Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 18925, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147883

ABSTRACT

This study investigates the development of novel nanocomposite films based on a blend of polyethylene oxide (PEO) and polyvinyl alcohol (PVA) loaded with varying weight percentages of copper cobaltite nanoparticles (CuCo2O4 NPs). The primary objective was to fabricate these nanocomposites using a solution casting technique and explore the influence of CuCo2O4 content on their structural, optical, electrical, and dielectric properties. Spinel-type CuCo2O4 NPs were synthesized via the hydrothermal method and incorporated into the PEO/PVA blend. X-ray diffraction (XRD) analysis revealed the transformation of the polymer matrix towards an amorphous state with increasing CuCo2O4 content. UV-Vis spectroscopy studies demonstrated a decrease in both the direct and indirect band gaps of the nanocomposites, suggesting potential applications in optoelectronic devices. Impedance spectroscopy measurements revealed a significant enhancement in ionic conductivity (three orders of magnitude higher than the pristine blend) for the nanocomposite film containing 1.8 wt% CuCo2O4. The real permittivity (ε') and imaginary permittivity (ε″) of the polymer nanocomposites exhibited a decrease with increasing frequency due to the interplay of various polarization mechanisms. Notably, incorporating 1.8 wt% CuCo2O4 nanoparticles led to a remarkable improvement in energy density compared to the pristine blend. Additionally, a significant decrease in the potential barrier was observed. These findings demonstrate the successful fabrication of PEO/PVA-CuCo2O4 nanocomposite films with enhanced optical, electrical, and dielectric properties. The observed improvements suggest promising applications for these materials in energy storage devices and potentially in optoelectronic devices like light-emitting diodes.

2.
ACS Appl Mater Interfaces ; 16(28): 37122-37130, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953852

ABSTRACT

Light weight, thinness, transparency, flexibility, and insulation are the key indicators for flexible electronic device substrates. The common flexible substrates are usually polymer materials, but their recycling is an overwhelming challenge. Meanwhile, paper substrates are limited in practical applications because of their poor mechanical and thermal stability. However, natural biomaterials have excellent mechanical properties and versatility thanks to their organic-inorganic multiscale structures, which inspired us to design an organic-inorganic nanocomposite film. For this purpose, a bio-inspired multiscale film was developed using cellulose nanofibers with abundant hydrophilic functional groups to assist in dispersing hydroxyapatite nanowires. The thickness of the biosustainable film is only 40 µm, and it incorporates distinctive mechanical properties (strength: 52.8 MPa; toughness: 0.88 MJ m-3) and excellent optical properties (transmittance: 80.0%; haze: 71.2%). Consequently, this film is optimal as a substrate employed for flexible sensors, which can transmit capacitance and resistance signals through wireless Bluetooth, showing an ultrasensitive response to pressure and humidity (for example, responding to finger pressing with 5000% signal change and exhaled water vapor with 4000% signal change). Therefore, the comprehensive performance of the biomimetic multiscale organic-inorganic composite film confers a prominent prospect in flexible electronics devices, food packaging, and plastic substitution.

3.
ACS Appl Mater Interfaces ; 16(24): 31438-31446, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38843313

ABSTRACT

Spin-orbit torque (SOT) has emerged as an effective means of manipulating magnetization. However, the current energy efficiency of SOT operation is inefficient due to low damping-like SOT efficiency per unit current bias. In this work, we dope conventional rare earth oxides, GdOy, into highly conductive platinum by magnetron sputtering to form a new group of spin Hall materials. A large damping-like spin-orbit torque (DL-SOT) efficiency of about 0.35 ± 0.013 is obtained in Pt0.70(GdOy)0.30 measured by the spin-torque ferromagnetic resonance (ST-FMR) technique, which is about five times that of pure Pt under the same conditions. The substantial enhancement of the spin Hall effect is revealed by theoretical analysis to be attributed to the strong side jump induced by the rare earth oxide GdOy impurities. Moreover, this large DL-SOT efficiency contributes to a low critical switching current density (8.0 × 106 A·cm-2 in the Pt0.70(GdOy)0.30 layer) in current-induced magnetization switching measurements. This systematic study on SOT switching properties suggests that Pt1-x(GdOy)x is an attractive spin current source with large DL-SOT efficiency for future SOT applications and provides another idea to regulate the spin Hall angle.

4.
Foods ; 13(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928835

ABSTRACT

In this work, novel nanocomposite films based on babassu coconut mesocarp and zinc oxide nanoparticles (ZnO NPs), synthesized by a green route, were produced for application as food packaging films. The films were prepared using the casting method containing different contents of ZnO NPs (0 wt%, 0.1 wt%, 0.5 wt%, and 1.0 wt%). The films were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), instrumental color analysis, and optical properties. The water vapor permeability (WVP) and tensile strength of films were also determined. The antimicrobial activity of the films against cooked turkey ham samples contaminated with Staphylococcus aureus was investigated. The results showed that incorporating ZnO NPs into babassu mesocarp matrices influenced the structure of the biopolymer chains and the color of the films. The BM/ZnO-0.5 film (0.5 wt% ZnO NPs) showed better thermal, mechanical, and WVP properties. Furthermore, the synergistic effect of babassu mesocarp and ZnO NPs in the BM/ZnO-0.5 film improved the antimicrobial properties of the material, reducing the microbial count of S. aureus in cooked turkey ham samples stored under refrigeration for 7 days. Thus, the films produced in this study showed promising antimicrobial packaging materials for processed foods.

5.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710545

ABSTRACT

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Subject(s)
Cellulose , Food Packaging , Lignin , Lignin/analogs & derivatives , Nanocomposites , Nanofibers , Tensile Strength , Wood , Xylans , Food Packaging/methods , Lignin/chemistry , Nanocomposites/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Wood/chemistry , Nanofibers/chemistry , Xylans/chemistry , Antioxidants/chemistry , Fruit/chemistry
6.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732196

ABSTRACT

The investigation of functional materials derived from sustainable and eco-friendly bioresources has generated significant attention. Herein, nanocomposite films based on chiral nematic cellulose crystals (CNCs) were developed by incorporating xylose and biocompatible ZnO nanoparticles (NPs) via evaporation-induced self-assembly (EISA). The nanocomposite films exhibited iridescent color changes that corresponded to the birefringence phenomenon under polarized light, which was attributed to the formation of cholesteric structures. ZnO nanoparticles were proved to successfully adjust the helical pitches of the chiral arrangements of the CNCs, resulting in tunable optical light with shifted wavelength bands. Furthermore, the nanocomposite films showed fast humidity and ethanol stimuli response properties, exhibiting the potential of stimuli sensors of the CNC-based sustainable materials.


Subject(s)
Cellulose , Ethanol , Humidity , Nanoparticles , Zinc Oxide , Cellulose/chemistry , Zinc Oxide/chemistry , Ethanol/chemistry , Nanoparticles/chemistry , Nanocomposites/chemistry
7.
Polymers (Basel) ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674991

ABSTRACT

To enhance the various properties of polyvinyl alcohol (PVA), varying concentrations of carboxy-functionalized graphene (CFG) were employed in the preparation of CFG/PVA nanocomposite films. FTIR and XRD analyses revealed that CFG, in contrast to graphene, not only possesses carboxylic acid group but also exhibits higher crystallinity. Mechanical testing indicated a notable superiority of CFG addition over graphene, with optimal mechanical properties such as tensile and yield strengths being achieved at a 3% CFG concentration. Relative to pure PVA, the tensile strength and yield strength of the composite increased by 2.07 and 2.01 times, respectively. XRD analysis showed distinct changes in the crystalline structure of PVA with the addition of CFG, highlighting the influence of CFG on the composite structure. FTIR and XPS analyses confirmed the formation of ester bonds between CFG and PVA, enhancing the overall performance of the material. TGA results also demonstrated that the presence of CFG enhanced the thermal stability of CFG/PVA nanocomposite films. However, analyses using scanning electron microscopy and transmission electron microscopy revealed that a 3% concentration of CFG was uniformly dispersed, whereas a 6% concentration of CFG caused aggregation of the nanofiller, leading to a decrease in performance. The incorporation of CFG significantly enhanced the water vapor and oxygen barrier properties of PVA, with the best performance observed at a 3% CFG concentration. Beyond this concentration, barrier properties were diminished owing to CFG aggregation. The study further demonstrated an increase in electrical conductivity and hydrophobicity of the nanocomposites with the addition of CFG. Antibacterial tests against E. coli showed that CFG/PVA nanocomposites exhibited excellent antibacterial properties, especially at higher CFG concentrations. These findings indicate that CFG/PVA nanocomposites, with an optimized CFG concentration, have significant potential for applications requiring enhanced mechanical strength, barrier properties, and antibacterial capabilities.

8.
Food Chem ; 450: 139411, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653055

ABSTRACT

Fresh strawberries are easily contaminated by microorganisms after picking. Therefore, how to effectively store and keep fresh strawberries has been a hot topic for scientists to study. In this study, we prepared a leaf shaped metal organic framework nanomaterial loaded with quercetin (Quercetin@ZIF-L) at first, which can achieve effective loading of quercetin (96%) within 45 min and has a controlled release effect under acidic conditions. In addition, by cleverly combining satellite graphene oxide @ silver nanoparticles (GO@AgNPs) with slow precipitation performance, Quercetin@ZIF-L/GO@AgNPs nanocomposite film with larger pore size and larger specific surface area was prepared by scraping method. The characterization data of water flux, retention rate, flux recovery rate and water vapor permeability show that the composite film has good physical properties. The experiment of film packaging showed that the fresh life of strawberry could be extended from 3 to 8 days, which significantly improved the storage and freshness cycle of strawberry. At the same time, the metal migration test proved that the residual amount of silver ion in strawberry met the EU standard and zinc ions are beneficial to the health, enriching the types of high-performance fresh-keeping materials and broadening the application.


Subject(s)
Food Packaging , Food Preservation , Fragaria , Graphite , Metal Nanoparticles , Nanocomposites , Quercetin , Silver , Fragaria/chemistry , Silver/chemistry , Nanocomposites/chemistry , Quercetin/chemistry , Metal Nanoparticles/chemistry , Graphite/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Food Packaging/instrumentation , Metal-Organic Frameworks/chemistry , Temperature , Fruit/chemistry
9.
Int J Biol Macromol ; 264(Pt 1): 130208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38403229

ABSTRACT

Microbial growth and exposure to UV light is a persistent global concern resulting in food spoilage, therefore, smart packaging is crucial for the availability of safer and quality food. Present work describes fabrication of chitosan (CH) and gelatin (GL) based nanocomposite films by introducing green source, highly fluorescent Vachillia nilotica gum-derived carbon dots (VNG-CDs). The VNG-CDs and incorporated CH/GL nanocomposite films were characterized by UV-Visible, FTIR, XRD, SEM and TGA analysis. The FTIR and XRD data revealed that VNG-CDs, chitosan, gelatin, and glycerol are combined/interlinked to form homogeneous nanocomposite films. The inclusion of VNG-CDs to CS/GL-CDs nanocomposite film efficiently enhanced the thermal stability and improved mechanical properties. VNG-CDs added to films markedly blocked the ultraviolet light and their effectiveness improved as concentration of CDs increases, being >90 % in UVC (200-280 nm) region. The prepared CS/GL-CDs nanocomposite films manifested radical scavenging activity, reducing capability and also excellently inhibited growth of E. coli, K. pneumonia and S. aureus bacteria. The viability of CS/GL-CDs nanocomposite films examined using banana as a model fruit extending the storage time by two weeks. In conclusion, CH/GL films containing VNG-CDs can be developed into smart packaging materials with enhanced protection and antimicrobial properties.


Subject(s)
Chitosan , Nanocomposites , Food Packaging , Carbon , Anti-Bacterial Agents/pharmacology , Gelatin , Staphylococcus aureus , Escherichia coli
10.
Nano Lett ; 24(2): 617-622, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165234

ABSTRACT

The electrical properties of nanocomposite SiAlzOxNy(Si) films containing Si nanoclusters embedded into amorphous SiAlzOxNy matrix have been studied by measurements of DC current-voltage and AC capacitance-voltage characteristics. Analysis of the results allowed us to conclude the existence of a negative dielectric constant. The temperature dependence of the negative dielectric constant has been obtained and analyzed. The negative capacitance has been revealed during measurements of capacitance-voltage characteristics at testing signal frequency of 2 kHz. The negative capacitance also points out the appearance of a negative dielectric constant effect. The qualitative model for explanation of negative dielectric constant based on peculiarities of SiAlzOxNy(Si) films polarization due to electron capture at Si nanoparticles-amorphous SiAlzOxNy matrix interface traps near cathode region has been proposed. In the case of AC C-U measurements, a negative capacitance is observed if conductivity current through the nanocomposite film is relatively high.

11.
Int J Biol Macromol ; 254(Pt 1): 127644, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37879578

ABSTRACT

This study investigated the effect of adding lignin nanoparticles (LNPs) derived from Oxytenanthera abyssinica via alkali-acid nanoprecipitation method to polyvinyl alcohol/chitosan (PVA/CI) and polyvinyl alcohol/chitin (PVA/CH) films for the active food packaging applications. Adding LNPs at concentrations of 1 % and 3 % improved the films' thermal stability and mechanical properties. The lowest water solubility and moisture content were observed in PVA/CI/LNPs films. LNPs exhibited effective 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities, with the highest values observed in PVA/CH/LNPS and PVA/CI/LNPS films with values of 87.47 and 88.74 % respectively. The addition of LNPs also improved the UV-blocking abilities of the films. PVA/CH/LNP3 and PVA/CI/LNP3 have the smallest percentage transmission values of 3.34 % and 0.86 % in the UV range. The overall migration of dietary stimulants was lower in PVA/CI/LNPS and PVA/CH/LNPS films compared to PVA film. Antibacterial tests demonstrated the inhibitory capacity of the synthesized biofilms against both gram-positive and negative bacterial species, with the highest inhibitory value of 26 mm. The study suggests that PVA/CH/LNPS and PVA/CI/LNPS films have potential applications as active food packaging materials and can be explored in other potential applications such as drug delivery, tissue engineering, wound healing, and slow-release urea fertilizer development.


Subject(s)
Anti-Infective Agents , Chitosan , Nanoparticles , Chitosan/chemistry , Lignin/pharmacology , Lignin/chemistry , Chitin , Food Packaging/methods , Polyvinyl Alcohol/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry
12.
Nanomaterials (Basel) ; 13(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38063718

ABSTRACT

In this study, waterborne polyurethane acrylate (WPUA)/MXene nanocomposite films with varying MXene loadings were fabricated using UV-curing technology, where MXene (Ti3C2Tx) was employed as a nanofiller. The microstructure and chemical structure of the WPUA/MXene nanocomposite films were examined by XRD and FTIR, respectively. The water contact angle testing demonstrated that the incorporation of MXene into the nanocomposite films led to an increase in their hydrophilic properties. The tensile strength, the elongation at break, and Young's modulus of the WPUA/MXene nanocomposite coatings exhibited an initial increase followed by a decrease with increasing MXene loadings. Compared to the pure WPUA film, the tensile strength and elongation at break of nanocomposites with 0.077 wt% MXene loading reached their maximum values, which increased by 39.9% and 38.5%, respectively. Furthermore, the glass transition temperature and the thermal stability were both enhanced by MXene to some extent. This study introduces a novel method for utilizing MXene in UV-curable waterborne coatings.

13.
Nanomaterials (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999314

ABSTRACT

In order to enhance the mechanical properties of UV-curable epoxy acrylate (EA)-based coatings, 3-(trimethoxysilyl)propyl methacrylate modified aramid nanofibers (T-ANFs) were synthesized and used as nanofillers to prepare EA/T-ANF nanocomposite films. The morphology of T-ANFs was characterized by transmission electron microscopy. The chemical structure of T-ANFs was analyzed via infrared spectroscopy, confirming successful grafting of methyl methacryloyloxy groups onto the surface of aramid nanofibers (ANFs). Real-time infrared spectroscopy was employed to investigate the influence of ANFs and T-ANFs on the photopolymerization kinetics of the EA film. The results revealed that the addition of ANFs and T-ANFs led to a decrease in the photopolymerization rate during the initial stage but had little impact on the final double bond conversion, with all samples exhibiting a conversion rate of over 83%. The incorporation of ANFs improved the tensile strength of the films while significantly reducing their Young's modulus. In contrast, the addition of T-ANFs led to a substantial increase in both tensile stress and Young's modulus of the films. For instance, the tensile strength and Young's modulus of the 0.1 wt% of T-ANF film increased by 52.7% and 41.6%, respectively, compared to the pure EA film. To further study the dispersion morphology and reinforcement mechanism, the cross-sectional morphology of the films was characterized by scanning electron microscopy.

14.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006152

ABSTRACT

Neat polyimide films are known to be dense and rigid. They are therefore not suitable for use in membranes, sensors and sustainable energy storage applications. In this study, a novel technique has been used to simultaneously improve the porosity, rigidity, damping ability and impact resistance of polyimide membranes. It is demonstrated that dispersion of a small amount of polyaniline copolymer-modified clay of about 0.25-0.5 wt.% into the polyimide matrix resulted in an enhanced storage modulus while maintaining high damping ability and glass transition temperature, Tg. Novel polyimide/substituted polyaniline-copolymer-clay nanocomposite membranes containing poly(N-ethyl-aniline-co-aniline-2-sulfonic-acid)-modified-clay (SPNEAC) was successfully prepared and incorporated into the polyimide matrix to form modified clay/polyimide nanocomposites. UV-Vis analysis of the nanocomposite films shows that the optical transparency of the SPNEAC-PI nanocomposite membranes decreased with increasing SPNEAC concentration due to the high UV-Vis absorption of SPNEAC. Transmittance of about 3% was observed in the nanocomposite membrane containing 5 wt.% modified clay at 500 nm wavelength, which is significantly lower than that for the neat PI membrane of about 36%. The dispersion of SPNEAC containing a high concentration of clay (≥40 wt.% clay), in polyimide matrix, resulted in the attainment of a higher degree of imidization than was possible for the organoclay/polyimide nanocomposite. This behavior is believed to be due to the synergistic interaction between PI and SPNEAC. A correlation of the morphology and elastic modulus of the SPNEAC2/PI nanocomposites shows that at low loading of SPNEAC 2 ≤ 0.5 wt.%, the cross-sectional morphology of the composite is an open, spiky, weblike structure with a storage modulus of about 1 GPa, but it progressively evolves into densely packed microspheroids with storage moduli of ≥2 GPa at 10 wt.% SPNEAC2. The impact energy of SPNEAC/PI composites, calculated from the α-transition peak area, increased with increasing SPNEAC loading and were about 4 times that of neat PI at 10 wt.% SPNEAC.

15.
Int J Biol Macromol ; 253(Pt 5): 127271, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37804895

ABSTRACT

Rice starch nanocrystals (SNC) and acetylated rice starch nanocrystals (ASNC) with three different substitution degrees (DS) for 0.22 (ASNCa), 0.56 (ASNCb), and 0.83 (ASNCc), respectively, were synthesized. Starch nanocrystals (SNC, ASNCa, ASNCb and ASNCc) with varying concentrations (0-25 %) were used in the production of composite rice starch-based films plasticized with glycerol using the solvent casting technique. Films were compared concerning their morphology, moisture content and solubility, transmittance, tensile strength, elongation at break. The SNC and ASNC content and acetylated DS had a significant effect (p ≤ 0.05) on all the properties investigated when compared to the control film. The addition of ASNC resulted in less hydrophilic films and UV light barrier properties, and the addition of SNC and ASNC increased the rigidity of starch film. There was an increase of 156.7 % in tensile strength for 10 % ASNCc composite films and a reduction of 68.1 % in water vapor permeability for 20 % ASNCc composite films. The rice starch/ASNCb nanocomposite films with the addition of 5 % and 10 % ASNCb exhibited a compact, smooth, and flat surface structure. Therefore, these results showed that ASNC significantly improved the mechanical properties, surface morphology and thermal stability of the films.


Subject(s)
Nanoparticles , Oryza , Oryza/chemistry , Starch/chemistry , Nanoparticles/chemistry , Solubility , Permeability , Tensile Strength
16.
Front Bioeng Biotechnol ; 11: 1241739, 2023.
Article in English | MEDLINE | ID: mdl-37609118

ABSTRACT

Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.

17.
Adv Mater ; 35(39): e2301293, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37432766

ABSTRACT

Sensing technologies based on plasmonic nanomaterials are of interest for various chemical, biological, environmental, and medical applications. In this work, an incorporation strategy of colloidal plasmonic nanoparticles (pNPs) in microporous polymer for realizing distinct sorption-induced plasmonic sensing is reported. This approach is demonstrated by introducing tin-doped indium oxide pNPs into a polymer of intrinsic microporosity (PIM-1). The composite film (pNPs-polymer) provides distinct and tunable optical features on the fiber optic (FO) platform that can be used as a signal transducer for gas sensing (e.g., CO2 ) under atmospheric conditions. The resulting pNPs-polymer composite demonstrates high sensitivity response on FO in the evanescent field configuration, provided by the dramatic response of modes above the total-internal-reflection angle. Furthermore, by varying the pNPs content in the polymer matrix, the optical behavior of the pNPs-polymer composite film can be tuned to affect the operational wavelength by over several hundred nanometers and the sensitivity of the sensor in the near-infrared range. It is also shown that the pNPs-polymer composite film exhibits remarkable stability over a period of more than 10 months by mitigating the physical aging issue of the polymer.

18.
Adv Mater ; 35(45): e2301163, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37491007

ABSTRACT

A multifunctional soft material with high ionic and electrical conductivity, combined with high mechanical properties and the ability to change shape can enable bioinspired responsive devices and systems. The incorporation of all these characteristics in a single material is very challenging, as the improvement of one property tends to reduce other properties. Here, a nanocomposite film based on charged, high-aspect-ratio 1D flexible nanocellulose fibrils, and 2D Ti3 C2 Tx MXene is presented. The self-assembly process results in a stratified structure with the nanoparticles aligned in-plane, providing high ionotronic conductivity and mechanical strength, as well as large water uptake. In hydrogel form with 20 wt% liquid, the electrical conductivity is over 200 S cm-1 and the in-plane tensile strength is close to 100 MPa. This multifunctional performance results from the uniquely layered composite structure at nano- and mesoscales. A new type of electrical soft actuator is assembled where voltage as low as ±1 V resulted in osmotic effects and giant reversible out-of-plane swelling, reaching 85% strain.

19.
Membranes (Basel) ; 13(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37367813

ABSTRACT

The present study is an attempt to improve thermal, mechanical and electrical properties of poly (methyl methacrylate) (PMMA). For this purpose, vinyltriethoxysilane (VTES) was grafted covalently on the surface of graphene oxide (GO). This VTES functionalized graphene oxide (VGO) was dispersed in the PMMA matrix using the solution casting method. The morphology of the resultant PMMA/VGO nanocomposites was analyzed by SEM indicating well-dispersed VGO in the PMMA matrix. Thermal stability, tensile strength and thermal conductivity increased by 90%, 91% and 75%, respectively, whereas volume electrical resistivity and surface electrical resistivity reduced to 9.45 × 105 Ω/cm and 5.45 × 107 Ω/cm2, respectively.

20.
J Colloid Interface Sci ; 649: 132-139, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348332

ABSTRACT

Quantum-dot (QDs) polymer composite films, which are key components in recent display applications, require improved photoluminescence (PL) intensity and color conversion efficiency for better display quality and low power consumption. In this study, we developed a novel approach to improve the photoluminescence (PL) of quantum dot (QDs)-polymer nanocomposite films. This was achieved by incorporating CO2 micropores and scattering particles into QD-embedded photopolymerizable polymer films. CO2 micropores were generated by the decomposition of KHCO3 in the film. The CO2 micropores, along with the partially decomposed KHCO3 microparticles, act as a scattering medium that increases the photon absorbance and improves the PL intensity. The effect of KHCO3 annealing temperature on various optical properties is investigated, and it is found that a large number of uniform micropores are created in the film at an optimal temperature, 110 ℃. Compared to an ordinary QD-polymer film, the PL of the QD-hybrid-foamed polymer film increases by 4.2 times. This method is fast and economically efficient, and provides insights into the design of high-performance optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL