Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.998
Filter
1.
J Biol Chem ; : 107851, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357825

ABSTRACT

Tripartite ATP-independent periplasmic (TRAP) transporters are analogous to ABC transporters in that they use a substrate-binding protein to scavenge metabolites (e.g., N-acetylneuraminate) and deliver them to the membrane components for import. TRAP substrate-binding proteins are thought to bind the substrate using a two-state (open and closed) induced-fit mechanism. We solved the structure of the TRAP N-acetylneuraminate substrate-binding protein from Aggregatibacter actinomycetemcomitans (AaSiaP) in both the open ligand-free and closed liganded conformations. Surprisingly, we also observed an intermediate conformation, where AaSiaP is mostly closed and is bound to a non-cognate ligand, acetate, which hints at how N-acetylneuraminate binding stabilises a fully closed state. AaSiaP preferentially binds N-acetylneuraminate (KD = 0.4 µM) compared to N-glycolylneuraminate (KD = 4.4 µM), which is explained by the closed-N-acetylneuraminate bound structure. Small-angle X-ray scattering data alongside molecular dynamics simulations suggest the AaSiaP adopts a more open state in solution than in crystal. However, the open unliganded conformation can also sample closed conformations. Molecular dynamics simulations also demonstrate the importance of water molecules for stabilising the closed conformation. Although our data is consistent with an induced fit model of binding, we suggest that the open unliganded conformation may sample multiple states capable of binding substrate. The mechanism by which the ligand is released for import remains to be determined.

2.
Front Chem ; 12: 1444801, 2024.
Article in English | MEDLINE | ID: mdl-39359422

ABSTRACT

The phospholipid bilayer nanodiscs (LNDs), as a rapidly-developing tool in recent years, provide a natural bio-memebrane environment to maintain the native conformation and functions of membrane proteins as well as a versatile delivery vehicle for a variety of hydrophobic and hydrophilic drugs. We have seen unprecedented advantages of phospholipid bilayer nanodiscs in membrane protein structure characterization, biochemical and physiological studies of membrane proteins, membrane environment studies, drug discovery & development, and drug delivery. Many previous reviews have been mainly focused on the advantages of nanodiscs in membrane protein researches, but few have touched upon the importance and potential application of nanodiscs in pharmaceutical industries. This review will provide general description of the structural characteristics, advantages, classification, and applications of phospholipid nanodiscs, with particular focus on nanodisc-enabled membrane protein drug discovery & development as well as drug delivery.

3.
Biosens Bioelectron ; 267: 116819, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39362137

ABSTRACT

Membrane proteins are involved in a variety of dynamic cellular processes and exploration of the structural basis of membrane proteins is of significance for a better understanding of their functions. In situ analysis of membrane proteins and their dynamics is, however, challenging for conventional techniques. Surface-enhanced Raman spectroscopy (SERS) is powerful in protein structural characterization, allowing for sensitive, in-situ and real-time identification and dynamic monitoring under physiological conditions. In this review, the applications of SERS in probing membrane proteins are outlined, discussed and prospected. It starts with a brief introduction to membrane proteins, SERS theories and SERS-based strategies that commonly-used for membrane proteins. How to assemble phospholipid biolayers on SERS-active materials is highlighted, followed by respectively discussing about direct and indirect strategies for membrane protein sensing. SERS-based monitoring of protein-ligand interactions is finally introduced and its potential in biomedical applications is discussed in detail. The review ends with critical discussion about current challenges and limitations of this research field, and the promising perspectives in both fundamental and applied sciences.

4.
J Biol Chem ; : 107850, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39362471

ABSTRACT

Numerous small proteins have been discovered across all domains of life, among which many are hydrophobic and predicted to localize to the cell membrane. Based on a few that are well-studied, small membrane proteins are regulators involved in various biological processes, such as cell signaling, nutrient transport, drug resistance, and stress response. However, the function of most identified small membrane proteins remains elusive. Their small size and hydrophobicity make protein production challenging, hindering function discovery. Here, we combined a cell-free system with lipid sponge droplets and synthesized small membrane proteins in vitro. Lipid sponge droplets contain a dense network of lipid bilayers, which accommodates and extracts newly synthesized small membrane proteins from the aqueous surroundings. Using small bacterial membrane proteins MgrB, SafA, and AcrZ as proof of principle, we showed that the in vitro produced membrane proteins were functionally active, for example, modulating the activity of their target kinase as expected. The cell-free system produced small membrane proteins, including one from human, up to micromolar concentrations, indicating its high level of versatility and productivity. Furthermore, AcrZ produced in this system was used successfully for in vitro co-immunoprecipitations to identify interaction partners. This work presents a robust alternative approach for producing small membrane proteins, which opens a door to their function discovery in different domains of life.

5.
FEBS J ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39356479

ABSTRACT

Bacterial toxin-antitoxin (TA) systems consist of a toxin that inhibits essential cellular processes, such as DNA replication, transcription, translation, or ATP synthesis, and an antitoxin neutralizing their cognate toxin. These systems have roles in programmed cell death, defense against phage, and the formation of persister cells. Here, we characterized the previously identified Staphylococcus aureus TA system, tsaAT, which consists of two putative membrane proteins: TsaT and TsaA. Expression of the TsaT toxin caused cell death and disrupted membrane integrity, whereas TsaA did not show any toxicity and neutralized the toxicity of TsaT. Furthermore, subcellular fractionation analysis demonstrated that both TsaA and TsaT localized to the cytoplasmic membrane of S. aureus expressing either or both 3xFLAG-tagged TsaA and 3xFLAG-tagged TsaT. Taken together, these results demonstrate that the TsaAT TA system consists of two membrane proteins, TsaA and TsaT, where TsaT disrupts membrane integrity, ultimately leading to cell death. Although sequence analyses showed that the tsaA and tsaT genes were conserved among Staphylococcus species, amino acid substitutions between TsaT orthologs highlighted the critical role of the 6th residue for its toxicity. Further amino acid substitutions indicated that the glutamic acid residue at position 63 in the TsaA antitoxin and the cluster of five lysine residues in the TsaT toxin are involved in TsaA's neutralization reaction. This study is the first to describe a bacterial TA system wherein both toxin and antitoxin are membrane proteins. These findings contribute to our understanding of S. aureus TA systems and, more generally, give new insight into highly diverse bacterial TA systems.

6.
Mar Environ Res ; 202: 106777, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368156

ABSTRACT

As emerging pollutants, microplastics can aggregate microorganisms on their surfaces and form biofilms, enriching antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Consequently, microplastic biofilms have become a focal point of research. Horizontal gene transfer is one of the primary mechanisms by which bacteria acquire antibiotic resistance, with much of the research focusing on suspended bacteria. However, microplastic biofilms, as hotspots for horizontal gene transfer, also merit significant investigation. This study primarily explored and compared the frequency of ARG conjugative transfer between suspended bacteria and microplastic biofilms. The results demonstrated that, compared to suspended bacteria, microplastic biofilms enhanced the frequency of ARG conjugative transfer by 7.2-19.6 times. Among them, biofilms on polyethylene microplastics showed the strongest promotion of conjugation. After the formation of microplastic biofilms, there was a significant increase in bacterial density within the biofilms, which raised the collision frequency of donor and recipient bacteria. Then microplastic biofilms facilitated the gene expression levels of outer membrane proteins, enhanced bacterial gene transfer capabilities, promoted the synthesis of conjugative pili, accelerated the formation of conjugative pairing systems, and elevated the expression levels of genes related to DNA replication and transfer systems, thereby enhancing the conjugative transfer of ARGs within microplastic biofilms. Among different types of microplastic biofilms, polyethylene biofilms exhibited the highest bacterial density, thus showing the highest frequency of ARG conjugation. This study highlights the risks associated with ARG conjugative transfer following the formation of microplastic biofilms and provides insights into the risks of microplastic and antibiotic resistance propagation in estuarine environments.

7.
Int J Biol Macromol ; : 136366, 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39378919

ABSTRACT

The peanut de-oiling industry currently lacks efficient processing technologies for de-oiling at low or room temperatures. A novel method, micro-aqueous extraction (MAE), offers over 93 % de-oiling efficiency at room temperature and is also effective for other oilseeds like sesame, camellia, and rapeseed. Despite its effectiveness, the exact mechanism behind oleosomes destabilization at a critical hydration level or oil volume fraction (φ ~ 0.75) is not fully understood. This study investigates how MAE affects peanut oleosome size, paste stability, and the interfacial properties of surfactant proteins. Results showed that micro-aqueous hydration and agitation caused small droplets (85.6 vol% < 10 µm) to coalesce into larger droplets (90.0 vol% > 30 µm) due to press-induced rupture of the liquid film. Simultaneously, agitation decreased water mobility and protein intrinsic fluorescence, while increasing paste viscosity, leading to protein aggregation. This aggregation further promoted oleosome coalescence. Additionally, hydration and agitation weakened the ability of membrane proteins to stabilize oleosomes by increasing interfacial tension and decreasing dilatational storage modulus. The insights into the peanut oleosome destabilization mechanism for MAE provide a foundation for scaling up the process, with the potential to replace current hot and cold pressing techniques.

8.
Proc Natl Acad Sci U S A ; 121(42): e2414768121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39388263

ABSTRACT

The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Frameshifting, Ribosomal , Protein Folding , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Frameshifting, Ribosomal/genetics , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/drug therapy , Protein Biosynthesis , Ribosomes/metabolism , Nucleic Acid Conformation , Mutation
9.
Vaccines (Basel) ; 12(9)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39340043

ABSTRACT

Marburg hemorrhagic fever (MHF) is a fatal infectious disease caused by Marburg virus (MARV) infection, and MARV has been identified as a priority pathogen for vaccine development by the WHO. The glycoprotein (GP) of MARV mediates viral adhesion and invasion of host cells and therefore can be used as an effective target for vaccine development. Moreover, DNA vaccines have unique advantages, such as simple construction processes, low production costs, and few adverse reactions, but their immunogenicity may decrease due to the poor absorption rate of plasmids. Lysosome-associated membrane protein 1 (LAMP1) can direct antigens to lysosomes and endosomes and has great potential for improving the immunogenicity of nucleic acid vaccines. Therefore, we constructed a DNA vaccine based on a codon-optimized MARV GP (ID MF939097.1) fused with LAMP1 and explored the effect of a LAMP targeting strategy on improving the immunogenicity of the MARV DNA vaccine. ELISA, ELISpot, and flow cytometry revealed that the introduction of LAMP1 into the MARV DNA candidate vaccine improved the humoral and cellular immune response, enhanced the secretion of cytokines, and established long-term immune protection. Transcriptome analysis revealed that the LAMP targeting strategy significantly enriched antigen processing and presentation-related pathways, especially the MHC class II-related pathway, in the candidate vaccine. Our study broadens the strategic vision for enhanced DNA vaccine design and provides a promising candidate vaccine for MHF prevention.

10.
J Colloid Interface Sci ; 678(Pt C): 1001-1011, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39326161

ABSTRACT

HYPOTHESIS: Oilseeds use triacylglycerides as main energy source, and pack them into highly stable droplets (oleosomes) to facilitate the triacylglycerides' long-term storage in the aqueous cytosol. To prevent the coalescence of oleosomes, they are stabilized by a phospholipid monolayer and unique surfactant-shaped proteins, called oleosins. In this study, we use state-of-the-art interfacial techniques to reveal the function of each component at the oleosome interface. EXPERIMENTS: We created model oil-water interfaces with pure oleosins, phosphatidylcholines, or mixtures of both components (ratios of 3:1, 1:1, 1:3), and applied large oscillatory dilatational deformations (LAOD). The obtained rheological response was analyzed with general stress decomposition (GSD) to get insights into the role of phospholipids and oleosins on the mechanics of the interface. FINDINGS: Oleosins formed viscoelastic solid interfacial films due to network formation via in-plane interactions. Between adsorbed phosphatidylcholines, weak interactions were observed, suggesting the surface stress response upon dilatational deformations was dominated by density changes. In mixtures with 3:1 and 1:1 oleosin-to-phosphatidylcholine ratios, oleosins dominated the interfacial mechanics and formed a network, while phosphatidylcholines contributed to interfacial tension reduction. At higher phosphatidylcholine concentrations (1:3 oleosin-to-phosphatidylcholine), phosphatidylcholine dominated the interface, and no network formation occurred. Our findings improve the understanding of both components' role for oleosomes.

11.
Arch Biochem Biophys ; 761: 110165, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332577

ABSTRACT

Hyaluronic acid (HA) is a glycosaminoglycan essential for cellular processes and finding increasingly applications in medicine, pharmaceuticals, and cosmetics. While membrane-integrated Class I hyaluronan synthase (HAS) catalyzes HA synthesis in most organisms, the molecular mechanisms by which HAS-lipid interactions impact HAS catalysis remain unclear. This study employed coarse-grained molecular dynamics simulation combined with dimensionality reduction to uncover the interplay between lipids and Streptococcus equisimilis HAS (SeHAS). A minimum of 67 % cardiolipin is necessary for HA synthesis, as determined through simulations using gradient-composed membranes. The anionic cardiolipin stabilizes the cationic transmembrane regions of SeHAS and thereby maintains its conformation. Moreover, the highly dynamic cardiolipin is required to modulate the catalysis-relevant motions in HAS and thus facilitate HA synthesis. These findings provide molecular insights essential not only for understanding the physiological functions of HAS, but also for the development of cell factories and enzyme catalysts for HA production.

12.
Protein Sci ; 33(10): e5165, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39291728

ABSTRACT

Cytochrome P450 2B4 (CYP 2B4) is one of the best-characterized CYPs and serves as a key model system for understanding the mechanisms of microsomal class II CYPs, which metabolize most known drugs. The highly flexible nature of CYP 2B4 is apparent from crystal structures that show the active site with either a wide open or a closed heme binding cavity. Here, we investigated the conformational ensemble of the full-length CYP 2B4 in a phospholipid bilayer, using multiresolution molecular dynamics (MD) simulations. Coarse-grained MD simulations revealed two predominant orientations of CYP 2B4's globular domain with respect to the bilayer. Their refinement by atomistic resolution MD showed adaptation of the enzyme's interaction with the lipid bilayer, leading to open configurations that facilitate ligand access to the heme binding cavity. CAVER analysis of enzyme tunnels, AquaDuct analysis of water routes, and Random Acceleration Molecular Dynamics simulations of ligand dissociation support the conformation-dependent passage of molecules between the active site and the protein surroundings. Furthermore, simulation of the re-entry of the inhibitor bifonazole into the open conformation of CYP 2B4 resulted in binding at a transient hydrophobic pocket within the active site cavity that may play a role in substrate binding or allosteric regulation. Together, these results show how the open conformation of CYP 2B4 facilitates the binding of substrates from and release of products to the membrane, whereas the closed conformation prolongs the residence time of substrates or inhibitors and selectively allows the passage of smaller reactants via the solvent and water channels.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P450 Family 2 , Molecular Dynamics Simulation , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P450 Family 2/chemistry , Cytochrome P450 Family 2/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Protein Conformation , Rabbits
13.
Pharmacol Res ; 209: 107423, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39303772

ABSTRACT

Practical and conceptual barriers have kept human F-ATP synthase out of reach as a target for the treatment of human diseases. Although this situation has persisted for decades, it may change in the near future. In this review the principal functionalities of human F-ATP synthase--proton motive force / ATP interconversion, membrane bending and mitochondrial permeability transition--are surveyed in the context of their respective potential for pharmaceutical intervention. Further, the technical requirements necessary to allow drug designs that are effective at the multiple levels of functionality and modality of human F-ATP synthase are discussed. The structure-based development of gastric proton pump inhibitors is used to exemplify what might be feasible for human F-ATP synthase. And finally, four structural regions of the human F-ATP synthase are examined as potential sites for the development of structure based drug development.

14.
J Neuroimmunol ; 396: 578454, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39277987

ABSTRACT

Autoimmune autonomic ganglionopathy (AAG) is a rare disease wherein autoantibodies target the ganglionic acetylcholine receptor (gAChR). Current diagnosis in the United States depends upon clinical symptoms and positive autoantibody detection using a radioimmunoprecipitation assay (RIA). Here we offer a proof-of-principle study on an alternative method, fluorescence-detection size-exclusion-chromatography (FSEC). We show FSEC can detect autoantibodies against gAChR from patient sera but not healthy controls or samples from other autoimmune diseases. We compare FSEC to RIA and find good correlation. We discuss potential advantages of using FSEC as an alternative or as a first-step diagnostic prior to pursuing existing methodologies.

15.
Front Microbiol ; 15: 1419106, 2024.
Article in English | MEDLINE | ID: mdl-39309529

ABSTRACT

Lytic phages control the timepoint of host cell lysis by timing the holin-mediated release of cell wall-degrading endolysins. In phage T4, the antiholin RI inhibits the holin T, thereby preventing the early release of the T4 endolysin and lysis. The antiholin achieves lysis inhibition (LIN) in response to phage superinfections, thereby increasing the chance for lysis in an environment with a lower phage concentration. The holin T consists of a small N-terminal cytoplasmic domain, a transmembrane helix, and a periplasmic C-terminal domain. The antiholin is targeted to the periplasm by a cleavable signal peptide. Recently, the periplasmic soluble domains of the holin and the antiholin were found to form T2/RI2 tetramers in crystals. To investigate the functional relevance of this complex, we reconstituted LIN in a phage-free system, using only RI, T, and endolysin, and combined targeted mutagenesis with functional analyses. Inactivation of the RI signal peptide cleavage site did not abolish LIN, indicating that RI can function in a membrane-bound state, which argued against the tetramer. This led to analyses showing that only one of the two T/RI interfaces in the tetramer is physiologically relevant, which is also the only interaction site predicted by AlphaFold2. Some holin mutations at this interaction site prevented lysis, suggesting that the RI interaction likely acts by blocking the holin oligomerization required for hole formation. We conclude that LIN is mediated by a dimeric T/RI complex that, unlike the tetramer, can be easily formed when both partners are membrane-anchored.

16.
Protein Sci ; 33(10): e5166, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39291929

ABSTRACT

Mycobacterial membrane protein Large 3 (MmpL3) of Mycobacterium tuberculosis (Mtb) is crucial for the translocation of trehalose monomycolate (TMM) across the inner bacterial cell membrane, making it a promising target for anti-tuberculosis (TB) drug development. While several structural, microbiological, and in vitro studies have provided significant insights, the precise mechanisms underlying TMM transport by MmpL3 and its inhibition remain incompletely understood at the atomic level. In this study, molecular dynamic (MD) simulations for the apo form and seven inhibitor-bound forms of Mtb MmpL3 were carried out to obtain a thorough comprehension of the protein's dynamics and function. MD simulations revealed that the seven inhibitors in this work stably bind to the central channel of the transmembrane domain and primarily forming hydrogen bonds with ASP251, ASP640, or both residues. Through dynamical cross-correlation matrix and principal component analysis analyses, several types of coupled motions between different domains were observed in the apo state, and distinct conformational states were identified using Markov state model analysis. These coupled motions and varied conformational states likely contribute to the transport of TMM. However, simulations of inhibitor-bound MmpL3 showed an enlargement of the proton channel, potentially disrupting coupled motions. This indicates that inhibitors may impair MmpL3's transport function by directly blocking the proton channel, thereby hindering coordinated domain movements and indirectly affecting TMM translocation.


Subject(s)
Bacterial Proteins , Molecular Dynamics Simulation , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Trehalose/chemistry , Trehalose/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Biological Transport , Protein Binding , Cord Factors
17.
Comput Biol Med ; 182: 109099, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39265475

ABSTRACT

Antibiotics have been a vital component in the fight against microbial diseases for over 75 years, saving countless lives. However, the global rise of multi-drug-resistance (MDR) bacterial infections is pushing us closer to a post-antibiotic era where common infections may once again become lethal. To combat MDR Acinetobacter baumannii, we investigated chiral phthalimides and used molecular docking to identify potential targets. Outer membrane protein A (OmpA) is crucial for A. baumannii resistant to antibiotics, making it a pathogen of great concern due to its high mortality rate and limited treatment options. In this study, we evaluated three distinct compounds against the OmpA protein: FIA (2-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid), FIC (2-(1,3-dioxoindolin-2yl)-4-(methylthio) butanoic acid), and FII (3-(1,3-dioxoindolin-2yl)-3-phenylpropanoic acid). Molecular docking results showed that these three compounds exhibited strong interactions with the OmpA protein. Molecular dynamics (MD) simulation analysis further confirmed the stability and binding efficacy of these compounds with OmpA. Their antimicrobial activities were assessed using the agar well diffusion method, revealing that FIA had an optimal zone of inhibition of 24 mm. Additionally, the minimum inhibitory concentrations (MIC) of these compounds were determined, demonstrating their bactericidal properties against A. baumannii, with MICs of 11 µg/µL for FIA, 46 µg/µL for FIC, and 375 µg/µL for FII. In vitro cytotoxicity data indicated that none of the three compounds were hemolytic when exposed to human red blood cells. This finding is particularly significant as it highlights the superior efficacy of FIA against A. baumannii compared to the other compounds. With thorough pharmacokinetic validations, these chiral phthalimides are promising alternative therapeutic options for treating infections caused by A. baumannii, offering new hope in the face of rising antibiotic resistance.

18.
Expert Rev Clin Immunol ; : 1-9, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39230197

ABSTRACT

BACKGROUND: Bullous pemphigoid (BP) is a severe autoimmune sub-epidermal bullous disease. Exosomes are small extracellular vesicles secreted by most cell types. The exosomal membrane proteins are implicated in various biological and pathological pathways. This study aims to explore the potential roles of exosomes in BP pathomechanism. RESEARCH DESIGN: We collected plasma samples from 30 BP patients and 31 healthy controls. Nanoparticle tracking analysis (NTA) was used to analyze the size and concentration of exosomes. The immunogold labelling experiment and extracellular vesicle (EV) array were performed to detect the content and distribution of exosomes. RESULTS: The exosomes from both the BP and control groups' plasma were successfully extracted. EV Array showed that CD63 and CD9 levels were significantly higher in the BP group than in the control group (p < 0.05). Expression levels of the BP180 NC16A and intracellular domain (ICD) were higher in the anti-BP180 positive group versus the controls (p < 0.05). The active BP group exhibits higher CD63 and BP180 ICD protein concentrations than the control or inactive BP groups (p < 0.05). CONCLUSION: BP180 autoantigen fragments were expressed on the exosomal membrane in BP patients. The BP180 ICD and CD63 on exosomes could potentially be novel biomarkers for monitoring disease activity.

19.
Biochim Biophys Acta Bioenerg ; 1866(1): 149509, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39251013

ABSTRACT

Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.

20.
Int J Biol Macromol ; 280(Pt 1): 135654, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278452

ABSTRACT

In recent years, exosomes, as an important medium of intercellular information transmission, have received extensive attention for their potential in the treatment of liver fibrosis. The purpose of this study was to investigate the role of exosome natural lipid membrane proteins in the treatment of liver fibrosis, with emphasis on the regulatory mechanism through the TGF-ß/SMAD signaling pathway. Exosomes were extracted from healthy human hepatocytes and their membrane protein components were identified by mass spectrometry. Subsequently, the effects of these exosomes and their membrane proteins on the TGF-ß/SMAD signaling pathway were examined using in vitro cell models and mouse liver fibrosis models. Western blot, qPCR and immunofluorescence were used to analyze the expression of fibrosis markers and the activity of signaling pathways. In vitro cell experiments, fibrotic cells showed an obvious reversal trend after treating exosome membrane proteins. In a mouse model of liver fibrosis, the injection of exosome membrane proteins significantly improved the degree of fibrosis in liver tissue.

SELECTION OF CITATIONS
SEARCH DETAIL