Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 772
Filter
1.
Microsc Microanal ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331529

ABSTRACT

We present two new methods of processing data from backscattered electron signals in a scanning electron microscope to image grains and subgrains. The first combines data from multiple backscattered electron images acquired at different specimen geometries to (1) better reveal grain boundaries in recrystallized microstructures and (2) distinguish between recrystallized and unrecrystallized regions in partially recrystallized microstructures. The second utilizes spherical harmonic transform indexing of electron backscatter diffraction patterns to produce high angular resolution orientation data that enable the characterization of subgrains. Subgrains are produced during high-temperature plastic deformation and have boundary misorientation angles ranging from a few degrees down to a few hundredths of a degree. We also present an algorithm to automatically segment grains from combined backscattered electron image data or grains and subgrains from high angular resolution electron backscatter diffraction data. Together, these new techniques enable rapid measurements of individual grains and subgrains from large populations.

2.
Mol Breed ; 44(9): 57, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228865

ABSTRACT

The rice panicle is the principal organ to influence productivity and traits affecting panicle architecture determine sink size and yield potential. Improving panicle architecture may be effective in increasing yield under low-input conditions, but which traits are of importance under such conditions and how they are genetically controlled is not well understood. Using recombinant inbred lines (RILs) derived from a cross between a modern variety IR64 and a low fertility tolerant accession DJ123, quantitative trait locus (QTL) mapping was conducted under high soil fertility in Japan and low fertility in Madagascar. Among QTL for panicle length (PL) detected, the DJ123 allele increased rachis length at qCL1 and qPL9, while the IR64 allele increased primary branch length at qPL7. DJ123 further contributed two QTL for grain width whereas IR64 contributed two grain length QTL. Analysis of lines carrying different combinations of detected QTL indicates that rachis and primary branch lengths are independently regulated, explaining strong transgressive segregation for PL. The positive effects of PL-related QTL were further confirmed by a genome-wide analysis of allelic states in two breeding lines that had been selected repeatedly for total panicle weight per plant under low input conditions. This study provides the genetic basis for complex panicle architecture in rice and will aid in designing an ideal panicle architecture that leads to increased yield under low fertility conditions. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01494-5.

3.
Sci Total Environ ; 953: 176091, 2024 Nov 25.
Article in English | MEDLINE | ID: mdl-39244058

ABSTRACT

Sediment or soil in wetlands is regarded as an important sink of antibiotic resistance genes (ARGs). However, there are no studies on the effects of sediment changes (which caused changes in soil texture) on soil ARGs in wetland. Here, we collected topsoil samples from 12 study sites that were deposited in early (prior to the 1970s) or recent years to reveal the responses of soil ARGs to the decrease in grain size of sediment discharged into Dongting Lake. The results indicated that it caused significant increases in clay content, soil organic matter (SOM), moisture, and bacterial abundance. The absolute abundance of 38 % ARG subtypes, 62 % ARG types, and the total ARG concentrations showed a significant increase. The composition of ARG profiles also showed significant changes. For mobile genetic elements (MGEs), the levels of plasmid, insertional, and transposase were significantly elevated. Notably, clay content, moisture, SOM, and bacterial abundance presented very strong positive correlation with most ARG and total ARG abundance. The contributions of physicochemical characteristics and bacterial abundance to ARG variations were ranked as follows: 16S rRNA > SOM > moisture > pH > soil texture (clay, sand and silt) > nitrate nitrogen > ammonium nitrogen. Bacterial abundance, SOM, moisture, and soil texture were the primary environmental parameters contributing to the soil ARG variations in this research. These changes of ARGs may pose risks to ecosystems and public health.


Subject(s)
Drug Resistance, Microbial , Geologic Sediments , Lakes , Soil Microbiology , Soil , China , Drug Resistance, Microbial/genetics , Geologic Sediments/microbiology , Lakes/microbiology , Soil/chemistry , Environmental Monitoring , Wetlands , Genes, Bacterial
4.
Nanomaterials (Basel) ; 14(18)2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39330655

ABSTRACT

Large-grained UO2 is considered a potential accident-tolerant fuel (ATF) due to its superior fission gas retention capabilities. Irradiation experiments for cerium dioxide (CeO2), used as a surrogate fuel, is a common approach for evaluating the performance of UO2. In this work, spark plasma sintered CeO2 pellets with varying grain sizes (145 nm, 353 nm, and 101 µm) and a relative density greater than 93.83% were irradiated with 4 MeV Xe ions at a fluence of 2 × 1015 ions/cm2 at room temperature, followed by annealing at 600 °C for 3 h. Microstructure, including dislocation loops and bubble morphology of the irradiated samples, has been characterized. The average size of dislocation loops increases with increasing grain size. Large-sized dislocation loops are absent near the grain boundary because the boundary absorbs surrounding defects and prevents the dislocation loops from coalescing and expanding. The distribution of bubbles within the grain is uniform, whereas the large-sized and irregularly shaped xenon bubbles observed in the small grain exhibit pipe diffusion along the grain boundaries. The bubble diameter in the large-grained pellet is the smallest. As the grain size increases, the volumetric swelling of the irradiated pellets decreases while the areal density of Xe bubbles increases. Elemental segregation, which tends to occur at dislocation loops and grain boundaries, has been analyzed. Large-grained CeO2 pellet with lower-density grain boundaries exhibits better resistance to volumetric swelling and elemental segregation, suggesting that large-grained UO2 pellets could serve as a potential ATF.

5.
Plant Sci ; : 112272, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39321878

ABSTRACT

Seed size is one of the three main characteristics determining rice yield. Clarification of the mechanisms regulating seed size in rice has implications for improving rice yield. Although several genes have been reported to regulate seed size, most of the reports are fragmentary. The role of metallothioneins (MTs) in regulating seed size remains unknown. Here, we found that OsMT2b was expressed in both spikelets and developing seeds. OsMT2b-overexpression lines had large and heavy seeds, and RNAi (RNA interference) lines had small and light seeds. Scanning electron microscopy (SEM) observations revealed that OsMT2b regulated spikelet hull size by affecting cell expansion in the outer epidermis. Histological analysis indicated that OsMT2b affected the number of cells in the cross-section of spikelet hulls, which affected seed size. The fresh weight of seeds was consistently higher in OsMT2b-overexpression lines than in seeds of the wild-type (WT) and RNAi lines from 6 DAP (days after pollination) until maturity, indicating that OsMT2b affected seed filling. Reverse transcription-quantitative PCR (RT-qPCR) analyses revealed that OsMT2b regulates the expression of reactive oxygen species scavenging-related genes involved in seed size regulation. In conclusion, our results indicated that OsMT2b positively regulates seed size, which provides a novel approach for regulating seed size with genetic engineering technology.

6.
Heliyon ; 10(18): e37848, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39323859

ABSTRACT

Objectives: To determine the impact of the speed sintering program on the microstructure, flexural strength and translucency of zirconia in comparison with those of the conventional sintering program. Materials and methods: rectangular shape specimens (12.5 × 15.5 × 1.2 mm) were prepared from four commercial pre-sintered zirconia ceramics (KATANA HTML, KATANA STML, InCoris TZI and InCoris ZI) that were sintered with conventional and speed sintering programs according to the manufacturer's instructions. The phase composition of the sintered specimens was determined by X-ray diffraction (XRD). The grain size was evaluated using scanning electron microscopy (SEM), while the three-point flexural strength was assessed based on the ISO 6872: 2015 standard. Translucency was assessed using a spectrophotometer. The data were analyzed using independent t tests (α = 0.05) and one-way ANOVA. Results: The XRD patterns were similar for all the groups, indicating that there was no phase transformation. SEM revealed that the average grain size was lower than 1 µm. The grain size, flexural strength and translucency results showed increasing trends when speed sintering is compared with the conventional one but the differences were not significant (P > 0.05). Conclusions: The results of this research indicate that the speed sintering program had no significant impact on the microstructure, flexural strength and translucency of the examined zirconia, a speed-sintering program can process the ceramic material within a short time with slightly increase their flexural strength and translucency Therefore, a speed-sintering program is appropriate for zirconia (Y-TZP).

7.
Sci Total Environ ; 954: 176195, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39270870

ABSTRACT

This study focuses on the effectiveness of commonly-used 15 cm column lengths for investigating nanoparticle transport in porous media. Experimental tests examined the transport and retention behaviors of two types of nanoparticles, graphene oxide (GO) and titanium dioxide (TiO2) nanoparticles, in saturated sand columns of different lengths (15, 30 and 45 cm), while considering key environmental factors like ionic strength (IS, 1-50 mM), flow rate (1-3 mL min-1), and grain size (150-850 µm). In the 15 cm columns, both GO and TiO2 transport decreased with higher IS and lower flow rate; grain size affected GO and TiO2 differently. Smaller grain size increased GO retention in the sand columns through straining, thus weakening GO mobility, whereas increased fluid shear force suppressed the ripening of TiO2, enhancing its migration. Similar environmental effects were noted in longer columns (30 and 45 cm), but fitted transport parameters (Smax and k) and predicted long-term mobility (Lmax) indicated that 15 cm columns might underestimate nanoparticle mobility. Blocking and ripening models based on single and multiple observation points to simulate nanoparticle transport and retention showed that predictions aligned well with experimental data. These results indicate that using combinations of columns of different lengths to achieve multiple observation points improves model prediction accuracy; in single-column experiments, the 45 cm and 30 cm columns respectively better predict the mobility range of GO and TiO2 compared to 15 cm columns.

8.
Mol Breed ; 44(9): 62, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39290202

ABSTRACT

Rice grain size and grain weight, which have a great influence on rice quality and yield, are complex quantitative traits that are mediated by grain length (GL), grain width (GW), length-to-width ratio (LWR), and grain thickness (GT). In this study, the BC1F2 and BC1F2:3 populations derived from a cross between two indica rice varieties, Guangzhan 63-4S (GZ63-4S) and Dodda, were used to locate quantitative trait loci (QTL) related to grain size. A total of 30 QTL associated with GL, GW and LWR were detected, of which six QTL were scanned repeatedly in both populations. Two QTL, qGL4 and qGL6, were selected for genetic effect validation and were subsequently fine mapped to 2.359 kb and 176 kb, respectively. LOC_Os04g52240 (known as OsKS2/OsKSL2), which encoding an ent-beyerene synthase and as the only gene found in 2.359 kb interval, was proposed to be the candidate for qGL4. Moreover, the grains of qGL4 homozygous mutant plants generated by the CRISPR-Cas9 system became shorter and wider. In addition, the qGL4 allele from GZ63-4S contributes to the increase of yield per plant. Our study not only laid the foundation for further functional study of qGL4 and map-based cloning of qGL6, but also provided genetic resources for the development of high yield and good quality rice varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01502-8.

9.
Rice (N Y) ; 17(1): 59, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249660

ABSTRACT

Manipulating grain size demonstrates great potential for yield promotion in cereals since it is tightly associated with grain weight. Several pathways modulating grain size have been elaborated in rice, but possible crosstalk between the ingredients is rarely studied. OsmiR396 negatively regulates grain size through targeting OsGRF4 (GS2) and OsGRF8, and proves to be multi-functioning. Here we showed that expression of GS3 gene, a Gγ-protein encoding gene, that negatively regulates grain size, was greatly down-regulated in the young embryos of MIM396, GRF8OE and GS2OE plants, indicating possible regulation of GS3 gene by OsmiR396/GRF module. Meanwhile, multiple biochemical assays proved possible transcriptional regulation of OsGRF4 and OsGRF8 proteins on GS3 gene. Further genetic relation analysis revealed tight genetic association between not only OsmiR396 and GS3 gene, but also GS2 and GS3 gene. Moreover, we revealed possible regulation of GS2 on four other grain size-regulating G protein encoding genes. Thus, the OsmiR396 pathway and the G protein pathway cross talks to regulate grain size. Therefore, we established a bridge linking the miRNA-transcription factors pathway and the G-protein signaling pathway that regulates grain size in rice.

10.
Plant Cell Rep ; 43(9): 228, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39237771

ABSTRACT

KEY MESSAGE: Rice OsSPL11 activates the expression of GW5L through binding to its promoter and positively regulates grain size. Grain size (GS) is an important determinant of grain weight and yield potential in cereal. Here, we report the functional analysis of OsSPL11 in grain length (GL), grain width (GW), and 1000-grain weight (TGW). OsSPL11 mutant plants, osspl11 lines, exhibited a decrease in GL, GW, and TGW, and OsSPL11-OE lines showed an increase in GL and TGW. Expression analysis revealed that OsSPL11 was located in the nucleus and highly expressed in spikelet hull and young development grains, consistent with its function in determining GS. Further analysis confirmed that OsSPL11 directly activates the expression of GW5L to regulate GS, meanwhile OsSPL11 expression is negatively regulated by OsGBP3. Taken together, our findings demonstrate that OsSPL11 could be a key regulator of affecting GS during the spikelet hull development and facilitate the process of improving grain yield by GS modification in rice.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Oryza/genetics , Oryza/metabolism , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Mutation/genetics
11.
J Contam Hydrol ; 266: 104411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39153396

ABSTRACT

The co-occurrence of microplastics (MPs) and heavy metals in aquatic systems has raised significant concerns, yet their relationship in freshwater ecosystems remains poorly understood. This study aims to evaluate the prevalence of MPs and factors controlling their distribution in both water and sediment in the Markanda River, Northwest India. MPs were extracted from sediment and water samples using density separation and classified through fluorescence microscopy and Raman spectroscopy. Metal concentrations in river water samples were analyzed using ICP-MS, and their correlation with MP abundance was explored. The results indicated the widespread occurrence of MP pollution across the Markanda River basin, with particle concentrations ranging from 10 to 530 particles L-1 in surface water and 1330-4330 particles kg-1 dry weight (dw) in sediment samples. The variability in MP abundance at sampling sites along the Markanda River courses results from factors such as the proximity of industrial establishments and human habitation, while the influence of grain size on MP distribution appears to be limited. Pellets (88.5 %) and fragments (8.5 %) were the most abundant types of MPs, with polyethylene (45.45 %) and polystyrene (30.9 %) being the dominant forms in water samples. The ICP-MS analysis of heavy metals in water samples indicated elevated levels of As (1.67 to 32.31 ppb) in downstream areas of the river system, influenced by human activities. While metals exhibited correlation with each other, there was a weak association, except for As, with the levels of MPs in the Markanda River. The SEM-EDX analyses to characterize chemical elements absorbed onto the surface of MP showed distinct variations in upstream and downstream sites, with the presence of elements such as Mn, Ni, Cr, Zn, As, Se, and Cu found in downstream areas. We conclude that MPs contaminated with heavy metals potentially threaten the ecological security of freshwater aquatic systems and highlight the importance of management action to reduce plastic pollution worldwide.


Subject(s)
Environmental Monitoring , Metals, Heavy , Microplastics , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , Rivers/chemistry , Microplastics/analysis , Water Pollutants, Chemical/analysis , India , Geologic Sediments/chemistry , Geologic Sediments/analysis
12.
Sensors (Basel) ; 24(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39123970

ABSTRACT

Grain size analysis is used to study grain size and distribution. It is a critical indicator in sedimentary simulation experiments (SSEs), which aids in understanding hydrodynamic conditions and identifying the features of sedimentary environments. Existing methods for grain size analysis based on images primarily focus on scenarios where grain edges are distinct or grain arrangements are regular. However, these methods are not suitable for images from SSEs. We proposed a deep learning model incorporating histogram layers for the analysis of SSE images with fuzzy grain edges and irregular arrangements. Firstly, ResNet18 was used to extract features from SSE images. These features were then input into the histogram layer to obtain local histogram features, which were concatenated to form comprehensive histogram features for the entire image. Finally, the histogram features were connected to a fully connected layer to estimate the grain size corresponding to the cumulative volume percentage. In addition, an applied workflow was developed. The results demonstrate that the proposed method achieved higher accuracy than the eight other models and was highly consistent with manual results in practice. The proposed method enhances the efficiency and accuracy of grain size analysis for images with irregular grain distribution and improves the quantification and automation of grain size analysis in SSEs. It can also be applied for grain size analysis in fields such as soil and geotechnical engineering.

13.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124172

ABSTRACT

Grain size is a primary determinant of grain weight, which is one of the three essential components of rice grain yield. Mining the genes that control grain size plays an important role in analyzing the regulation mechanism of grain size and improving grain appearance quality. In this study, two closely linked quantitative trait loci (QTL) controlling grain size, were dissected and fine-mapped in a 515.6-kb region on the long arm of chromosome 10 by using six near isogenic line populations. One of them, qGS10.2, which controlled 1000 grain weight (TGW) and grain width (GW), was delimited into a 68.1-kb region containing 14 annotated genes. The Teqing allele increased TGW and GW by 0.17 g and 0.011 mm with the R2 of 12.7% and 11.8%, respectively. The other one, qGL10.2, which controlled grain length (GL), was delimited into a 137.3-kb region containing 22 annotated genes. The IRBB52 allele increased GL by 0.018 mm with the R2 of 6.8%. Identification of these two QTL provides candidate regions for cloning of grain size genes.

14.
Sci Total Environ ; 951: 175413, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39137846

ABSTRACT

Plastics are now the dominant fraction of anthropogenic marine debris and as a result of their long residence times, it is important to determine the threats that plastics present to marine ecosystems including their ability to sorb a diversity of environmental pollutants such as trace metals. To address this knowledge gap, this study examined the sorption of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within marine intertidal sediments in a human-impacted area of Burrard Inlet (British Columbia, Canada). Trace metal sorption by macro- and microplastics was dependent on 1) polymer characteristics, notably the aging of the plastic over the duration of the field experiment as shown by the formation of new peaks via FTIR spectra; and 2) amounts of sediment organic matter, where the sorption of trace metals by the plastic particles decreased with increasing organic matter content (from 2.8 % to 15.8 %). Plastic particles play a minor role in trace metals sorption in the presence of organic matter at high concentrations as a result of competitive adsorption. Overall, the interaction of trace metals with sediment plastics was highly dynamic and to understand the key processes controlling this dynamic requires further study. This work contributed to our understanding on metal-plastic interactions in coastal intertidal sediments from urban environments and serve to support plastic pollution risk management and bioremediation studies.

15.
Micromachines (Basel) ; 15(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39203589

ABSTRACT

Improvements in phase stability and dielectric characteristics can broaden the applications of zirconia in ceramics. Herein, a series of Y2O3-stabilized zirconia (YSZ) ceramics are synthesized using solid-state sintering, followed by an investigation into their phase evolution, grain size, dielectric constant, and breaking field. As the Y2O3 content increases from 0 wt% to 4 wt%, the as-grown YSZ ceramics undergo a distinct phase transformation, transitioning from monoclinic to monoclinic + tetragonal and further to monoclinic + tetragonal + cubic, before finally returning to monoclinic + cubic. Significant changes occur in the internal microstructure and grain size of the ceramics as the phase composition alters, resulting in a reduction in grain size from 3.17 µm to 0.27 µm. Moreover, their dielectric constants exhibit an increasing trend as the Y2O3 content increases, rising from 3.92 to 13.2. Importantly, the dielectric breakdown field of these YSZ ceramics shows a similar variation to the phase evolution, ranging from 0.11 to 0.15 MV/cm. This study sheds light on the phase evolution and dielectric properties of YSZ ceramics, offering an efficient strategy for enhancing their dielectric performances.

16.
Plant Biotechnol J ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180364

ABSTRACT

Starch is synthesized as insoluble, semicrystalline particles within plant chloroplast and amyloplast, which are referred to as starch grains (SGs). The size and morphology of SGs in the cereal endosperm are diverse and species-specific, representing a key determinant of the suitability of starch for industrial applications. However, the molecular mechanisms modulating SG size in cereal endosperm remain elusive. Here, we functionally characterized the rice (Oryza sativa) mutant substandard starch grain7 (ssg7), which exhibits enlarged SGs and defective endosperm development. SSG7 encodes a plant-specific DUF1001 domain-containing protein homologous to Arabidopsis (Arabidopsis thaliana) CRUMPLED LEAF (AtCRL). SSG7 localizes to the amyloplast membrane in developing endosperm. Several lines of evidence suggest that SSG7 functions together with SSG4 and SSG6, known as two regulators essential for SG development, to control SG size, by interacting with translocon-associated components, which unveils a molecular link between SG development and protein import. Genetically, SSG7 acts synergistically with SSG4 and appears to be functional redundancy with SSG6 in modulating SG size and endosperm development. Collectively, our findings uncover a multimeric functional protein complex involved in SG development in rice. SSG7 represents a promising target gene for the biotechnological modification of SG size, particularly for breeding programs aimed at improving starch quality.

17.
Mar Pollut Bull ; 205: 116678, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986266

ABSTRACT

Estuaries, vital coastal ecosystems, face growing threats from industrialization. To understand the pace of sedimentary changes and heavy metal pollution at the anthropogenically altered and industrialized Nakdong River Estuary in South Korea, we used sediment coring to reconstruct environmental change. Estuarine dam construction in 1934 shifted the sedimentary system from sand to mud, coinciding with a post-1930s mercury increase due to coal burning. Mercury concentrations in other South Korean regions surged in the 1970s, indicating proximity to emission sources matters. However, most heavy metal levels (Cu, Cd, Zn, Ag) sharply rose in the 1960s and 1970s with regional industrialization. Modern heavy metal concentrations doubled pre-industrial levels, underscoring human activities as the primary driver of Nakdong Estuary environmental changes. This emphasizes the need for a balanced approach to development and environmental preservation.


Subject(s)
Environmental Monitoring , Estuaries , Metals, Heavy , Rivers , Water Pollutants, Chemical , Republic of Korea , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Rivers/chemistry , Geologic Sediments/chemistry , Mercury/analysis
18.
Rock Mech Rock Eng ; 57(7): 4679-4706, 2024.
Article in English | MEDLINE | ID: mdl-39006378

ABSTRACT

We employed a novel combination of digital image correlation (DIC) and grain-based hybrid finite-discrete element method (GB-FDEM) to improve the comprehension of the relationships between microstructural features and the mechanical properties of granitic rocks. DIC and numerical results showed that macrocracks initiated and propagated along grain boundaries among different minerals driven by the high stiffness contrast between the compliant biotite and the stiffer feldspar/quartz grains. Surface deformation analyses revealed that tensile-dominated macrocracks open at monotonically increased rates before the crack damage threshold, and the opening accelerated afterwards with the increased shear component. The onset of the acceleration of the opening rate of macrocracks can be used to infer the crack damage threshold. Both strain and acoustic emission were used to infer damage stress thresholds in the synthetic numerical samples. Numerical results showed that the damage stress thresholds and uniaxial compressive strength decrease with increasing grain size following log-linear relations. Coarse-grained samples tend to fail by axial splitting, while fine-grained samples fail by shear zone formation. Biotite and quartz contents significantly affect mechanical properties, while quartz to feldspar ratio is positively related to the mechanical properties. Our study demonstrates the capacities of DIC and GB-FDEM in inferring damage conditions in granitic rocks and clarifies the microstructural control of the macroscopic mechanical behaviors. Our results also provide a comprehensive understanding of the systematics of strain localization, crack development, and acoustic emission during the rock progressive failure process. Supplementary Information: The online version contains supplementary material available at 10.1007/s00603-024-03789-7.

19.
Materials (Basel) ; 17(14)2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39063755

ABSTRACT

Coal fly ash (CFA), a by-product of coal combustion, is a valuable raw material for various applications. However, the heterogeneous nature of the composition and properties of CFA provides challenges to its effective usage and utilisation. This study investigates the thermal behaviour of the fly ashes of lignite (FA1) and brown coal (FA2) and their fractions obtained by dry aerodynamic separation. Thermal analysis techniques, including thermogravimetry (TG), differential scanning calorimetry (DSC), and evolved gas analysis (EGA), were used to characterise the behaviour of the fly ash fractions while heating up to 1250 °C. The results reveal distinct differences in the thermal behaviour between ash types and among their different size fractions. For the FA1 ashes, the concentration of calcium-rich compounds and the level of recrystallisation at 950 °C increased with the decrease in particle size. The most abundant detected newly formed minerals were anhydrite, gehlenite, and anorthite, while coarser fractions were rich in quartz and mullite. For the FA2 ashes, the temperature of the onset of melting and agglomeration decreased with decreasing particle size and was already observed at 995 °C. Coarser fractions mostly remain unchanged, with a slight increase in quartz, mullite, and hematite content. Recrystallisation takes place in less extension compared to the FA1 ashes. The findings demonstrate that the aerodynamic separation of fly ashes into different size fractions can produce materials with varied thermal properties and reactivity, which can be used for specific applications. This study highlights the importance of thermal analysis in characterising fly ash properties and understanding their potential for utilisation in various applications involving thermal treatment or exposure to high-temperature conditions. Further research on advanced separation techniques and the in-depth characterisation of fly ash fractions is necessary to obtain materials with desired thermal properties and identify their most beneficial applications.

20.
Materials (Basel) ; 17(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39063761

ABSTRACT

The versatility of titanium (Ti) allows it to be employed in various industries, from aerospace engineering to medical technology, highlighting its significance in modern manufacturing and engineering processes. Spark plasma sintering (SPS) is currently being explored to enhance its properties further and broaden its application range. The current study focuses on exploring and optimizing the effect of SPS temperature (800, 900, 1000, 1100, 1200, and 1400 °C) on pure Ti sintered at 60 MPa in a controlled argon environment with a dwell time of 5 min. All the prepared samples were highly dense with a relative density above 99%, but exhibited significant variations in grain size (10 to 57 µm), tensile yield strength (488 to 700 MPa), ultimate tensile strength (597 to 792 MPa), and ductility (4 to 7%). A microstructural investigation was performed using XRD, SEM, and EDS to predict the influence of sintering temperature on the formation of different phases. The XRD patterns of all sintered samples showed the presence of single-phase α-Ti with hexagonally close-packed Ti. This work is a step forward in optimizing SPS-processed Ti's physical and mechanical properties for enhanced structural and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL