ABSTRACT
Introduction: Bouvardia ternifolia is a plant known for its traditional medicinal uses, particularly in treating inflammation and oxidative stress. Recent studies have explored its potential in neuroprotection, especially in the context of cerebral ischemia/reperfusion injury, a condition where blood supply returns to the brain after a period of ischemia, leading to oxidative stress and inflammation. This damage is a major contributor to neuronal death and neurodegenerative diseases. Methods: A BCCAO/reperfusion model was induced, followed by treatment with B. ternifolia extract. Various molecular biology methods were employed, including Western blot analysis, gene expression assessment via RT-qPCR, and the measurement of oxidative stress mediators. Results: In the BCCAO/reperfusion model, the compounds in the dichloromethane extract work by targeting various signaling pathways. They prevent the activation of iNOS and nNOS, reducing harmful reactive oxygen and nitrogen species, and boosting antioxidant enzymes like catalase and superoxide dismutase. This lowers oxidative stress and decreases the expression of proteins and genes linked to cell death, such as Bax, Bcl-2, and caspase-3. The extract also blocks the TLR4 receptor, preventing NF-κB from triggering inflammation. Additionally, it reduces the activation of microglia and astrocytes, as shown by lower levels of glial activation genes like GFAP and AiF1. Conclusion: The dichloromethane extract of B. ternifolia demonstrated significant neuroprotective effects in the BCCAO/reperfusion model by modulating multiple signaling pathways. It effectively reduced oxidative stress, inhibited inflammation, and attenuated apoptosis, primarily through the downregulation of key proteins and genes associated with these processes. These findings suggest that the extract holds therapeutic potential for mitigating ischemia/reperfusion-induced neuronal damage.
ABSTRACT
PURPOSE: Ceroid lipofuscinosis type 11 (CLN11) is a very rare disease, being reported in only 13 unrelated families so far. Further reports are necessary to comprehend the clinical phenotype of this condition. This article aims to report nine additional cases of CLN11 from nine unrelated Latin American families presenting with relatively slow disease progression. METHODS: This was a retrospective observational study including patients with CLN11. Patients were identified through an active search for GRN pathogenic variants across the entire database of next-generation sequencing (NGS) of a commercial laboratory and by contacting attending physicians to check for clinical and radiologic findings compatible with a neuronal ceroid lipofuscinosis phenotype. RESULTS: Nine CLN11 patients from unrelated families were evaluated. Age of onset varied between 3 to 17 years. The most common findings were visual impairment, cerebellar ataxia, seizures, myoclonus and cognitive decline. One patient had a previously unreported finding of cervical, perioral and tongue myoclonus. Most of the patients were able to walk unassisted after an average of 14.2 years (SD 4.76y) from disease onset. CONCLUSION: We describe nine new cases of a very rare type of neuronal ceroid lipofuscinosis (CLN11) from Latin America with a recurrent p.(Gln257ProfsTer27) and a novel p.(Cys83Ter) nonsense variant. Our findings suggest that a slowly progressive NCL might be a clue for the diagnosis of CLN11.
ABSTRACT
The nucleus accumbens shell (NAcSh) integrates reward information through diverse and specialized neuronal ensembles, influencing decision-making. By training rats in a probabilistic choice task and recording NAcSh neuronal activity, we found that rats adapt their choices based solely on the presence or absence of a sucrose reward, suggesting they build an internal representation of reward likelihood. We further demonstrate that NAcSh ensembles dynamically process different aspects of reward-guided behavior, with changes in composition and functional connections observed throughout the reinforcement learning process. The NAcSh forms a highly connected network characterized by a heavy-tailed distribution and the presence of neuronal hubs, facilitating efficient information flow. Reward delivery enhances mutual information, indicating increased communication between ensembles and network synchronization, whereas reward omission decreases it. Our findings reveal how reward information flows through dynamic NAcSh ensembles, whose flexible membership adapts as the rat learns to obtain rewards (energy) in an ever-changing environment.
Subject(s)
Neurons , Nucleus Accumbens , Reward , Nucleus Accumbens/physiology , Animals , Neurons/physiology , Rats , Male , Choice Behavior/physiologyABSTRACT
Ulcerative colitis has been associated with psychological distress and an aberrant immune response. The immunomodulatory role of systemic cytokines produced during experimental intestinal inflammation in tonic immobility (TI) defensive behavior remains unknown. The present study characterized the TI defensive behavior of guinea pigs subjected to colitis induction at the acute stage and after recovery from intestinal mucosa injury. Moreover, we investigated whether inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-8, IL-10, and prostaglandins) act on the mesencephalic nucleus, periaqueductal gray matter (PAG). Colitis was induced in guinea pigs by intrarectal administration of acetic acid. The TI defensive behavior, histology, cytokine production, and expression of c-FOS, IBA-1, and cyclooxygenase (COX)-2 in PAG were evaluated. Colitis reduced the duration of TI episodes from the first day, persisting throughout the 7-day experimental period. Neuronal c-FOS immunoreactivity was augmented in both columns of the PAG (ventrolateral (vlPAG) and dorsal), but there were no changes in IBA-1 expression. Dexamethasone, infliximab, and parecoxib treatments increased the duration of TI episodes, suggesting a modulatory role of peripheral inflammatory mediators in this behavior. Immunoneutralization of TNF-α, IL-1ß, and IL-8 in the vlPAG reversed all effects produced by colitis. In contrast, IL-10 neutralization further reduced the duration of TI episodes. Our results reveal that peripherally produced inflammatory mediators during colitis may modulate neuronal functioning in mesencephalic structures such as vlPAG.
Subject(s)
Colitis , Animals , Male , Guinea Pigs , Colitis/metabolism , Colitis/chemically induced , Colitis/immunology , Immobility Response, Tonic , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Cytokines/metabolism , Dexamethasone/pharmacology , Cyclooxygenase 2/metabolism , Infliximab/pharmacology , Infliximab/therapeutic use , Disease Models, AnimalABSTRACT
The classic enzymatic function of acetylcholinesterase (AChE) is the hydrolysis of acetylcholine (ACh) in the neuronal synapse. However, AChE is also present in nonneuronal cells such as lymphocytes. Various studies have proposed the participation of AChE in the development of cancer. The ACHE gene produces three mRNAs (T, H and R). AChE-T encodes amphiphilic monomers, dimers, tetramers (G1 A, G2 A and G4 A) and hydrophilic tetramers (G4 H). AChE-H encodes amphiphilic monomers and dimers (G1 A and G2 A). AChE-R encodes a hydrophilic monomer (G1 H). The present study considered the differences in the mRNA expression (T, H and R) and protein levels of AChE, as well as the molecular forms of AChE, the glycosylation pattern and the enzymatic activity of AChE present in normal T lymphocytes and leukemic Jurkat E6-1 cells. The results revealed that AChE enzymatic activity was higher in normal T lymphocytes than in Jurkat cells. Normal T cells expressed AChE-H transcripts, whereas Jurkat cells expressed AChE-H and AChE-T. The molecular forms identified in normal T cells were G2 A (5.2 S) and G1 A (3.5 S), whereas those in Jurkat cells were G2 A (5.2 S), G1 A (3.5 S) and G4 H (10.6S). AChE in Jurkat cells showed altered posttranslational maturation since a decrease in the incorporation of galactose and sialic acid into its structure was observed. In conclusion, the content and composition of AChE were altered in Jurkat cells compared with those in normal T lymphocytes. The present study opened new avenues for exploring the development of novel therapeutic strategies against T-cell leukemia and for identifying potential molecular targets for the early detection of this type of cancer.
ABSTRACT
Cortical organoids derived from human induced pluripotent stem cells (hiPSCs) represent a powerful in vitro experimental system to investigate human brain development and disease, often inaccessible to direct experimentation. However, despite steady progress in organoid technology, several limitations remain, including high cost and variability, use of hiPSCs derived from tissues harvested invasively, unexplored three-dimensional (3D) structural features and neuronal connectivity. Here, using a cost-effective and reproducible protocol as well as conventional two-dimensional (2D) immunostaining, we show that cortical organoids generated from hiPSCs obtained by reprogramming stem cells from human exfoliated deciduous teeth (SHED) recapitulate key aspects of human corticogenesis, such as polarized organization of neural progenitor zones with the presence of outer radial glial stem cells, and differentiation of superficial- and deep-layer cortical neurons and glial cells. We also show that 3D bioprinting and magnetic resonance imaging of intact cortical organoids are alternative and complementary approaches to unravel critical features of the 3D architecture of organoids. Finally, extracellular electrical recordings in whole organoids showed functional neuronal networks. Together, our findings suggest that SHED-derived cortical organoids constitute an attractive model of human neurodevelopment, and support the notion that a combination of 2D and 3D techniques to analyze organoid structure and function may help improve this promising technology.
ABSTRACT
Microglia are highly dynamic cells that have been mainly studied under pathological conditions. The present review discusses the possible implication of microglia as modulators of neuronal electrical responses in physiological conditions and hypothesizes how these cells might modulate hypothalamic circuits in health and during obesity. Microglial cells studied under physiological conditions are highly diverse, depending on the developmental stage and brain region. The evidence also suggests that neuronal electrical activity modulates microglial motility to control neuronal excitability. Additionally, we show that the expression of genes associated with neuron-microglia interaction is down-regulated in obese mice compared to control-fed mice, suggesting an alteration in the contact-dependent mechanisms that sustain hypothalamic arcuate-median eminence neuronal function. We also discuss the possible implication of microglial-derived signals for the excitability of hypothalamic neurons during homeostasis and obesity. This review emphasizes the importance of studying the physiological interplay between microglia and neurons to maintain proper neuronal circuit function. It aims to elucidate how disruptions in the normal activities of microglia can adversely affect neuronal health.
Subject(s)
Arcuate Nucleus of Hypothalamus , Homeostasis , Microglia , Neurons , Microglia/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Humans , Neurons/metabolism , Neurons/physiology , Obesity/metabolism , Obesity/physiopathology , MiceABSTRACT
BACKGROUND: Oenothera rosea L'Her Ex. Aiton, presenting antioxidant and anti-inflammatory activities, is traditionally used to treat bruises and headaches and as a healing agent. This study aimed to investigate whether its organic fraction (EAOr) has neuroprotective properties against neuroinflammation in the context of ischemia/reperfusion. METHODS: The chemical composition of EAOr was determined using HPLC techniques, and its neuroprotective activities were evaluated in a common carotid-artery ligation model for the induction of ischemia/reperfusion (I/R). The animals were supplemented with EAOR for 15 days. On the last day, the animals were rested for one hour, following which the common carotid-artery ligation procedure was performed to induce I/R. The neurological deficit was evaluated at 24 h after I/R using Bederson's scale, and the relative expression of inflammatory genes and structure of hippocampal neurons were analyzed at 48 h. RESULTS: The chemical analysis revealed five major compounds in EAOr: gallic acid, rutin, ellagic acid, and glucoside and rhamnoside quercetin. EAOr prevented neurological deficit 24 h after I/R; led to the early activation of the AIF and GFAP genes; reduced Nfkb1, IL-1beta, Il-6 and Casp3 gene expression; and protected hippocampal neurons. CONCLUSIONS: Our findings demonstrate that EAOr contains polyphenol-type compounds, which could exert a therapeutic effect through the inhibition of neuroinflammation and neuronal death genes, thus maintaining hippocampal neurons.
ABSTRACT
Background: In recent years, there has been a growing use of technological advancements to enhance the rehabilitation of individuals who have suffered from cerebrovascular accidents. Virtual reality rehabilitation programs enable patients to engage in a customized therapy program while interacting with a computer-generated environment. Therefore, our goal was to investigate the effectiveness of virtual reality in occupational therapy for people's rehabilitation after a cerebrovascular accident. Methods: We systematically searched databases (Pubmed/Medline, Scopus, Web of Science, and Science Direct) for randomized controlled trials published within the last 10 years. Studies involving adult stroke survivors undergoing virtual reality-based interventions aimed at improving upper-extremity motor function were included. The quality assessment followed PRISMA guidelines, with the risk of bias assessed using the Cochrane tool (version 6.4) and methodological quality evaluated using GRADEpro. Results: We selected sixteen studies that met the main criteria for the implementation of virtual reality technology. The interventions described in the articles focused mainly on the upper extremities and their fine motor skills. Conclusions: When used in conventional treatments to improve people's motor and cognitive functions after a cerebrovascular accident, virtual reality emerges as a beneficial tool. Additionally, virtual reality encourages adherence to the interventional process of rehabilitation through occupational therapy.
ABSTRACT
Electroconvulsive therapy (ECT) is considered one of the most effective treatments for psychiatric disorders. ECT has proven effective in the treatment of depression, mania, catatonia and psychosis. It is presumed that seizures induced during ECT administration cause toxicity and potentially neuronal and glial cell death. A broad range of neurological disorders increase cerebrospinal fluid and serum levels of neuron-specific enolase (NSE) and S-100b protein. This study aims to investigate the effect of ECT on NSE and S-100b levels, which, together, serve as a proxy for neuronal cell damage. Serum concentrations of S-100b and NSE of adult patients who received ECT were measured by immunoluminometric analysis before and after treatment. A two-way ANOVA test was used to estimate the statistical differences in marker concentrations between the subgroups of the study population. Results: A total of 55 patients were included in the analysis: 52.73% (n = 29) were diagnosed with depression, 21.82% (n = 12) with schizophrenia or other psychosis, 16.36% (n = 9) with mania and 9.09% (n = 5) with catatonia. There were no statistically significant changes in NSE (p = 0.288) and S-100b (p = 0.243) levels. We found no evidence that ECT induced neuronal damage based on NSE and S-100b protein levels measured in the serum of patients before and after treatment.
ABSTRACT
This study investigates the efficacy of nebivolol (NBV) in experimental models of toxoplasmosis, focusing on parasite burden reduction and neuronal protection. In the acute model of experimental toxoplasmosis, Swiss mice infected with RH strain tachyzoites received oral NBV chlorhydrate doses of 2 mg/kg/day and 4 mg/kg/day for 8 days. Treatment with NBV significantly reduced parasite burden compared to vehicle and standard drug (PYR) groups. In the chronic model of experimental toxoplasmosis, C57/BL6 mice infected with the ME49 strain received NBV chlorhydrate 41 days post-infection and were evaluated after 10 days of treatment. NBV chlorhydrate effectively reduced cyst number and area, as well as bradyzoite burden compared to controls. Histological analysis demonstrated that NBV chlorhydrate preserved neuronal count, with the 4 mg/kg/day dose yielding counts similar to non-infected mice. Statistical analysis confirmed significant differences compared to control groups. Furthermore, immunohistochemical analysis revealed a significant reduction in iNOS labeling in the brains of mice treated with NBV chlorhydrate, indicating a decrease in nitric oxide production compared to control groups. These findings suggest NBV's potential as a promising candidate for toxoplasmosis treatment, highlighting its ability to reduce parasite burden and protect neuronal integrity. Further research is warranted to elucidate NBV's mechanisms of action and its clinical application in managing toxoplasmosis.
Subject(s)
Brain , Disease Models, Animal , Mice, Inbred C57BL , Nebivolol , Parasite Load , Toxoplasmosis, Animal , Animals , Nebivolol/pharmacology , Nebivolol/therapeutic use , Mice , Toxoplasmosis, Animal/drug therapy , Toxoplasmosis, Animal/parasitology , Brain/parasitology , Brain/pathology , Brain/drug effects , Female , Neurons/drug effects , Neurons/parasitology , Ethanolamines/pharmacology , Ethanolamines/therapeutic use , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Antiprotozoal Agents/administration & dosage , Benzopyrans/pharmacology , Benzopyrans/therapeutic use , Treatment Outcome , Nitric Oxide/metabolism , Toxoplasma/drug effects , Nitric Oxide Synthase Type II/metabolismSubject(s)
Periodicals as Topic , South America , Humans , Central America , Animals , Neurosciences/standards , Nerve Net/physiologyABSTRACT
Scale-free brain activity, linked with learning, the integration of different time scales, and the formation of mental models, is correlated with a metastable cognitive basis. The spectral slope, a key aspect of scale-free dynamics, was proposed as a potential indicator to distinguish between different sleep stages. Studies suggest that brain networks maintain a consistent scale-free structure across wakefulness, anesthesia, and recovery. Although differences in anesthetic sensitivity between the sexes are recognized, these variations are not evident in clinical electroencephalographic recordings of the cortex. Recently, changes in the slope of the power law exponent of neural activity were found to correlate with changes in Rényi entropy, an extended concept of Shannon's information entropy. These findings establish quantifiers as a promising tool for the study of scale-free dynamics in the brain. Our study presents a novel visual representation called the Rényi entropy-complexity causality space, which encapsulates complexity, permutation entropy, and the Rényi parameter q. The main goal of this study is to define this space for classical dynamical systems within theoretical bounds. In addition, the study aims to investigate how well different time series mimicking scale-free activity can be discriminated. Finally, this tool is used to detect dynamic features in intracranial electroencephalography (iEEG) signals. To achieve these goals, the study implementse the Bandt and Pompe method for ordinal patterns. In this process, each signal is associated with a probability distribution, and the causal measures of Rényi entropy and complexity are computed based on the parameter q. This method is a valuable tool for analyzing simulated time series. It effectively distinguishes elements of correlated noise and provides a straightforward means of examining differences in behaviors, characteristics, and classifications. For the iEEG experimental data, the REM state showed a greater number of significant sex-based differences, while the supramarginal gyrus region showed the most variation across different modes and analyzes. Exploring scale-free brain activity with this framework could provide valuable insights into cognition and neurological disorders. The results may have implications for understanding differences in brain function between the sexes and their possible relevance to neurological disorders.
ABSTRACT
Extracellular vesicles (EVs) hold promise as a source of disease biomarkers. The diverse molecular cargo of EVs can potentially indicate the status of their tissue of origin, even against the complex background of whole plasma. The main tools currently available for assessing biomarkers of brain health include brain imaging and analysis of the cerebrospinal fluid of patients. Given the costs and difficulties associated with these methods, isolation of EVs of neuronal origin (NEVs) from the blood is an attractive approach to identify brain-specific biomarkers. This perspective describes current key challenges in EV- and NEV-based biomarker research. These include the relative low abundance of EVs, the lack of validated isolation methods, and the difficult search for an adequate target for immunocapturing NEVs. We discuss that these challenges must be addressed before NEVs can fulfill their potential for biomarker research. HIGHLIGHTS: NEVs are promising sources of biomarkers for brain disorders. Immunocapturing NEVs from complex biofluids presents several challenges. The choice of surface target for capture will determine NEV yield. Contamination by non-EV sources is relevant for biomarkers at low concentrations.
Subject(s)
Biomarkers , Extracellular Vesicles , Neurons , Humans , Extracellular Vesicles/metabolism , Biomarkers/cerebrospinal fluid , Neurons/metabolism , Brain , Brain DiseasesABSTRACT
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Subject(s)
Axons , Growth Cones , Microtubules , Signal Transduction , rhoA GTP-Binding Protein , Microtubules/metabolism , Animals , rhoA GTP-Binding Protein/metabolism , Axons/metabolism , Growth Cones/metabolism , rho-Associated Kinases/metabolism , Hippocampus/metabolism , Hippocampus/cytology , Rats , Formins/metabolism , Cells, Cultured , Neurons/metabolismSubject(s)
Adaptation, Physiological , Hypoxia , Humans , Hypoxia/physiopathology , Adaptation, Physiological/physiology , AnimalsABSTRACT
We reported thirteen cases of bilateral stringhalt associated with Hypochaeris radicata that occurred in horses in Uruguay during a severe drought in the summer of 2023. All horses were affected chronically and progressively by bilateral hyperflexion of hindlimbs. In two severely affected horses, the main histological lesions included neuronal chromatolysis and axonal spheroids in the ventral gray horn in the lumbar and sacral spinal cord and axonal degeneration and digestion chambers in ventral roots fibers and long peripheral nerves. We suggest that in addition to injuries to peripheral nerves, lesions in the spinal cord play an important role in the clinical signs of stringhalt in horses.
Subject(s)
Horse Diseases , Animals , Horses , Uruguay , Spinal Cord/pathology , Male , FemaleABSTRACT
COVID-19, caused by SARS-CoV-2, affects neuronal cells, causing several symptoms such as memory loss, anosmia and brain inflammation. Curcuminoids (Me08 e Me23) and curcumin (CUR) are derived from Curcuma Longa extract (EXT). Many therapeutic actions have been linked to these compounds, including antiviral action. Given the severe implications of COVID-19, especially within the central nervous system, our study aims to shed light on the therapeutic potential of curcuminoids against SARS-CoV-2 infection, particularly in neuronal cells. Here, we investigated the effects of CUR, EXT, Me08 and Me23 in human neuroblastoma SH-SY5Y. We observed that Me23 significantly decreased the expression of plasma membrane-associated transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, consequently mitigating the elevated ROS levels induced by SARS-CoV-2. Furthermore, Me23 exhibited antioxidative properties by increasing NRF2 gene expression and restoring NQO1 activity following SARS-CoV-2 infection. Both Me08 and Me23 effectively reduced SARS-CoV-2 replication in SH-SY5Y cells overexpressing ACE2 (SH-ACE2). Additionally, all of these compounds demonstrated the ability to decrease proinflammatory cytokines such as IL-6, TNF-α, and IL-17, while Me08 specifically reduced INF-γ levels. Our findings suggest that curcuminoid Me23 could serve as a potential agent for mitigating the impact of COVID-19, particularly within the context of central nervous system involvement.
Subject(s)
Anti-Inflammatory Agents , Antioxidants , Antiviral Agents , COVID-19 Drug Treatment , Curcumin , SARS-CoV-2 , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Antioxidants/pharmacology , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Anti-Inflammatory Agents/pharmacology , Cell Line, Tumor , Curcuma/chemistry , Serine Endopeptidases/metabolism , COVID-19/virology , COVID-19/metabolism , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Plant Extracts/pharmacology , Cytokines/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/virologyABSTRACT
Neurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.