Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2237): 20210383, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36209807

ABSTRACT

Using a combination of multipole methods and the method of matched asymptotic expansions, we present a solution procedure for acoustic plane wave scattering by a single Helmholtz resonator in two dimensions. Closed-form representations for the multipole scattering coefficients of the resonator are derived, valid at low frequencies, with three fundamental configurations examined in detail: the thin-walled, moderately thick-walled and extremely thick-walled limits. Additionally, we examine the impact of dissipation for extremely thick-walled resonators, and also numerically evaluate the scattering, absorption and extinction cross-sections (efficiencies) for representative resonators in all three wall thickness regimes. In general, we observe strong enhancement in both the scattered fields and cross-sections at the Helmholtz resonance frequencies. As expected, dissipation is shown to shift the resonance frequency, reduce the amplitude of the field, and reduce the extinction efficiency at the fundamental Helmholtz resonance. Finally, we confirm results in the literature on Willis-like coupling effects for this resonator design, and connect these findings to earlier works by several of the authors on two-dimensional arrays of resonators, deducing that depolarizability effects (off-diagonal terms) for a single resonator do not ensure the existence of Willis coupling effects (bianisotropy) in bulk. This article is part of the theme issue 'Wave generation and transmission in multi-scale complex media and structured metamaterials (part 2)'.

2.
Proc Math Phys Eng Sci ; 478(2262): 20220124, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35756873

ABSTRACT

We present a novel multipole formulation for computing the band structures of two-dimensional arrays of cylindrical Helmholtz resonators. This formulation is derived by combining existing multipole methods for arrays of ideal cylinders with the method of matched asymptotic expansions. We construct asymptotically close representations for the dispersion equations of the first band surface, correcting and extending an established lowest-order (isotropic) result in the literature for thin-walled resonator arrays. The descriptions we obtain for the first band are accurate over a relatively broad frequency and Bloch vector range and not simply in the long-wavelength and low-frequency regime, as is the case in many classical treatments. Crucially, we are able to capture features of the first band, such as low-frequency anisotropy, over a broad range of filling fractions, wall thicknesses and aperture angles. In addition to describing the first band we use our formulation to compute the first band gap for both thin- and thick-walled resonators, and find that thicker resonator walls correspond to both a narrowing of the first band gap and an increase in the central band gap frequency.

3.
Proc Math Phys Eng Sci ; 478(2262): 20220125, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35756874

ABSTRACT

We present a solution method which combines the technique of matched asymptotic expansions with the method of multipole expansions to determine the band structure of cylindrical Helmholtz resonator arrays in two dimensions. The resonator geometry is considered in the limit as the wall thickness becomes very large compared with the aperture width (the extremely thick-walled limit). In this regime, the existing treatment in Part I (Smith & Abrahams, 2022 Tailored acoustic metamaterials. Part I. Thin- and thick-walled Helmholtz resonator arrays), with updated parameters, is found to return spurious spectral behaviour. We derive a regularized system which overcomes this issue and also derive compact asymptotic descriptions for the low-frequency dispersion equation in this setting. We find that the matched-asymptotic system is able to recover the first few bands over the entire Brillouin zone with ease, when suitably truncated. A homogenization treatment is outlined for describing the effective bulk modulus and effective density tensor of the resonator array for all wall thicknesses. We demonstrate that extremely thick-walled resonators are able to achieve exceptionally low Helmholtz resonant frequencies, and present closed-form expressions for determining these explicitly. We anticipate that the analytical expressions and the formulation outlined here may prove useful in designing metamaterials for industrial and other applications.

4.
Philos Trans A Math Phys Eng Sci ; 380(2226): 20210052, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35527628

ABSTRACT

Equations of motion for compressible point vortices in the plane are obtained in the limit of small Mach number, M, using a Rayleigh-Jansen expansion and the method of Matched Asymptotic Expansions. The solution in the region between vortices is matched to solutions around each vortex core. The motion of the vortices is modified over long time scales [Formula: see text] and [Formula: see text]. Examples are given for co-rotating and co-propagating vortex pairs. The former show a correction to the rotation rate and, in general, to the centre and radius of rotation, while the latter recover the known result that the steady propagation velocity is unchanged. For unsteady configurations, the vortex solution matches to a far field in which acoustic waves are radiated. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

5.
Proc Math Phys Eng Sci ; 476(2242): 20200444, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33223943

ABSTRACT

We study the problem of resonant extraordinary transmission of electromagnetic and acoustic waves through subwavelength slits in an infinite plate, whose thickness is close to a half-multiple of the wavelength. We build on the matched-asymptotics analysis of Holley & Schnitzer (2019 Wave Motion 91, 102381 (doi:10.1016/j.wavemoti.2019.102381)), who considered a single-slit system assuming an idealized formulation where dissipation is neglected and the electromagnetic and acoustic problems are analogous. We here extend that theory to include thin dissipative boundary layers associated with finite conductivity of the plate in the electromagnetic problem and viscous and thermal effects in the acoustic problem, considering both single-slit and slit-array configurations. By considering a distinguished boundary-layer scaling where dissipative and diffractive effects are comparable, we develop accurate analytical approximations that are generally valid near resonance; the electromagnetic-acoustic analogy is preserved up to a single parameter that is provided explicitly for both scenarios. The theory is shown to be in excellent agreement with GHz-microwave and kHz-acoustic experiments in the literature.

6.
R Soc Open Sci ; 6(4): 181367, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31183115

ABSTRACT

Chemical clock reactions are characterized by a relatively long induction period followed by a rapid 'switchover' during which the concentration of a clock chemical rises rapidly. In addition to their interest in chemistry education, these reactions are relevant to industrial and biochemical applications. A substrate-depletive, non-autocatalytic clock reaction involving household chemicals (vitamin C, iodine, hydrogen peroxide and starch) is modelled mathematically via a system of nonlinear ordinary differential equations. Following dimensional analysis, the model is analysed in the phase plane and via matched asymptotic expansions. Asymptotic approximations are found to agree closely with numerical solutions in the appropriate time regions. Asymptotic analysis also yields an approximate formula for the dependence of switchover time on initial concentrations and the rate of the slow reaction. This formula is tested via 'kitchen sink chemistry' experiments, and is found to enable a good fit to experimental series varying in initial concentrations of both iodine and vitamin C. The vitamin C clock reaction provides an accessible model system for mathematical chemistry.

7.
J Math Biol ; 77(5): 1407-1430, 2018 11.
Article in English | MEDLINE | ID: mdl-30056506

ABSTRACT

In pharmacokinetics, exact solutions to one-compartment models with nonlinear elimination kinetics cannot be found analytically, if dosages are assumed to be administered repetitively through extravascular routes (Tang and Xiao in J Pharmacokinet Pharmacodyn 34(6):807-827, 2007). Hence, for the corresponding impulsed dynamical system, alternative methods need to be developed to find approximate solutions. The primary purpose of this paper is to use the method of matched asymptotic expansions (Holmes Introduction to Perturbation Methods, vol 20. Springer Science & Business Media, Berlin, 2012), a singular perturbation method (Holmes, Introduction to Perturbation Methods, vol 20. Springer Science & Business Media, Berlin, 2012; Keener Principles of Applied Mathematics, Addison-Wesley, Boston, 1988), to obtain approximate solutions. With this method, we are able to rigorously determine conditions under which there is a stable periodic solution of the model equations. Furthermore, typical important biomarkers that enable the design of practical, efficient and safe drug delivery protocols, such as the time the drug concentration reaches the peak and the peak concentrations, are theoretically estimated by the perturbation method we employ.


Subject(s)
Biomarkers/metabolism , Models, Biological , Pharmacokinetics , Computer Simulation , Drug Delivery Systems/statistics & numerical data , Humans , Mathematical Concepts , Nonlinear Dynamics
8.
J Math Ind ; 7: 3, 2016.
Article in English | MEDLINE | ID: mdl-27570723

ABSTRACT

The extraction of coffee solubles from roasted and ground coffee is a complex operation, the understanding of which is key to the brewing of high quality coffee. This complexity stems from the fact that brewing of coffee is achieved through a wide variety of techniques each of which depends on a large number of process variables. In this paper, we consider a recent, experimentally validated model of coffee extraction, which describes extraction from a coffee bed using a double porosity model. The model incorporates dissolution and transport of coffee in the coffee bed. The model was shown to accurately describe extraction of coffee solubles from grains in two situations: extraction from a dilute suspension of coffee grains and extraction from a packed coffee bed. The full model equations can only be solved numerically. In this work we consider asymptotic solutions, based on the dominant mechanisms, in the case of coffee extraction from a dilute suspension of coffee grains. Extraction in this well mixed system, can be described by a set of ordinary differential equations. This allows analysis of the extraction kinetics from the coffee grains independent of transport processes associated with flow through packed coffee beds. Coffee extraction for an individual grain is controlled by two processes: a rapid dissolution of coffee from the grain surfaces in conjunction with a much slower diffusion of coffee through the tortuous intragranular pore network to the grain surfaces. Utilising a small parameter resulting from the ratio of these two timescales, we construct asymptotic solutions using the method of matched asymptotic expansions. The asymptotic solutions are compared with numerical solutions and data from coffee extraction experiments. The asymptotic solutions depend on a small number of dimensionless parameters, so the solutions facilitate quick investigation of the influence of various process parameters on the coffee extraction curves.

SELECTION OF CITATIONS
SEARCH DETAIL