Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 656
Filter
1.
Plant J ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961707

ABSTRACT

Cassava is a crucial staple crop for smallholder farmers in tropical Asia and Sub-Saharan Africa. Although high yield remains the top priority for farmers, the significance of nutritional values has increased in cassava breeding programs. A notable negative correlation between provitamin A and starch accumulation poses a significant challenge for breeding efforts. The negative correlation between starch and carotenoid levels in conventional and genetically modified cassava plants implies the absence of a direct genomic connection between the two traits. The competition among various carbon pathways seems to account for this relationship. In this study, we conducted a thorough analysis of 49 African cassava genotypes with varying levels of starch and provitamin A. Our goal was to identify factors contributing to differential starch accumulation. Considering carotenoid levels as a confounding factor in starch production, we found that yellow- and white-fleshed storage roots did not differ significantly in most measured components of starch or de novo fatty acid biosynthesis. However, genes and metabolites associated with myo-inositol synthesis and cell wall polymer production were substantially enriched in high provitamin A genotypes. These results indicate that yellow-fleshed cultivars, in comparison to their white-fleshed counterparts, direct more carbon toward the synthesis of raffinose and cell wall components. This finding is underlined by a significant rise in cell wall components measured within the 20 most contrasting genotypes for carotenoid levels. Our findings enhance the comprehension of the biosynthesis of starch and carotenoids in the storage roots of cassava.

2.
J Integr Plant Biol ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967265

ABSTRACT

Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.

3.
Eur J Obstet Gynecol Reprod Biol ; 300: 6-11, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38972164

ABSTRACT

INTRODUCTION: PCOS, beyond being characterized by reproductive disturbances, is a complicated rapid expanding metabolic and endocrinologic disorder of the recent times. Nearly 70% PCOS women show resistance to insulin. AIM: The aim of the study is to determine and compare the effectiveness of acarbose plus metformin and acarbose plus myo-inositol combination therapy in alleviating the metabolic and endocrinologic complications of PCOS. MATERIALS AND METHODS: An open labelled RCT was conducted on 168 PCOS women attending the gynaecology clinic at SRM MCH & RC, Chengalpattu and the trial was registered in CTRI (No. CTRI/2022/04/041877). Group A (n = 56) received metformin 500 mg/TID alone; group B (n = 54) received (acarbose 25 mg/TID for 4 weeks then 50 mg/TID for other 20 weeks) along with metformin 500 mg/TID and group C (n = 54) received (acarbose 25 mg/TID for 4 weeks then 50 mg/TID for other 20 weeks) along with myoinositol 1000 mg/BD. All parameters were measured at baseline and at the end of 6 months. RESULTS: Significant reduction of LH, LH: FSH, TT, HOMA-IR was observed in all the groups. FSH increased only in metformin group. Increase in serum progesterone and reduction in FI, TGL, LDL were significant only in acarbose plus myo-inositol group. SHBG and HDL increased significantly only in acarbose plus metformin group. No changes in BMI, TC and VLDL were observed in any group. CONCLUSION: Therefore, decrease in FI, HOMA-IR, TGL, LDL seen in acarbose plus myo-inositol group indirectly contributes to cardio-metabolic safety in PCOS. Similarly, a significant increase in SHBG levels with acarbose plus metformin group shows correction of the excess androgen and restoration of ovulation.

4.
Cell Host Microbe ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38996548

ABSTRACT

Numerous studies have reported critical roles for the gut microbiota in obesity. However, the specific microbes that causally contribute to obesity and the underlying mechanisms remain undetermined. Here, we conducted shotgun metagenomic sequencing in a Chinese cohort of 631 obese subjects and 374 normal-weight controls and identified a Megamonas-dominated, enterotype-like cluster enriched in obese subjects. Among this cohort, the presence of Megamonas and polygenic risk exhibited an additive impact on obesity. Megamonas rupellensis possessed genes for myo-inositol degradation, as demonstrated in vitro and in vivo, and the addition of myo-inositol effectively inhibited fatty acid absorption in intestinal organoids. Furthermore, mice colonized with M. rupellensis or E. coli heterologously expressing the myo-inositol-degrading iolG gene exhibited enhanced intestinal lipid absorption, thereby leading to obesity. Altogether, our findings uncover roles for M. rupellensis as a myo-inositol degrader that enhances lipid absorption and obesity, suggesting potential strategies for future obesity management.

5.
Cells ; 13(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39056753

ABSTRACT

Androgen excess is a key feature of several clinical phenotypes of polycystic ovary syndrome (PCOS). However, the presence of FSH receptor (FSHR) and aromatase (CYP19A1) activity responses to physiological endocrine stimuli play a critical role in the pathogenesis of PCOS. Preliminary data suggest that myo-Inositol (myo-Ins) and D-Chiro-Inositol (D-Chiro-Ins) may reactivate CYP19A1 activity. We investigated the steroidogenic pathway of Theca (TCs) and Granulosa cells (GCs) in an experimental model of murine PCOS induced in CD1 mice exposed for 10 weeks to a continuous light regimen. The effect of treatment with different combinations of myo-Ins and D-Chiro-Ins on the expression of Fshr, androgenic, and estrogenic enzymes was analyzed by real-time PCR in isolated TCs and GCs and in ovaries isolated from healthy and PCOS mice. Myo-Ins and D-Chiro-Ins, at a ratio of 40:1 at pharmacological and physiological concentrations, positively modulate the steroidogenic activity of TCs and the expression of Cyp19a1 and Fshr in GCs. Moreover, in vivo, inositols (40:1 ratio) significantly increase Cyp19a1 and Fshr. These changes in gene expression are mirrored by modifications in hormone levels in the serum of treated animals. Myo-Ins and D-Chiro-Ins in the 40:1 formula efficiently rescued PCOS features by up-regulating aromatase and FSHR levels while down-regulating androgen excesses produced by TCs.


Subject(s)
Aromatase , Disease Models, Animal , Inositol , Ovary , Polycystic Ovary Syndrome , Receptors, FSH , Female , Animals , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/drug therapy , Inositol/pharmacology , Mice , Aromatase/metabolism , Aromatase/genetics , Receptors, FSH/metabolism , Receptors, FSH/genetics , Ovary/metabolism , Ovary/drug effects , Ovary/pathology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Theca Cells/metabolism , Theca Cells/drug effects , Steroids/biosynthesis
6.
Nutrients ; 16(13)2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38999746

ABSTRACT

INTRODUCTION: Myo-inositol (MI) is the most abundant inositol found in nature. To date MI supplementation is reported to be effective in the treatment of polycystic ovary syndrome, it is also suggested to alleviate the symptoms of diabetes and neurodegenerative disorders, but to date no statistically significant effects of inositol on depressive and anxiety symptoms were proven. In the study of anxiolytic effects in zebrafish, we often use the thigmotaxis index measuring the ratio of the amount of time the animal spends near the walls compared to the entire arena. AIM: The objective of this paper was to examine the effect of MI on zebrafish embryos' locomotor activity, as well as its potential anxiolytic activity in zebrafish larvae. MATERIAL AND METHODS: In the first part of the experiment, the embryos were incubated with 5, 10, 20, and 40 mg/mL MI. 1-day post fertilization, embryo mobility was evaluated and burst activity was calculated. In the next part of the study, the behavior of 5-day-old larvae was tested. RESULTS: Tests on embryo movement showed an increase in burst activity in the MI group at concentrations of 40 mg/mL (p < 0.0001) and a slight decrease in the group at concentrations of 10 mg/mL (p < 0.05). MI in the light/dark challenge had no impact on the thigmotaxis index. CONCLUSIONS: MI was shown to not affect stress reduction in zebrafish larvae. Further research on the potential of MI and other stereoisomers is needed.


Subject(s)
Anti-Anxiety Agents , Behavior, Animal , Inositol , Zebrafish , Animals , Inositol/pharmacology , Inositol/administration & dosage , Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Embryo, Nonmammalian/drug effects , Larva/drug effects , Locomotion/drug effects , Anxiety/drug therapy
7.
Article in English | MEDLINE | ID: mdl-39034764

ABSTRACT

This study evaluated the effects of different nutrient matrices, with or without phytase supplementation, on growth performance, nutrient digestibility, ileal amino acid (AA) digestibility, and blood inositol in pigs fed a complex diet based on corn-soybean meal. Four hundred newly weaned cross-bred (Landrace × Yorkshire × Duroc) 21-day-old piglets of initial body weight 6.35 ± 1.91 kg were allotted to one of the five dietary treatments: Control (CNT), a corn-soybean-based standard diet; negative control 1 (NC1), a standard diet with reduced available phosphorus (Av.P) (-0.125%), metabolizable energy (ME) (-40 kcal), and crude protein (CP) (-0.3%); NC1 with 500 phytase units per kilogramme (FTU/kg) (N1P5); negative control 2 (NC2), a standard diet with greater reduction of Av.P (-0.150%), ME (-55 kcal), and CP (-0.45%,); and NC2 with 1000 FTU/kg (N2P10). Piglets were housed in a random arrangement based on sex and body weight and data were analyzed as a randomized complete block design using analysis of variance. Results showed that the body weight and average daily gain of the NC2 treatment were lower (p < 0.05) compared to NC2. Gain to feed ratio was greater (p < 0.05) in the CNT and N1P5 treatments compared to the NC1, NC2, and N2P10 treatments. The CP digestibility was higher (p < 0.05) in N1P5 and N2P10 treatments compared to other treatments. Moreover, the digestibility of phosphorus and calcium was higher (p < 0.05) in N1P5 and N2P10 treatments than in CNT, NC1, and NC2 treatments. The digestibility of non-dispensable AA; histidine, isoleucine, leucine, phenylalanine, and valine were increased (p < 0.05) in N1P5 and N2P10 than in CNT, NC1, and NC2 treatments. Nevertheless, the digestibility of dispensable AA, glutamic acid, was higher (p < 0.05) in N1P5 and N2P10 treatments than in CNT, NC1, and NC2 treatments. Blood myo-inositol concentration was higher (p < 0.05) in N1P5 and N2P10 treatments compared to CNT, NC1, and NC2 treatments in phase 2. These results demonstrated enhanced outcomes under conditions of moderate deficiency, whereas more pronounced deficiencies necessitated increased phytase dosages to observe significant improvements. The efficacy of phytase was evident in its ability to elevate average daily gain, gain to feed ratio, phosphorus and calcium, CP, AA, and blood myo-inositol.

8.
Brain Behav Immun ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032543

ABSTRACT

Converging data show that exposure to maternal immune activation (MIA) in utero alters brain development in animals and increases the risk of neurodevelopmental disorders in humans. A recently developed non-human primate MIA model affords opportunities for studies with uniquely strong translational relevance to human neurodevelopment. The current longitudinal study used 1H-MRS to investigate the developmental trajectory of prefrontal cortex metabolites in male rhesus monkey offspring of dams (n = 14) exposed to a modified form of the inflammatory viral mimic, polyinosinic:polycytidylic acid (Poly IC), in the late first trimester. Brain metabolites in these animals were compared to offspring of dams that received saline (n = 10) or no injection (n = 4). N-acetylaspartate (NAA), glutamate, creatine, choline, myo-inositol, taurine, and glutathione were estimated from PRESS and MEGA-PRESS acquisitions obtained at 6, 12, 24, 36, and 45 months of age. Prior investigations of this cohort reported reduced frontal cortical gray and white matter and subtle cognitive impairments in MIA offspring. We hypothesized that the MIA-induced neurodevelopmental changes would extend to abnormal brain metabolite levels, which would be associated with the observed cognitive impairments. Prefrontal NAA was significantly higher in the MIA offspring across all ages (p < 0.001) and was associated with better performance on the two cognitive measures most sensitive to impairment in the MIA animals (p < 0.05). Myo-inositol was significantly lower across all ages in MIA offspring but was not associated with cognitive performance. Taurine was elevated in MIA offspring at 36 and 45 months. Glutathione did not differ between groups. MIA exposure in male non-human primates is associated with altered prefrontal cortex metabolites during childhood and adolescence. A positive association between elevated NAA and cognitive performance suggests the hypothesis that elevated NAA throughout these developmental stages reflects a protective or resilience-related process in MIA-exposed offspring. The potential relevance of these findings to human neurodevelopmental disorders is discussed.

9.
Alzheimers Dement ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073196

ABSTRACT

INTRODUCTION: Altered neurometabolism, detectable via proton magnetic resonance spectroscopic imaging (1H-MRSI), is spatially heterogeneous and underpins cognitive impairments in Alzheimer's disease (AD). However, the spatial relationships between neurometabolic topography and cognitive impairment in AD remain unexplored due to technical limitations. METHODS: We used a novel whole-brain high-resolution 1H-MRSI technique, with simultaneously acquired 18F-florbetapir positron emission tomography (PET) imaging, to investigate the relationship between neurometabolic topography and cognitive functions in 117 participants, including 22 prodromal AD, 51 AD dementia, and 44 controls. RESULTS: Prodromal AD and AD dementia patients exhibited spatially distinct reductions in N-acetylaspartate, and increases in myo-inositol. Reduced N-acetylaspartate and increased myo-inositol were associated with worse global cognitive performance, and N-acetylaspartate correlated with five specific cognitive scores. Neurometabolic topography provides biological insights into diverse cognitive dysfunctions. DISCUSSION: Whole-brain high-resolution 1H-MRSI revealed spatially distinct neurometabolic topographies associated with cognitive decline in AD, suggesting potential for noninvasive brain metabolic imaging to track AD progression. HIGHLIGHTS: Whole-brain high-resolution 1H-MRSI unveils neurometabolic topography in AD. Spatially distinct reductions in NAA, and increases in mI, are demonstrated. NAA and mI topography correlates with global cognitive performance. NAA topography correlates with specific cognitive performance.

10.
Turk J Obstet Gynecol ; 21(2): 78-84, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853482

ABSTRACT

Objective: The objective of this study was to assess the effectiveness of myoinositol (4 g myoinositol + 400 mcg folic acid/day) compared with metformin (average 1700 mg/day), as well as the combined efficacy of both treatments in managing insulin-resistant polycystic ovary syndrome (PCOS) among women. Materials and Methods: We retrospectively analyzed the records of 68 reproductive-age PCOS patients with insulin resistance over a 3-month period. Oral glucose tolerance tests (OGTT) (75 gr) were conducted to measure glucose levels at 0 and 120 min. Moreover, changes in prolactin, thyroid stimulating hormone, high-density lipoprotein, low-density lipoprotein, triglyceride levels, total cholesterol, follicle-stimulating hormone, luteinizing hormone, total testosterone, free testosterone, and dehydroepiandrosterone sulfate (DHEA-S) levels were evaluated pre- and post-treatment over a 3-month period. Results: Statistically significant improvements were observed in menstrual regularity, body mass index (BMI), modified Ferriman Gallwey scores, OGTT glucose levels at 0 and 120 min, total testosterone, free testosterone, and DHEA-S levels across all groups (p<0.005). Conclusion: No significant variances were observed in terms of BMI, modified Ferriman Gallwey scores, or androgen levels across the three treatment cohorts. The combination of myoinositol and metformin did not confer additional benefits compared with either treatment alone.

11.
J Appl Biomed ; 22(2): 74-80, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912862

ABSTRACT

Myo-inositol (MI), present in a variety of foods, is essential in several important processes of cell physiology. In this study, we explored the protective effects of MI against hyperglycemia and dyslipidemia in db/db mice, a typical animal model of type 2 diabetes mellitus (T2DM). MI supplement effectively suppressed the high plasma glucose and insulin levels and markedly relieved the insulin resistance (IR) in the db/db mice, comparable to metformin's effects. In MIN6 pancreatic ß cells, MI also restrained the upsurge of insulin secretion stimulated by high-concentration glucose but had no impact on the promoted cell proliferation. Moreover, MI abated the enhanced plasma triglyceride and total cholesterol levels in the db/db mice. Notably, the lipid droplet formation of mesenchymal stem cells (MSCs) from db/db mice was significantly diminished after the treatment of MI, indicating that MI could effectively inhibit the differentiation of db/db mouse MSCs into adipocytes. However, MI regretfully failed to control obesity in db/db mice. This work proved that MI significantly helped db/db mice's metabolic disorders, indicating that MI has potential as an effective adjunctive treatment for hyperglycemia and dyslipidemia in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Dyslipidemias , Inositol , Insulin Resistance , Animals , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Inositol/pharmacology , Inositol/therapeutic use , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Male , Insulin/metabolism , Insulin/blood , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism
12.
Heliyon ; 10(11): e32460, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933931

ABSTRACT

Objective: Recent studies have shown that gene alternative splicing (AS) and long noncoding RNAs (lncRNAs) are involved in diabetes mellitus (DM) and its complications. Currently, myo-inositol (MI) is considered as effective for the treatment of insulin resistance and lipid metabolism disorders in diabetes patients. We hope to better explore the potential roles of gene AS and lncRNAs in liver glucose and lipid metabolism in diabetes, as well as the effects of myo-inositol treatment, through transcriptome analysis. Methods: This study analysed glucose and lipid metabolism-related biochemical indicators and liver HE staining in four groups of mice: the control group (Ctrl group), the diabetes group (DM group), the myo-inositol treatment group (MI group), and the metformin treatment group (Met group). The changes in relevant gene-regulated alternative splicing events (RASEs) and lncRNAs were analysed by RNA sequencing of liver tissue, and coexpression analysis and functional enrichment analysis were used to predict the possible lncRNAs and RASEs involved in liver glucose and lipid metabolism. Result: Metformin and myo-inositol alleviated insulin resistance, lipid metabolism disorders, and hepatic steatosis in diabetic mice. Transcriptome sequencing analysis revealed differential splicing events of genes related to lipid metabolism and differentially expressed lncRNAs (DElncRNAs). Six different lncRNAs and their potentially interacting splicing events were predicted. Conclusion: The present study revealed novel changes in RASEs and lncRNAs in the livers of diabetic mice following treatment with myo-inositol, which may shed light on the potential mechanisms by which myo-inositol delays and treats the progression of hepatic glucose and lipid metabolism in diabetes.

13.
Drug Test Anal ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38924320

ABSTRACT

Bisphosphonates and myo-inositol trispyrophosphate (ITPP) are two classes of difficult-to-detect polar drugs that are prohibited under the rules of racing. ITPP is a drug capable of increasing the amount of oxygen in hypoxic tissues, and studies have shown that administration of ITPP increases the maximal exercise capacity in mice. The properties of ITPP make it an ideal candidate as a doping agent to enhance performance in racehorses. In recent years, ITPP had indeed been detected in racehorses and confiscated items. As for bisphosphonates, it is especially critical to control their use as since February 2019, the International Agreement on Breeding, Racing and Wagering (IABRW) by the International Federation of Horseracing Authorities (IFHA) had identified specific conditions on which bisphosphonates should not be administered to a racehorse. A recent review of literature shows that there is yet a simultaneous screening method for detecting ITPP and bisphosphonates in equine samples. This paper describes an efficient ion chromatography high-resolution mass spectrometry (IC-HRMS) method for the simultaneous detection of ITPP and 10 bisphosphonates at sub-parts-per-billion (ppb) to low-ppb levels in equine plasma after solid-phase extraction (SPE) and its application to an administration study of clodronic acid in horses.

14.
Appl Environ Microbiol ; 90(7): e0092024, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38874337

ABSTRACT

Marine bacteria experience fluctuations in osmolarity that they must adapt to, and most bacteria respond to high osmolarity by accumulating compatible solutes also known as osmolytes. The osmotic stress response and compatible solutes used by the coral and oyster pathogen Vibrio coralliilyticus were unknown. In this study, we showed that to alleviate osmotic stress V. coralliilyticus biosynthesized glycine betaine (GB) and transported into the cell choline, GB, ectoine, dimethylglycine, and dimethylsulfoniopropionate, but not myo-inositol. Myo-inositol is a stress protectant and a signaling molecule that is biosynthesized and used by algae. Bioinformatics identified myo-inositol (iol) catabolism clusters in V. coralliilyticus and other Vibrio, Photobacterium, Grimontia, and Enterovibrio species. Growth pattern analysis demonstrated that V. coralliilyticus utilized myo-inositol as a sole carbon source, with a short lag time of 3 h. An iolG deletion mutant, which encodes an inositol dehydrogenase, was unable to grow on myo-inositol. Within the iol clusters were an MFS-type (iolT1) and an ABC-type (iolXYZ) transporter and analyses showed that both transported myo-inositol. IolG and IolA phylogeny among Vibrionaceae species showed different evolutionary histories indicating multiple acquisition events. Outside of Vibrionaceae, IolG was most closely related to IolG from a small group of Aeromonas fish and human pathogens and Providencia species. However, IolG from hypervirulent A. hydrophila strains clustered with IolG from Enterobacter, and divergently from Pectobacterium, Brenneria, and Dickeya plant pathogens. The iol cluster was also present within Aliiroseovarius, Burkholderia, Endozoicomonas, Halomonas, Labrenzia, Marinomonas, Marinobacterium, Cobetia, Pantoea, and Pseudomonas, of which many species were associated with marine flora and fauna.IMPORTANCEHost associated bacteria such as Vibrio coralliilyticus encounter competition for nutrients and have evolved metabolic strategies to better compete for food. Emerging studies show that myo-inositol is exchanged in the coral-algae symbiosis, is likely involved in signaling, but is also an osmolyte in algae. The bacterial consumption of myo-inositol could contribute to a breakdown of the coral-algae symbiosis during thermal stress or disrupt the coral microbiome. Phylogenetic analyses showed that the evolutionary history of myo-inositol metabolism is complex, acquired multiple times in Vibrio, but acquired once in many bacterial plant pathogens. Further analysis also showed that a conserved iol cluster is prevalent among many marine species (commensals, mutualists, and pathogens) associated with marine flora and fauna, algae, sponges, corals, molluscs, crustaceans, and fish.


Subject(s)
Inositol , Multigene Family , Osmotic Pressure , Vibrio , Inositol/metabolism , Animals , Vibrio/metabolism , Vibrio/genetics , Vibrio/physiology , Anthozoa/microbiology , Ostreidae/microbiology , Betaine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
15.
Food Chem ; 456: 139957, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870808

ABSTRACT

The antioxidant effect of purified phytic acid (PPA) from rice bran (rice polishing by-product) combined with sodium erythorbate (SE) was evaluated for the first time in mortadella (added with 60% mechanically separated meat), a cured product with high-fat content and highly prone to oxidation, characteristic in Brazil. PPA proved effective compared to standard analytical grade phytic acid (SPA). Two central composite rotational designs (CCRD) (A and B) were employed to investigate the influence of PPA and SE, and SPA and SE, respectively, on mortadella lipid oxidation evaluated by TBARS after 30 days at 30 °C. Due to the high phytic acid's potent antioxidant capacity, the combination of PPA and SE synergistically reduced mortadella lipid oxidation. Furthermore, PPA from rice bran effectively controlled lipid oxidation in mortadella when combined with SE in the range of 5.0 to 9.0 mmol/kg of SPA and 25.0 to 50.0 mmol/kg of SE.


Subject(s)
Antioxidants , Chickens , Meat Products , Oryza , Phytic Acid , Animals , Phytic Acid/chemistry , Oryza/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Meat Products/analysis , Oxidation-Reduction
16.
Physiol Plant ; 176(4): e14423, 2024.
Article in English | MEDLINE | ID: mdl-38945803

ABSTRACT

Maize (Zea mays L.) is an important food crop with a wide range of uses in both industry and agriculture. Drought stress during its growth cycle can greatly reduce maize crop yield and quality. However, the molecular mechanisms underlying maize responses to drought stress remain unclear. In this work, a WRKY transcription factor-encoding gene, ZmWRKY30, from drought-treated maize leaves was screened out and characterized. ZmWRKY30 gene expression was induced by dehydration treatments. The ZmWRKY30 protein localized to the nucleus and displayed transactivation activity in yeast. Compared with wild-type (WT) plants, Arabidopsis lines overexpressing ZmWRKY30 exhibited a significantly enhanced drought stress tolerance, as evidenced by the improved survival rate, increased antioxidant enzyme activity by superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), elevated proline content, and reduced lipid peroxidation recorded after drought stress treatment. In contrast, the mutator (Mu)-interrupted ZmWRKY30 homozygous mutant (zmwrky30) was more sensitive to drought stress than its null segregant (NS), characterized by the decreased survival rate, reduced antioxidant enzyme activity (SOD, POD, and CAT) and proline content, as well as increased malondialdehyde accumulation. RNA-Seq analysis further revealed that, under drought conditions, the knockout of the ZmWRKY30 gene in maize affected the expression of genes involved in reactive oxygen species (ROS), proline, and myo-inositol metabolism. Meanwhile, the zmwrky30 mutant exhibited significant downregulation of myo-inositol content in leaves under drought stress. Combined, our results suggest that ZmWRKY30 positively regulates maize responses to water scarcity. This work provides potential target genes for the breeding of drought-tolerant maize.


Subject(s)
Drought Resistance , Inositol , Plant Proteins , Reactive Oxygen Species , Zea mays , Antioxidants/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Homeostasis , Inositol/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/genetics , Zea mays/physiology
17.
Cells ; 13(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786092

ABSTRACT

The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.


Subject(s)
Micronutrients , Obesity , Humans , Animals , Obesity/metabolism , Micronutrients/pharmacology , Micronutrients/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Female , Pregnancy , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use
18.
Plant J ; 119(2): 861-878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761097

ABSTRACT

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Subject(s)
Actin Cytoskeleton , Germination , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/physiology , Oryza/metabolism , Actin Cytoskeleton/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Pollen/growth & development , Pollen/genetics , Calcium Signaling , Pollen Tube/growth & development , Pollen Tube/metabolism , Pollen Tube/genetics , Hot Temperature , Gene Expression Regulation, Plant , Heat-Shock Response , Intramolecular Lyases/metabolism , Intramolecular Lyases/genetics , Inositol/metabolism , Inositol/analogs & derivatives
19.
Biochem Biophys Res Commun ; 719: 150027, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38749089

ABSTRACT

Aging is a complex, degenerative process associated with various metabolic abnormalities. Ginsenosides (GS) is the main active components of Panax ginseng, which has anti-aging effects and improves metabolism. However, the anti-aging effect and the mechanism of GS in middle-aged mice has not been elucidated. In this study, GS after 3-month treatment significantly improved the grip strength, fatigue resistance, cognitive indices, and cardiac function of 15-month-old mice. Meanwhile, GS treatment reduced the fat content and obviously inhibited histone H2AX phosphorylation at Ser 139 (γ-H2AX), a marker of DNA damage in major organs, especially in the heart and liver. Further, the correlation analysis of serum metabolomics combined with aging phenotype suggested that myo-inositol (MI) upregulated by GS was positively correlated with left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS), the main indicators of cardiac function. More importantly, liver tissue metabolomic analysis showed that GS increased MI content by promoting the synthesis pathway from phosphatidylcholine (PC) to MI for the inhibition of liver aging. Finally, we proved that MI reduced the percentage of senescence-associated ß-galactosidase staining, γ-H2AX immunofluorescence staining, p21 expression, and the production of reactive oxygen species in H2O2-induced cardiomyocytes. These results suggest that GS can enhance multiple organ functions, especially cardiac function for promoting the healthspan of aging mice, which is mediated by the conversion of PC to MI in the liver and the increase of MI level in the serum. Our study might provide new insights into the potential mechanisms of ginsenosides for prolonging the healthspan of natural aging mice.


Subject(s)
Aging , Ginsenosides , Inositol , Metabolomics , Panax , Phosphatidylcholines , Animals , Panax/chemistry , Ginsenosides/pharmacology , Aging/drug effects , Aging/metabolism , Phosphatidylcholines/metabolism , Mice , Male , Inositol/pharmacology , Liver/metabolism , Liver/drug effects , Mice, Inbred C57BL
20.
Medicina (Kaunas) ; 60(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38674244

ABSTRACT

Background and Objectives: Hormonal changes physiologically occurring in menopausal women may increase the risk of developing metabolic and vasomotor disturbances, which contribute to increase the risk of developing other concomitant pathologies, such as metabolic syndrome (MetS). Materials and Methods: Retrospective data from 200 menopausal women with MetS and vasomotor symptoms taking one sachet per day of the dietary supplement INOFOLIC® NRT (Farmares srl, Rome, Italy) were collected. Each sachet consisted of myo-Inositol (2000 mg), cocoa polyphenols (30 mg), and soy isoflavones (80 mg, of which 50 mg is genistin). Patients recorded their symptoms through a medical questionnaire at the beginning of the administration (T0) and after 6 months (T1). Results: We observed an improvement in both the frequency and the severity of hot flushes: increased percentage of 2-3 hot flushes (28 at T0 vs. 65% at T1, p value < 0.001) and decreased percentage of 4-9 hot flushes (54% at T0 vs. 18% at T1, p value < 0.001). Moreover, symptoms of depression improved after supplementation (87% at T0 vs. 56% at T1 of patients reported moderate depression symptoms, p value < 0.001). Regarding metabolic profile, women improved body mass index and waist circumference with a reduction in the percentage of overweight and obesity women (88% at T0 vs. 51% at T1, p value = 0.01; 14% at T0 vs. 9% at T1, p value = 0.04). In addition, the number of women suffering from non-insulin dependent diabetes reduced (26% at T0 vs. 16% at T1, p value = 0.04). Conclusions: These data corroborate previously observed beneficial effects of the oral administration of myo-Inositol, cocoa polyphenols, and soy isoflavones against menopausal symptoms in the study population. Considering the promising results of the present study, further prospective controlled clinical trials are needed to deeply understand and support the efficacy of these natural compounds for the management of menopausal symptoms.


Subject(s)
Dietary Supplements , Glycine max , Hot Flashes , Inositol , Isoflavones , Menopause , Metabolic Syndrome , Polyphenols , Humans , Female , Metabolic Syndrome/drug therapy , Retrospective Studies , Isoflavones/therapeutic use , Isoflavones/pharmacology , Isoflavones/administration & dosage , Middle Aged , Polyphenols/administration & dosage , Polyphenols/therapeutic use , Polyphenols/analysis , Inositol/therapeutic use , Inositol/administration & dosage , Inositol/analysis , Hot Flashes/drug therapy , Menopause/drug effects , Menopause/physiology , Cacao , Metabolome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL