Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124166

ABSTRACT

The Ecuadorian Amazon holds more biodiversity than most other places on Earth. Palms are a particularly dominant component of the vegetation; however, it remains unknown to what degree the pattern has persisted through time. Here, we investigate the persistence of palm dominance through time and the degree to which past human activities (e.g., fire, cultivation, and forest opening) have affected changes in palm abundances across five regions of the Ecuadorian Amazon. We analyzed soil cores (40-80 cm depth) from each region for charcoal (evidence of past fire) and phytoliths (evidence of past vegetation change). The timings of fires (based on 14C radiocarbon dates), the occurrence, recurrence, and number of fires (based on charcoal presence and abundance in samples), and the amount of change in palm abundances (based on phytoliths) varied within and between the studied regions. The charcoal and phytolith results indicate the presence of low levels of past human activity at all sites. Our results show that patterns of modern palm hyperdominance found in Amazonian forests have not been persistent through time, and that even low levels of past human activities can affect palm abundance.

2.
J Anim Ecol ; 92(4): 889-900, 2023 04.
Article in English | MEDLINE | ID: mdl-36757108

ABSTRACT

Large carnivores are recovering in many landscapes where the human footprint is simultaneously growing. When carnivores encounter humans, the way they behave often changes, which may subsequently influence how they affect their prey. However, little research investigates the behavioural mechanisms underpinning carnivore response to humans. As a result, it is not clear how predator-prey interactions and their associated ecosystem processes will play out in the human-dominated areas into which carnivore populations are increasingly expanding. We hypothesized that humans would reduce predation risk for prey by disturbing carnivores or threatening their survival. Alternatively, or additionally, we hypothesized that humans would increase predation risk by providing forage resources that congregate herbivorous prey in predictable places and times. Using grey wolves Canis lupus in Jackson Hole, Wyoming, USA as a study species, we investigated 170 kill sites across a spectrum of human influences ranging from heavily restricted human activities on protected federal lands to largely unregulated activities on private lands. Then, we used conditional logistic regression to quantify how the probability of predation changed across varied types and amounts of human influences, while controlling for environmental characteristics and prey availability. Wolves primarily made kills in environmental terrain traps and where prey availability was high, but predation risk was significantly better explained with the inclusion of human influences than by environmental characteristics alone. Different human influences had different, and even converse, effects on the risk of wolf predation. For example, where prey were readily available, wolves preferentially killed animals far from motorized roads but close to unpaved trails. However, wolves responded less strongly to humans, if at all, where prey were scarce, suggesting they prioritized acquiring prey over avoiding human interactions. Overall, our work reveals that the effects of large carnivores on prey populations can vary considerably among different types of human influences, yet carnivores may not appreciably alter predatory behaviour in response to humans if prey are difficult to obtain. These results shed new light on the drivers of large carnivore behaviour in anthropogenic areas while improving understanding of predator-prey dynamics in and around the wildland-urban interface.


Subject(s)
Carnivora , Deer , Wolves , Humans , Animals , Ecosystem , Deer/physiology , Wolves/physiology , Carnivora/physiology , Predatory Behavior/physiology
3.
Proc Natl Acad Sci U S A ; 119(42): e2202852119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36215482

ABSTRACT

Fossilized leaves provide the longest running record of hyperdiverse plant-insect herbivore associations. Reconstructions of these relationships over deep time indicate strong links between environmental conditions, herbivore diversity, and feeding damage on leaves. However, herbivory has not been compared between the past and the modern era, which is characterized by intense anthropogenic environmental change. Here, we present estimates for damage frequencies and diversities on fossil leaves from the Late Cretaceous (66.8 Ma) through the Pleistocene (2.06 Ma) and compare these estimates with Recent (post-1955) leaves collected via paleobotanical methods from modern ecosystems: Harvard Forest, United States; the Smithsonian Environmental Research Center, United States; and La Selva, Costa Rica. Total damage frequency, measured as the percentage of leaves with any herbivore damage, within modern ecosystems is greater than any fossil locality within this record. This pattern is driven by increased frequencies across nearly all functional feeding groups within the Recent. Diversities of total, specialized, and mining damage types are elevated within the Recent compared with fossil floras. Our results demonstrate that plants in the modern era are experiencing unprecedented levels of insect damage, despite widespread insect declines. Human influence, such as the rate of global climate warming, influencing insect feeding and timing of life cycle processes along with urbanization and the introduction of invasive plant and insect species may drive elevated herbivory. This research suggests that the strength of human influence on plant-insect interactions is not controlled by climate change alone but rather, the way in which humans interact with terrestrial landscape.


Subject(s)
Fossils , Herbivory , Animals , Ecosystem , Forests , Humans , Insecta , Plant Leaves , Plants
4.
Natl Sci Rev ; 9(3): nwab113, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35265337

ABSTRACT

China's climate has been warming since the 1950s, with surface air temperature increasing at a rate higher than the global average. Changes in climate have exerted substantial impacts on water resources, agriculture, ecosystems and human health. Attributing past changes to causes provides a scientific foundation for national and international climate policies. Here, we review recent progress in attributing the observed climate changes over past decades in China. Anthropogenic forcings, dominated by greenhouse gas emissions, are the main drivers for observed increases in mean and extreme temperatures. Evidence of the effect of anthropogenic forcings on precipitation is emerging. Human influence has increased the probability of extreme heat events, and has likely changed the occurrence probabilities for some heavy precipitation events. The way a specific attribution question is posed and the conditions under which the question is addressed present persistent challenges for appropriately communicating attribution results to non-specialists.

5.
Animals (Basel) ; 12(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35158620

ABSTRACT

Recent evidence suggests a human-like susceptibility to social influence in dogs. For example, dogs tend to ignore their 'natural' preference for the larger amount of food after having seen a human's explicit preference for a smaller quantity. However, it is still unclear whether this tendency to conform to the partner's behaviour can be influenced by social stimuli and/or the neurohormone oxytocin as primers to prosocial predispositions. In Experiment I, eighty two dogs were tested using Prato-Previde et al.'s food quantity preference task. In Experiment I, we investigated in a 2 × 2 design how (i) a 10-minute-long social stimulation by the owner versus a socially ignoring pre-treatment as well as (ii) on-line ostensive communications versus no communication during task demonstration affect dogs' (N = 82) choices in the abovementioned food choice task. Results indicate that the owners' pre-treatment with social stimuli (eye contact, petting) increased dogs' susceptibility to the experimenter's food preference, but the salient ostensive addressing signals accompanying human demonstration masked this social priming effect. In Experiment II, N = 32 dogs from the subjects of Experiment I were retested after oxytocin (OT) or placebo (PL) pre-treatments. This experiment aimed to study whether intranasal administration of oxytocin as compared to placebo treatment would similarly increase dogs' tendency to re-enact the human demonstrator's counterproductive choice in the same task. Results showed an increased susceptibility to the human preference in the OT group, suggesting that both socially stimulating pre-treatment and the intranasal administration of oxytocin have similar priming effects on dogs' social susceptibility.

6.
Heliyon ; 7(11): e08219, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765769

ABSTRACT

This article presents and discusses the scientific publication record from 1910 to 2020 on two topics: "climate" (CL) and "climate change/global warming/climate emergency" (CC/GW/CE). The goal is to comparatively visualize how these two distinct publication records have evolved over time, from different classification perspectives, using publication ratios as the key indicator. It is found that research output related to the Earth's contemporary changing climate overtook that of general climate research in 2010, and the publication ratio (CC/GW/CE)/(CL) has been expanding in the last decade. There are significant differences in the publication countries and sources between the two topics. Differentiation factors that affect the level of research output and engagement on the climate challenge include island versus landlocked nations, specialized versus general scientific journals, academic versus institutional organizations. The future of the publication records is discussed, such as the emergence of new terms to refer to the climate challenge, such as "climate emergency".

7.
Glob Chang Biol ; 27(16): 3837-3845, 2021 08.
Article in English | MEDLINE | ID: mdl-34031943

ABSTRACT

Wetlands are among the natural ecosystems with the highest soil carbon stocks on Earth. However, how anthropogenic disturbances have impacted the quantity and distribution of wetland carbon pool in China is not well understood. Here we used a comprehensive countrywide wetland inventory and Landsat 8 data to document the spatial patterns in China's wetland areas and carbon pools and to understand the underlying causes of their changes from the 1980s to 2010s. We found that the wetland area and carbon pool have decreased from 4.11 × 105  km2 and 15.2 Pg C in the 1980s to 2.14 × 105  km2 and 7.6 Pg C in the 2010s, respectively. Using the human influence index (HII) as a quantitative measure of anthropogenic disturbance intensity, we found a positive relationship between the HII values and wetland decreases in many regions and across China as a whole-which have increased 17% during the time period-indicating that anthropogenic disturbances have been a major factor causing wetland destruction in recent decades. This study provides new evidence for recent changes in China's wetland carbon pool and emphasizes the importance of mitigating anthropogenic disturbances for wetland conservation.


Subject(s)
Carbon , Wetlands , Carbon/analysis , China , Ecosystem , Humans , Soil
8.
Article in English | MEDLINE | ID: mdl-33803377

ABSTRACT

Under global climate change and pressure from human activities, soil erosion is becoming a major concern in the quest for regional sustainable development in the Kagera basin (KB). However, few studies in this region have comprehensively considered the impact of climate change and human influence on soil erosion, and the associated processes are unclear. Based on the premise of quantifying climate change, human influence, and soil erosion, this study undertook a neighborhood analysis as the theoretical support, for a grey relation analysis which was conducted to realize the qualitative assessment of the influence of climate change and human activities on soil erosion. The results show that 90.32% of the KB saw climate change as having a greater influence on soil erosion than human influence, with the remaining area 9.68% seeing human influence having a greater impact than climate change, mainly as a result of the effect of rangeland and farmland. The average soil erosion rate of the KB shows a very low level (10.54 t ha-1 yr-1), with rangeland and farmland being the main land use/land cover (LULC) types that see soil loss, followed by forest, wetland, and built-up areas. The climate change trends of the KB show the most dramatic changes in the northeast and southwest, gradually decreasing towards the line crossing from the Birunga National Park (Rwanda) to the Keza district (Tanzania). The human influence intensity (HII) shows a high level in the KB (21.93), where it is higher in the west and lower in the east of the basin.


Subject(s)
Climate Change , Environmental Monitoring , Humans , Rwanda , Soil , Soil Erosion , Tanzania
9.
Huan Jing Ke Xue ; 42(5): 2251-2259, 2021 May 08.
Article in Chinese | MEDLINE | ID: mdl-33884794

ABSTRACT

To reveal the Beijing-Hangzhou Grand Canal natural water chemistry characteristics and the influence of human activities, river samples from Xuzhou to Jiaxing were collected in 2019-2020. Simultaneously, the water chemistry data of the canal from 1959 to 1962 and 1975 to 1977 in the Suzhou, Wuxi, and Changzhou sections and the recent social and economic data of the major cities along the canal were collected and analyzed. The results showed that the type of hydrochemistry in the study area was mainly influenced by the weathering of carbonate rocks in the basin, but K++Na+ accounted for 40.39% of the cation equivalent concentration, which was higher than that in ordinary surface water, thereby indicating that the natural hydrochemistry of the canal had been significantly affected by human factors. Spatially, the major ion mass concentrations, total hardness, and total alkalinity of the Grand Canal from Xuzhou station to the downstream area tended to decrease overall, but the parameters at Wuxi and Suzhou stations increased significantly. It was found that Na+ and SO42- were increased by approximately 16 and 12 times and total dissolved solids was increased by nearly 3 times by analyzing the 60 years of water chemistry of the Suzhou, Wuxi, and Changzhou sections. The current (Ca2++Mg2+)/HCO3- ratio in the Suzhou, Wuxi, and Changzhou sections is generally greater than 1, which is significantly higher than that from 1959 to 1962, thereby reflecting the results of human activities. According to the analysis of the social and economic development of the Grand Canal, this change was the result of the accelerated weathering of carbonate rocks in the basin caused by the sulfur oxides discharged by human activities. Further statistical analysis showed that urban domestic sewage and industrial wastewater discharge were the main driving factors causing chemical salinization of natural water in the Grand Canal. This study can provide a scientific basis for coordinating urban development and protecting the water ecological environment of the Grand Canal Basin.

10.
Huan Jing Ke Xue ; 42(3): 1205-1214, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742918

ABSTRACT

A series of strict control measures were imposed in the Beijing-Tianjin-Hebei region in early 2020 to control the spread of COVID-19. These measures have led to a reduction of anthropogenic air pollutants, providing an opportunity to observe the contribution of human activities to local air pollution. In this study, the control period was divided into four stages:the before, early, middle, and later stages. Based on a variety of data including meteorological, traffic, and industrial manufacturing datasets, statistical methods were combined with spatial analysis to evaluate changes in air pollution and associated human impacts during each stage. In addition, suggestions are made for further regional air pollution control in the Beijing-Tianjin-Hebei area. Key results are as follows:① Overall, the AQI and the concentrations of six air pollutants, especially SO2, PM10, and NO2, were lower during control period than during the equivalent period in 2019 (reductions of 26.5%, 24.3%, and 16.9%, respectively). From the before to later stages, pollutants (except O3) showed a downward trend while O3 increased significantly during the before stage (by 76.2%) and the growth rate slowed during the middle and later stages; ②During the prior stage, Beijing experienced two periods with heavy air pollution days as a result of the local accumulation of pollutants, secondary transformation, and regional transport. The concentration of PM2.5 in February was nearly 60% lower than in February 2014 under similar meteorological conditions in Beijing; ③ Following an increase in traffic volume and industrial activity, changes in air pollutants tended to be stable or slightly increase during the middle and later stages of the control period. The grey relation coefficients between thermal radiation intensity anomalies and the main pollutants in heavy industrial cities were greater than 0.6, which means that the control of industrial emissions remains key to controlling air pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Cities , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
11.
PeerJ ; 9: e10960, 2021.
Article in English | MEDLINE | ID: mdl-33717695

ABSTRACT

In a wide variety of habitats, including some heavily urbanised areas, the adaptability of populations of common bottlenose dolphin (Tursiops truncatus) may depend on the social structure dynamics. Nonetheless, the way in which these adaptations take place is still poorly understood. In the present study we applied photo-identification techniques to investigate the social structure of the common bottlenose dolphin population inhabiting the Gulf of Alghero (Sardinia, Italy), analysing data recorded from 2008 to 2019. The social structure analysis showed a division of the entire population into five different communities and the presence of non-random associations, while there was no evidence of segregation between sexes. Furthermore, results highlighted an important change in social structure through time, likely due to a reduction in fish farm activity since 2015. The division of the population into different communities, the presence of segregation based on the foraging strategy (inside or outside the fish farm area) and the social network measures were evaluated by analysing independently the two datasets: the intense and low farm activity periods: 2008-2014 and 2015-2020, respectively. Segregation among individuals belonging to the same foraging strategy class was found only in the earlier period, and the composition of the four communities was consistent with this result. Our study improves the knowledge about bottlenose dolphin adaptation, as a lower complexity in social structure was linked to a reduction in anthropogenic food availability.

12.
Bull Environ Contam Toxicol ; 106(1): 75-85, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32681240

ABSTRACT

The results of the Multi-Purpose Geochemical Survey in the Pearl River Delta (PRD) show that the pollution is serious. In this study, the influence of geological genesis, soil-forming process, and human activities on soil quality in PRD is analyzed, and the influence factors, genesis and spatial distributional characteristics of cadmium (Cd) in different soil depths are studied by inverse distance weighted (IDW) and hot spot analysis. The results show that the spatial distribution of Cd is significantly different in PRD and high-value is mainly concentrated in the central cities of Guangzhou-Foshan-Jiangmen-Zhongshan-Zhuhai. Moreover, hot spots with higher Cd content in deep are mainly along Beijiang, Dongjiang, and Pearl River Estuary (PRE). Overall, our findings suggest that the high background value areas formed by marine-land and fluvial sediments as well as intensive human activities that make PRD become an area under the dual restriction of geological genesis and human activities, pollution control cannot be ignored.


Subject(s)
Rivers , Soil Pollutants , Cadmium/analysis , China , Environmental Monitoring , Humans , Soil , Soil Pollutants/analysis
13.
PeerJ ; 8: e10370, 2020.
Article in English | MEDLINE | ID: mdl-33354415

ABSTRACT

BACKGROUND: Blow flies are a family of dipterans of medical, veterinary and sanitary importance. We aim to predict the current geographical distribution of six neotropical blowfly species with different altitudinal ranges of distribution (high, medium, and lowlands) and degree of synanthropy (eusynanthropic, hemisynanthropic and asynanthropic) based on their existing fundamental niche (EA) in Northwestern South America. METHODS: Geographical records were compiled based on data from museum specimens and literature. The accessible area hypothesis (M) was calculated based on three criteria: (1) Altitudinal range, (2) Synanthropy values deducted based on the Human Influence Index (HII) raster dataset, and (3). The mean dispersal capability of flies. The modeling was performed using the Maxent entropy modeling software. The selection of parameters was made with the R Program ENMeval package. RESULTS: The models were assessed using the area under the operator-partial receiver curve (ROCp). The high statistical performance was evidenced in every modeling prediction. The modeling allowed identifying possible taxonomic inaccuracies and the lack of exhaustive collection in the field, especially for lowlands species. Geographical distribution predicted by the modeling and empirical data was remarkably coherent in montane species. DISCUSSION: The data obtained evidence that montane elevational ranges affect the performance of the distribution models. These models will allow a more precise predicting of medium and high elevation blow flies than lowlands species. Montane species modeling will accurately predict the fly occurrence to use such biological information for medical, legal, veterinary, and conservation purposes.

14.
Ecol Evol ; 10(19): 10899-10911, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33072304

ABSTRACT

Understanding how biodiversity components are related under different environmental factors is a fundamental challenge for ecology studies, yet there is little knowledge of this interplay among the biotas, especially small mammals, in karst mountain areas. Here, we examine the elevation patterns of the taxonomic diversity (TD), phylogenetic diversity (PD), and functional diversity (FD) of small mammals in a karst mountain area, the Wuling Mountains, Southwest China, and compare these patterns between taxa (Rodentia and Eulipotyphla) and scales (broad- and narrow-range species). We also disentangle the impacts of the human influence index, net primary productivity (NPP), normalized difference vegetation index (NDVI), annual precipitation (AP), and annual mean temperature (AMT) on these three facets of biodiversity by using structural equation modeling. We recorded a total of 39 small mammal species, including 26 rodents and 13 species of the order Eulipotyphla. Our study shows that the facets of biodiversity are spatially incongruent. Net primary productivity has a positive effect on the three facets for most groups, while the effect of the NDVI is negative for TD and PD in most groups. AMT temperature and AP have negative effects on FD and PD, whereas TD is dependent on the species range scale. The human influence index effect on TD and PD also depends on the species range scale. These findings provide robust evidence that the ecological drivers of biodiversity differ among different biotas and different range scales, and future research should use multifacet approach to determine biodiversity conservation strategies.

15.
Glob Chang Biol ; 26(8): 4344-4356, 2020 08.
Article in English | MEDLINE | ID: mdl-32500604

ABSTRACT

Leading up to the Convention on Biological Diversity Conference of the Parties 15, there is momentum around setting bold conservation targets. Yet, it remains unclear how much of Earth's land area remains without significant human influence and where this land is located. We compare four recent global maps of human influences across Earth's land, Anthromes, Global Human Modification, Human Footprint and Low Impact Areas, to answer these questions. Despite using various methodologies and data, these different spatial assessments independently estimate similar percentages of the Earth's terrestrial surface as having very low (20%-34%) and low (48%-56%) human influence. Three out of four spatial assessments agree on 46% of the non-permanent ice- or snow-covered land as having low human influence. However, much of the very low and low influence portions of the planet are comprised of cold (e.g., boreal forests, montane grasslands and tundra) or arid (e.g., deserts) landscapes. Only four biomes (boreal forests, deserts, temperate coniferous forests and tundra) have a majority of datasets agreeing that at least half of their area has very low human influence. More concerning, <1% of temperate grasslands, tropical coniferous forests and tropical dry forests have very low human influence across most datasets, and tropical grasslands, mangroves and montane grasslands also have <1% of land identified as very low influence across all datasets. These findings suggest that about half of Earth's terrestrial surface has relatively low human influence and offers opportunities for proactive conservation actions to retain the last intact ecosystems on the planet. However, though the relative abundance of ecosystem areas with low human influence varies widely by biome, conserving these last intact areas should be a high priority before they are completely lost.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Forests , Humans , Tundra
16.
Pest Manag Sci ; 75(1): 134-143, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30168641

ABSTRACT

BACKGROUND: By modelling species-environment relationships of pest species, it is possible to understand potential limits to their distributions when they invade new regions, and their likely continued spread. The European earwig, Forficula auricularia, is a non-native invasive species in Australia that has been in the country for over 170 years. However, in the last few decades it has invaded new areas. Unlike in other countries, F. auricularia is a pest species of grain production in Australia. In this study we detail the Australian distribution of this species, adding new samples focused around grain-growing regions. Using this information, we build global species distribution models for F. auricularia to better understand species-environment relationships. RESULTS: Our models indicate that the distribution of F. auricularia is strongly associated with temperate through to semi-arid environments, a high winter rainfall and pronounced temperature seasonality. We identified regions that hold suitable, but as yet vacant, niche space for Australian populations, suggesting further potential for range expansion. Beyond climate, an index describing human influence on the landscape was important to understand the distribution limits of this pest. We identified regions where there was suitable climate space, but which F. auricularia has not occupied, probably due to low levels of human impact. CONCLUSION: Modelling the global distribution of a non-native pest species aided understanding of the regional distribution limits within Australia and highlighted the usefulness of human impact measures for modelling globally invasive insect species. © 2018 Society of Chemical Industry.


Subject(s)
Animal Distribution , Climate , Ecosystem , Insecta/physiology , Introduced Species , Animals , Australia , Models, Biological
17.
Environ Monit Assess ; 190(9): 543, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30136179

ABSTRACT

The Mu Us Sandy Land (MUSL) has undergone climate changes and shifts in human activities driven by a series of ecological restoration projects in recent decades. We analyze the spatiotemporal dynamics of vegetation in this region using the satellite-retrieved normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies (GIMMS) and Moderate Resolution Imaging and Spectroradiometer (MODIS) datasets during the past 33 years. The results show that (1) the vegetation in 53.46% of the MUSL exhibited an upward trend, and 34.45% of the area displayed a large increase, mainly in the eastern part of the MUSL region, including most of Shenmu County, Yuyang District, Hengshan County, and Jingbian County. (2) By the end of 2014, the rapid increase in vegetation encompassed 16.85% of the total area of the study region due to the construction of ecological engineering projects. (3) Based on the residual regression method, the area of positive effects accounted for 55.07% of the total area, and the vegetation in the study area was positively affected by human activities. Our study suggests that these multiple ecological restoration programs contributed to the accelerated greening trend in the MUSL region and highlights the importance of human intervention in regional vegetation growth under climate change conditions.


Subject(s)
Ecosystem , Environmental Monitoring , Environmental Restoration and Remediation/methods , China , Climate Change , Ecology , Human Activities , Humans , Satellite Imagery
18.
Sci Total Environ ; 639: 1254-1260, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29929292

ABSTRACT

Anthropogenic land use and land cover (LULC) create a heterogeneous environment in the floodplains. This heterogeneity may be governing plant species assemblages, diversity, and dominance patterns in the riparian habitats of the lentic systems in tropical floodplains. We tested this hypothesis in the floodplains of Barak river basin in northeast India following standard methods of plant and soil sampling/analysis and multivariate statistical tools. Plant community studies in the riparian habitats of the selected lentic systems were done at monthly intervals for a period of one year, while soil sampling and analysis were done at bimonthly intervals. Standard data visualization plots and canonical correspondence analysis (CCA) were used to assess spatiotemporal variations in species richness and diversity, environmental heterogeneity, and species-environment association. The study revealed that anthropogenic land use and land cover significantly affects species assemblage, diversity, and dominance in the riparian habitats. The variations in vegetation structure and composition with respect to the adjoining land use type plausibly have implications on the structure and functioning of the lentic systems. Thus, the study recommends that a holistic approach involving the riparian areas is required for effective management of tropical floodplains.


Subject(s)
Ecosystem , Plants , Rivers , Environmental Monitoring , India
19.
Conserv Biol ; 32(3): 725-730, 2018 06.
Article in English | MEDLINE | ID: mdl-29218741

ABSTRACT

Most examples that support the substitution-habitat hypothesis (human-made habitats act as substitutes of original habitat) deal with birds and mammals. We tested this hypothesis in 14 amphibians by using percentage occupancy as a proxy of habitat quality (i.e., higher occupancy percentages indicate higher quality). We classified water body types as original habitat (no or little human influence) depending on anatomical, behavioral, or physiological adaptations of each amphibian species. Ten species had relatively high probabilities (0.16-0.28) of occurrence in original habitat, moderate probability of occurrence in substitution habitats (0.11-0.14), and low probability of occurrence in refuge habitats (0.05-0.08). Thus, the substitution-habitat hypothesis only partially applies to amphibians because the low occupancy of refuges could be due to the negligible human persecution of this group (indicating good conservation status). However, low occupancy of refuges could also be due to low tolerance of refuge conditions, which could have led to selective extinction or colonization problems due to poor dispersal capabilities. That original habitats had the highest probabilities of occupancy suggests amphibians have a good conservation status in the region. They also appeared highly adaptable to anthropogenic substitution habitats.


Subject(s)
Conservation of Natural Resources , Ecosystem , Amphibians , Animals , Birds , Humans , Mammals
20.
Proc Natl Acad Sci U S A ; 114(52): 13750-13755, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229850

ABSTRACT

Growing human and ecological costs due to increasing wildfire are an urgent concern in policy and management, particularly given projections of worsening fire conditions under climate change. Thus, understanding the relationship between climatic variation and fire activity is a critically important scientific question. Different factors limit fire behavior in different places and times, but most fire-climate analyses are conducted across broad spatial extents that mask geographical variation. This could result in overly broad or inappropriate management and policy decisions that neglect to account for regionally specific or other important factors driving fire activity. We developed statistical models relating seasonal temperature and precipitation variables to historical annual fire activity for 37 different regions across the continental United States and asked whether and how fire-climate relationships vary geographically, and why climate is more important in some regions than in others. Climatic variation played a significant role in explaining annual fire activity in some regions, but the relative importance of seasonal temperature or precipitation, in addition to the overall importance of climate, varied substantially depending on geographical context. Human presence was the primary reason that climate explained less fire activity in some regions than in others. That is, where human presence was more prominent, climate was less important. This means that humans may not only influence fire regimes but their presence can actually override, or swamp out, the effect of climate. Thus, geographical context as well as human influence should be considered alongside climate in national wildfire policy and management.


Subject(s)
Climate Change , Seasons , Wildfires , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL