALAT, mediated histone lysine acetylation of GLO1 promotor, which was confirmed by ChIP-qPCR experiment. Shared binding sites of miR-206 were found on MALAT1 and KAT2B mRNA. Dual-luciferase reporter assays confirmed interaction within MALAT1-miR-206-GLO1. Finally, we identified MALAT1 encapsuled by exosome from donor cells, and transferred malignant behaviors to recipient cells. The secreted exosomes may enter circulation, and serum MALAT1 level combined with traditional tumor markers showed potential power for ESCC diagnosis.

17.
Antioxidants (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38539803

ABSTRACT

Citrus is mainly cultivated in acid soil with low boron (B) and high copper (Cu). In this study, Citrus sinensis seedlings were submitted to 0.5 (control) or 350 µM Cu (Cu excess or Cu exposure) and 2.5, 10, or 25 µM B for 24 weeks. Thereafter, H2O2 production rate (HPR), superoxide production rate (SAPR), malondialdehyde, methylglyoxal, and reactive oxygen species (ROS) and methylglyoxal detoxification systems were measured in leaves and roots in order to test the hypothesis that B addition mitigated Cu excess-induced oxidative damage in leaves and roots by reducing the Cu excess-induced formation and accumulation of ROS and MG and by counteracting the impairments of Cu excess on ROS and methylglyoxal detoxification systems. Cu and B treatments displayed an interactive influence on ROS and methylglyoxal formation and their detoxification systems. Cu excess increased the HPR, SAPR, methylglyoxal level, and malondialdehyde level by 10.9% (54.3%), 38.9% (31.4%), 50.3% (24.9%), and 312.4% (585.4%), respectively, in leaves (roots) of 2.5 µM B-treated seedlings, while it only increased the malondialdehyde level by 48.5% (97.8%) in leaves (roots) of 25 µM B-treated seedlings. Additionally, B addition counteracted the impairments of Cu excess on antioxidant enzymes, ascorbate-glutathione cycle, sulfur metabolism-related enzymes, sulfur-containing compounds, and methylglyoxal detoxification system, thereby protecting the leaves and roots of Cu-exposed seedlings against oxidative damage via the coordinated actions of ROS and methylglyoxal removal systems. Our findings corroborated the hypothesis that B addition alleviated Cu excess-induced oxidative damage in leaves and roots by decreasing the Cu excess-induced formation and accumulation of ROS and MG and by lessening the impairments of Cu excess on their detoxification systems. Further analysis indicated that the pathways involved in the B-induced amelioration of oxidative stress caused by Cu excess differed between leaves and roots.

18.
Plant Cell Rep ; 43(4): 103, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502356

ABSTRACT

KEY MESSAGE: Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.


Subject(s)
Lactoylglutathione Lyase , Metals, Heavy , Pyruvaldehyde/metabolism , Plants/metabolism , Lactoylglutathione Lyase/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Plant Development , Stress, Physiological/physiology
19.
Life (Basel) ; 14(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398772

ABSTRACT

This comprehensive exploration delves into the intricate interplay of methylglyoxal (MG) and glyoxalase 1 (GLO I) in various physiological and pathological contexts. The linchpin of the narrative revolves around the role of these small molecules in age-related issues, diabetes, obesity, cardiovascular diseases, and neurodegenerative disorders. Methylglyoxal, a reactive dicarbonyl metabolite, takes center stage, becoming a principal player in the development of AGEs and contributing to cell and tissue dysfunction. The dual facets of GLO I-activation and inhibition-unfold as potential therapeutic avenues. Activators, spanning synthetic drugs like candesartan to natural compounds like polyphenols and isothiocyanates, aim to restore GLO I function. These molecular enhancers showcase promising outcomes in conditions such as diabetic retinopathy, kidney disease, and beyond. On the contrary, GLO I inhibitors emerge as crucial players in cancer treatment, offering new possibilities in diseases associated with inflammation and multidrug resistance. The symphony of small molecules, from GLO I activators to inhibitors, presents a nuanced understanding of MG regulation. From natural compounds to synthetic drugs, each element contributes to a molecular orchestra, promising novel interventions and personalized approaches in the pursuit of health and wellbeing. The abstract concludes with an emphasis on the necessity of rigorous clinical trials to validate these findings and acknowledges the importance of individual variability in the complex landscape of health.

20.
Nutrients ; 16(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38398877

ABSTRACT

Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements.


Subject(s)
Spirulina , Male , Mice , Animals , Spirulina/chemistry , Mice, Obese , Zinc , RNA, Ribosomal, 16S , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Diet, High-Fat/adverse effects , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL