Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomicro Lett ; 17(1): 18, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39327336

ABSTRACT

The risk of flammability is an unavoidable issue for gel polymer electrolytes (GPEs). Usually, flame-retardant solvents are necessary to be used, but most of them would react with anode/cathode easily and cause serious interfacial instability, which is a big challenge for design and application of nonflammable GPEs. Here, a nonflammable GPE (SGPE) is developed by in situ polymerizing trifluoroethyl methacrylate (TFMA) monomers with flame-retardant triethyl phosphate (TEP) solvents and LiTFSI-LiDFOB dual lithium salts. TEP is strongly anchored to PTFMA matrix via polarity interaction between -P = O and -CH2CF3. It reduces free TEP molecules, which obviously mitigates interfacial reactions, and enhances flame-retardant performance of TEP surprisingly. Anchored TEP molecules are also inhibited in solvation of Li+, leading to anion-dominated solvation sheath, which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers. Such coordination structure changes Li+ transport from sluggish vehicular to fast structural transport, raising ionic conductivity to 1.03 mS cm-1 and transfer number to 0.41 at 30 °C. The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm-2, and 4.2 V LiCoO2|SGPE|Li battery delivers high average specific capacity > 120 mAh g-1 over 200 cycles. This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.

2.
Article in English | MEDLINE | ID: mdl-38662917

ABSTRACT

Poor fluorescence recovery at low analyte dosages and slow ligand binding kinetics are critical challenges currently limiting the use of aptamer-functionalized hydrogels for sensing small molecules. In this paper, we report an adenosine-responsive hydrogel sensor that integrates FRET-signaling aptamer switches into in situ-gelling thin-film hydrogels. The hydrogel sensor is able to entrap a high proportion of the sensing probes (>70% following vigorous washing), delay nucleolytic degradation, stabilize weak aptamer complexes to improve hybridization affinity and suppress fluorescence background, and provide high sensitivity in biological fluids (i.e., undiluted human serum). Furthermore, the developed hydrogel sensors were able to achieve low limits of detection (5.3 µM in buffer and 8.8 µM in serum) within 4 min of exposure to the sample, with signal generation requiring only 20 µL/well of analyte sample. The physical nature of the aptamer encapsulation allows this approach to accommodate virtually any small-molecule aptamer, avoiding the need for covalent anchoring and the complex modification of nucleic acid sequences typically required for effective aptamer-based molecular recognition.

3.
Angew Chem Int Ed Engl ; 63(23): e202404400, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38517342

ABSTRACT

The practical application of lithium metal batteries (LMBs) has been hindered by limited cycle-life and safety concerns. To solve these problems, we develop a novel fluorinated phosphate cross-linker for gel polymer electrolyte in high-voltage LMBs, achieving superior electrochemical performance and high safety simultaneously. The fluorinated phosphate cross-linked gel polymer electrolyte (FP-GPE) by in-situ polymerization method not only demonstrates high oxidation stability but also exhibits excellent compatibility with lithium metal anode. LMBs utilizing FP-GPE realize stable cycling even at a high cut-off voltage of 4.6 V (vs Li/Li+) with various high-voltage cathode materials. The LiNi0.6Co0.2Mn0.2O2|FP-GPE|Li battery exhibits an ultralong cycle-life of 1200 cycles with an impressive capacity retention of 80.1 %. Furthermore, the FP-GPE-based batteries display excellent electrochemical performance even at practical conditions, such as high cathode mass loading (20.84 mg cm-2), ultrathin Li (20 µm), and a wide temperature range of -25 to 80 °C. Moreover, the first reported solid-state 18650 cylindrical LMBs have been successfully fabricated and demonstrate exceptional safety under mechanical abuse. Additionally, the industry-level 18650 cylindrical LiMn2O4|FP-GPE|Li4Ti5O12 cells demonstrate a remarkable cycle-life of 1400 cycles. Therefore, the impressive electrochemical performance and high safety in practical batteries demonstrate a substantial potential of well-designed FP-GPE for large-scale industrial applications.

4.
J Colloid Interface Sci ; 498: 136-143, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28324719

ABSTRACT

Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization.

5.
Mater Sci Eng C Mater Biol Appl ; 74: 159-166, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28254281

ABSTRACT

Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility.


Subject(s)
Biocompatible Materials/chemistry , Membranes, Artificial , Polymers/chemistry , Polyvinyl Chloride/chemistry , Sulfones/chemistry , Adsorption , Biocompatible Materials/pharmacology , Biofouling/prevention & control , Blood Platelets/cytology , Cell Adhesion/drug effects , Hemodiafiltration , Humans , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Partial Thromboplastin Time , Photoelectron Spectroscopy , Polymerization , Porosity , Proteins/chemistry , Proteins/metabolism , Prothrombin Time , Spectroscopy, Fourier Transform Infrared
6.
J Biomater Sci Polym Ed ; 26(15): 1013-34, 2015.
Article in English | MEDLINE | ID: mdl-26167762

ABSTRACT

In this study, multifunctional polyethersulfone (PES) membranes are prepared via in situ cross-linked copolymerization coupled with a liquid-liquid phase separation technique. Acrylic acid (AA) and N-vinylpyrrolidone (VP) are copolymerized in PES solution, and the solution is then directly used to prepare PES membranes. The infrared and X-ray photoelectron spectroscopy testing, scanning electron microscopy, and water contact angle measurements confirm the successful modification of pristine PES membrane. Protein adsorption, platelet adhesion, plasma recalcification time, and activated partial thromboplastin time assays convince that the modified PES membranes have a better biocompatibility than pristine PES membrane. In addition, the modified membranes showed good protein antifouling property and significant adsorption property of cationic dye. The loading of Ag nanoparticles into the modified membranes endows the composite membranes with antibacterial activity.


Subject(s)
Biocompatible Materials , Membranes, Artificial , Polymers , Sulfones , Acrylates/chemistry , Adsorption , Adult , Biocompatible Materials/chemistry , Biofouling/prevention & control , Escherichia coli/physiology , Humans , Male , Materials Testing , Metal Nanoparticles/chemistry , Partial Thromboplastin Time , Plasma/chemistry , Platelet Adhesiveness , Polymerization , Polymers/chemistry , Proteins/chemistry , Pyrrolidinones/chemistry , Silver/chemistry , Staphylococcus aureus/physiology , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL