Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters











Publication year range
1.
Cell Rep ; 43(5): 114144, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38656874

ABSTRACT

The molecular mechanisms underlying seizure generation remain elusive, yet they are crucial for developing effective treatments for epilepsy. The current study shows that inhibiting c-Abl tyrosine kinase prevents apoptosis, reduces dendritic spine loss, and maintains N-methyl-d-aspartate (NMDA) receptor subunit 2B (NR2B) phosphorylated in in vitro models of excitotoxicity. Pilocarpine-induced status epilepticus (SE) in mice promotes c-Abl phosphorylation, and disrupting c-Abl activity leads to fewer seizures, increases latency toward SE, and improved animal survival. Currently, clinically used c-Abl inhibitors are non-selective and have poor brain penetration. The allosteric c-Abl inhibitor, neurotinib, used here has favorable potency, selectivity, pharmacokinetics, and vastly improved brain penetration. Neurotinib-administered mice have fewer seizures and improved survival following pilocarpine-SE induction. Our findings reveal c-Abl kinase activation as a key factor in ictogenesis and highlight the impact of its inhibition in preventing the insurgence of epileptic-like seizures in rodents and humans.


Subject(s)
Pilocarpine , Proto-Oncogene Proteins c-abl , Seizures , Animals , Male , Mice , Apoptosis/drug effects , Mice, Inbred C57BL , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/pathology
2.
Cell Mol Neurobiol ; 43(8): 4231-4244, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742326

ABSTRACT

Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/µL, 1 µL) followed by fMLP (1 mg/mL, 1 µL) or vehicle (VEH, saline 0.9%, 1 µL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).


Subject(s)
Epilepsy , Status Epilepticus , Rats , Male , Animals , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , N-Formylmethionine Leucyl-Phenylalanine/therapeutic use , Pilocarpine/therapeutic use , Rats, Wistar , Status Epilepticus/drug therapy , Status Epilepticus/complications , Seizures/drug therapy , Epilepsy/drug therapy , Peptides/therapeutic use
3.
Neural Regen Res ; 18(12): 2592-2598, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37449594

ABSTRACT

The blood-brain barrier is the interface through which the brain interacts with the milieu and consists mainly of a sophisticated network of brain endothelial cells that forms blood vessels and selectively moves molecules inside and outside the brain through multiple mechanisms of transport. Although brain endothelial cell function is crucial for brain homeostasis, their role in neurodegenerative diseases has historically not been considered with the same importance as other brain cells such as microglia, astroglia, neurons, or even molecules such as amyloid beta, Tau, or alpha-synuclein. Alzheimer's disease is the most common neurodegenerative disease, and brain endothelial cell dysfunction has been reported by several groups. However, its impairment has barely been considered as a potential therapeutic target. Here we review the most recent advances in the relationship between Alzheimer's disease and brain endothelial cells commitment and analyze the possible mechanisms through which their alterations contribute to this neurodegenerative disease, highlighting their inflammatory phenotype and the possibility of an impaired secretory pattern of brain endothelial cells that could contribute to the progression of this ailment. Finally, we discuss why shall brain endothelial cells be appreciated as a therapeutic target instead of solely an obstacle for delivering treatments to the injured brain in Alzheimer's disease.

4.
J Neurochem ; 166(1): 87-106, 2023 07.
Article in English | MEDLINE | ID: mdl-37328918

ABSTRACT

Ischemic stroke is a leading cause of disability worldwide. There is no simple treatment to alleviate ischemic brain injury, as thrombolytic therapy is applicable within a narrow time window. During the last years, the ketogenic diet (KD) and the exogenous administration of the ketone body ß-hydroxybutyrate (BHB) have been proposed as therapeutic tools for acute neurological disorders and both can reduce ischemic brain injury. However, the mechanisms involved are not completely clear. We have previously shown that the D enantiomer of BHB stimulates the autophagic flux in cultured neurons exposed to glucose deprivation (GD) and in the brain of hypoglycemic rats. Here, we have investigated the effect of the systemic administration of D-BHB, followed by its continuous infusion after middle cerebral artery occlusion (MCAO), on the autophagy-lysosomal pathway and the activation of the unfolded protein response (UPR). Results show for the first time that the protective effect of BHB against MCAO injury is enantiomer selective as only D-BHB, the physiologic enantiomer of BHB, significantly reduced brain injury. D-BHB treatment prevented the cleavage of the lysosomal membrane protein LAMP2 and stimulated the autophagic flux in the ischemic core and the penumbra. In addition, D-BHB notably reduced the activation of the PERK/eIF2α/ATF4 pathway of the UPR and inhibited IRE1α phosphorylation. L-BHB showed no significant effect relative to ischemic animals. In cortical cultures under GD, D-BHB prevented LAMP2 cleavage and decreased lysosomal number. It also abated the activation of the PERK/eIF2α/ATF4 pathway, partially sustained protein synthesis, and reduced pIRE1α. In contrast, L-BHB showed no significant effects. Results suggest that protection elicited by D-BHB treatment post-ischemia prevents lysosomal rupture allowing functional autophagy, preventing the loss of proteostasis and UPR activation.


Subject(s)
Brain Injuries , Stroke , Rats , Animals , Ketone Bodies/pharmacology , Ketone Bodies/metabolism , Endoribonucleases/pharmacology , Protein Serine-Threonine Kinases , Endoplasmic Reticulum Stress , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Glucose/metabolism , Autophagy , Infarction, Middle Cerebral Artery , Models, Theoretical , Stroke/drug therapy
5.
Arq. bras. med. vet. zootec. (Online) ; 74(3): 399-411, May-June 2022. tab, graf, ilus
Article in English | VETINDEX | ID: biblio-1383776

ABSTRACT

The aim of this study was to analyze the behavior and histopathological changes in the hippocampus of epileptic Wistar rats treated with acupuncture associated or not with phenobarbital. The experiment used 44 male rats with 90 days of birth, induced to status epileptics with pilocarpine hydrochloride in a single dose of 350mg/kg, separated into treatment groups and submitted for 5 minutes to the elevated plus-maze test. Group 1 received 0.2mL of saline solution orally; Group 2 treated with acupuncture at the yintang, baihui, shishencong, jizhong, naohu, thianzu points; Group 3 received orally phenobarbital, daily dose of 20mg/kg; Group 4 treated with an association of acupuncture and oral phenobarbital; Group 5 random needling. The results obtained showed that Groups 2 (acupuncture) and 4 (acupuncture and phenobarbital) presented decreased anxiety, epileptic seizures, and neuronal death in the CA1, CA3 areas of the hippocampus when compared to animals in groups 1, 3 and 5. It is concluded that the association of phenobarbital and acupuncture points used in the experiment allowed for the control of epileptic seizures, reduction of anxiety and reduction of lesions in the subareas of the hippocampus.


O objetivo deste estudo foi analisar o comportamento e as alterações histopatológicas no hipocampo de ratos Wistar epilépticos tratados com acupuntura associada ou não a fenobarbital. O experimento utilizou 44 ratos machos, com 90 dias de nascimento, induzidos ao status epileticus com cloridrato de pilocarpina, em dose única de 350mg/kg, separados em grupos de tratamento e submetidos por cinco minutos ao teste de labirinto em cruz elevado. O grupo 1 recebeu, por via oral, 0,2mL de solução salina; o grupo 2 foi tratado com acupuntura nos pontos yintang, baihui, shishencong, jizhong, naohu, thianzu; o grupo 3 recebeu, por via oral, fenobarbital, dose diária de 20mg/kg; o grupo 4 foi tratado com associação acupuntura e fenobarbital por via oral; o grupo 5 recebeu agulhamento aleatório. Os resultados obtidos demonstraram que os grupos 2 (acupuntura) e 4 (acupuntura e fenobarbital) apresentaram diminuição da ansiedade, das crises epilépticas e da morte neuronal nas áreas CA1, CA3 do hipocampo quando comparados aos animais dos grupos 1, 3 e 5. Conclui-se que a associação do fenobarbital e dos pontos de acupuntura utilizados no experimento permitiu o controle das crises epilépticas, a redução da ansiedade e a diminuição das lesões nas subáreas do hipocampo.


Subject(s)
Animals , Rats , Anxiety , Phenobarbital , Seizures , Rats, Wistar , Acupuncture , Epilepsy , Hippocampus
7.
Front Immunol ; 12: 702048, 2021.
Article in English | MEDLINE | ID: mdl-34335614

ABSTRACT

Zika virus (ZIKV) is an arbovirus belonging to Flaviviridae family that emerged as a global health threat due to its association with microcephaly and other severe neurological complications, including Guillain-Barré Syndrome (GBS) and Congenital Zika Syndrome (CZS). ZIKV disease has been linked to neuroinflammation and neuronal cell death. Neurodegenerative processes may be exacerbated by metabolites produced by the kynurenine pathway, an important pathway for the degradation of tryptophan, which induces neuronal dysfunction due to enhanced excitotoxicity. Here, we exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking a target enzyme of the kynurenine pathway, the Indoleamine 2,3-dioxygenase (IDO-1). RT-PCR analysis showed increased levels of IDO-1 RNA expression in undifferentiated primary neurons isolated from wild type (WT) mice infected by ZIKV ex vivo, as well as in the brain of ZIKV-infected A129 mice. Pharmacological inhibition of IDO-1 enzyme with 1-methyl-D-tryptophan (1-MT), in both in vitro and in vivo systems, led to significant reduction of ZIKV-induced neuronal death without interfering with the ability of ZIKV to replicate in those cells. Furthermore, in vivo analyses using both genetically modified mice (IDO-/- mice) and A129 mice treated with 1-MT resulted in reduced microgliosis, astrogliosis and Caspase-3 positive cells in the brain of ZIKV-infected A129 mice. Interestingly, increased levels of CCL5 and CXCL-1 chemokines were found in the brain of 1-MT treated-mice. Together, our data indicate that IDO-1 blockade provides a neuroprotective effect against ZIKV-induced neurodegeneration, and this is amenable to inhibition by pharmacological treatment.


Subject(s)
Neuroprotection/physiology , Tryptophan/antagonists & inhibitors , Tryptophan/metabolism , Zika Virus Infection/metabolism , Animals , Brain/metabolism , Brain/virology , Cells, Cultured , Disease Models, Animal , Mice , Mice, Inbred C57BL , Microcephaly/metabolism , Microcephaly/virology , Nervous System Diseases/metabolism , Nervous System Diseases/virology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/virology , Neurons/metabolism , Neurons/virology , Neuroprotective Agents/metabolism , Zika Virus/pathogenicity , Zika Virus Infection/virology
8.
Neural Regen Res ; 16(1): 58-67, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32788448

ABSTRACT

Aging is a dynamic and progressive process that begins at conception and continues until death. This process leads to a decrease in homeostasis and morphological, biochemical and psychological changes, increasing the individual's vulnerability to various diseases. The growth in the number of aging populations has increased the prevalence of chronic degenerative diseases, impairment of the central nervous system and dementias, such as Alzheimer's disease, whose main risk factor is age, leading to an increase of the number of individuals who need daily support for life activities. Some theories about aging suggest it is caused by an increase of cellular senescence and reactive oxygen species, which leads to inflammation, oxidation, cell membrane damage and consequently neuronal death. Also, mitochondrial mutations, which are generated throughout the aging process, can lead to changes in energy production, deficiencies in electron transport and apoptosis induction that can result in decreased function. Additionally, increasing cellular senescence and the release of proinflammatory cytokines can cause irreversible damage to neuronal cells. Recent reports point to the importance of changing lifestyle by increasing physical exercise, improving nutrition and environmental enrichment to activate neuroprotective defense mechanisms. Therefore, this review aims to address the latest information about the different mechanisms related to neuroplasticity and neuronal death and to provide strategies that can improve neuroprotection and decrease the neurodegeneration caused by aging and environmental stressors.

9.
Front Cell Neurosci ; 14: 547215, 2020.
Article in English | MEDLINE | ID: mdl-33173467

ABSTRACT

Glucose supply from blood is mandatory for brain functioning and its interruption during acute hypoglycemia or cerebral ischemia leads to brain injury. Alternative substrates to glucose such as the ketone bodies (KB), acetoacetate (AcAc), and ß-hydroxybutyrate (BHB), can be used as energy fuels in the brain during hypoglycemia and prevent neuronal death, but the mechanisms involved are still not well understood. During glucose deprivation adaptive cell responses can be activated such as autophagy, a lysosomal-dependent degradation process, to support cell survival. However, impaired or excessive autophagy can lead to cell dysfunction. We have previously shown that impaired autophagy contributes to neuronal death induced by glucose deprivation in cortical neurons and that D isomer of BHB (D-BHB) reestablishes the autophagic flux increasing viability. Here, we aimed to investigate autophagy dynamics in the brain of rats subjected to severe hypoglycemia (SH) without glucose infusion (GI), severe hypoglycemia followed by GI (SH + GI), and a brief period of hypoglycemic coma followed by GI (Coma). The effect of D-BHB administration after the coma was also tested (Coma + BHB). The transformation of LC3-I to LC3-II and the abundance of autophagy proteins, Beclin 1 (BECN1), ATG7, and ATG12-ATG5 conjugate, were analyzed as an index of autophagosome formation, and the levels of sequestrosome1/p62 (SQSTM1/p62) were determined as a hallmark of autophagic degradation. Data suggest that autophagosomes accumulate in the cortex and the hippocampus of rats after SH, likely due to impaired autophagic degradation. In the cortex, autophagosome accumulation persisted at 6 h after GI in animals exposed to SH but recovered basal levels at 24 h, while in the hippocampus no significant effect was observed. In animals subjected to coma, autophagosome accumulation was observed at 24 h after GI in both regions. D-BHB treatment reduced LC3-II and SQSTM1/p62 content and reduced ULK1 phosphorylation by AMPK, suggesting it stimulates the autophagic flux and decreases AMPK activity reducing autophagy initiation. D-BHB also reduced the number of degenerating cells. Together, data suggest different autophagy dynamics after GI in rats subjected to SH or the hypoglycemic coma and support that D-BHB treatment can modulate autophagy dynamics favoring the autophagic flux.

10.
Front Cell Dev Biol ; 8: 544, 2020.
Article in English | MEDLINE | ID: mdl-32714930

ABSTRACT

In this study we evaluated the effect of the reduction in the endoplasmic reticulum calcium concentration ([Ca2+]ER), changes in the cytoplasmic calcium concentration ([Ca2+]i), alteration of the mitochondrial membrane potential, and the ER stress in the activation of caspase-3 in neonatal cerebellar granule cells (CGN). The cells were loaded with Fura-2 to detect changes in the [Ca2+]i and with Mag-fluo-4 to measure variations in the [Ca2+]ER or with TMRE to follow modifications in the mitochondrial membrane potential in response to five different inducers of CGN cell death. These inducers were staurosporine, thapsigargin, tunicamycin, nifedipine and plasma membrane repolarization by switching culture medium from 25 mM KCl (K25) to 5 mM KCl (K5). Additionally, different markers of ER stress were determined and all these parameters were correlated with the activation of caspase-3. The different inducers of cell death in CGN resulted in three different levels of activation of caspase-3. The highest caspase-3 activity occurred in response to K5. At the same time, staurosporine, nifedipine, and tunicamycin elicited an intermediate activation of caspase-3. Importantly, thapsigargin did not activate caspase-3 at any time. Both K5 and nifedipine rapidly decreased the [Ca2+]i, but only K5 immediately reduced the [Ca2+]ER and the mitochondrial membrane potential. Staurosporine and tunicamycin increased the [Ca2+]i and they decreased both the [Ca2+]ER and mitochondrial membrane potential, but at a much lower rate than K5. Thapsigargin strongly increased the [Ca2+]i, but it took 10 min to observe any decrease in the mitochondrial membrane potential. Three cell death inducers -K5, staurosporine, and thapsigargin- elicited ER stress, but they took 30 min to have any effect. Thapsigargin, as expected, displayed the highest efficacy activating PERK. Moreover, a specific PERK inhibitor did not have any impact on cell death triggered by these cell death inducers. Our data suggest that voltage-gated Ca2+ channels, that are not dihydropyridine-sensitive, load the ER with Ca2+ and this Ca2+ flux plays a critical role in keeping the mitochondrial membrane potential polarized. A rapid decrease in the [Ca2+]ER resulted in rapid mitochondrial membrane depolarization and strong activation of caspase-3 without the intervention of the ER stress in CGN.

11.
Curr Pharm Des ; 26(12): 1377-1387, 2020.
Article in English | MEDLINE | ID: mdl-31957603

ABSTRACT

BACKGROUND: The ketone bodies (KB), ß-hydroxybutyrate (BHB) and acetoacetate, have been proposed for the treatment of acute and chronic neurological disorders, however, the molecular mechanisms involved in KB protection are not well understood. KB can substitute for glucose and support mitochondrial metabolism increasing cell survival. We have reported that the D-isomer of BHB (D-BHB) stimulates autophagic degradation during glucose deprivation in cultured neurons increasing cell viability. Autophagy is a lysosomal degradation process of damaged proteins and organelles activated during nutrient deprivation to obtain building blocks and energy. However, impaired or excessive autophagy can contribute to neuronal death. OBJECTIVE: The aim of the present study was to test whether D-BHB can preserve autophagic function in an in vivo model of excitotoxic damage induced by the administration of the glutamate receptor agonist, N-methyl-Daspartate (NMDA), in the rat striatum. METHODS: D-BHB was administered through an intravenous injection followed by either an intraperitoneal injection (i.v+i.p) or a continuous epidural infusion (i.v+pump), or through a continuous infusion of D-BHB alone. Changes in the autophagy proteins ATG7, ATG5, BECLIN 1 (BECN1), LC3, Sequestrosome1/p62 (SQSTM1/ p62) and the lysosomal membrane protein LAMP2, were evaluated by immunoblot. The lesion volume was measured in cresyl violet-stained brain sections. RESULTS: Autophagy is activated early after NMDA injection but autophagic degradation is impaired due to the cleavage of LAMP2. Twenty-four h after NMDA intrastriatal injection, the autophagic flux is re-established, but LAMP2 cleavage is still observed. The administration of D-BHB through the i.v+pump protocol reduced the content of autophagic proteins and the cleavage of LAMP2, suggesting decreased autophagosome formation and lysosomal membrane preservation, improving autophagic degradation. D-BHB also reduced brain injury. The i.v+i.p administration protocol and the infusion of D-BHB alone showed no effect on autophagy activation or degradation.


Subject(s)
Autophagy , N-Methylaspartate , 3-Hydroxybutyric Acid , Animals , Ketone Bodies/chemistry , Neurons/chemistry , Neurons/physiology , Rats
12.
Redox Biol ; 29: 101408, 2020 01.
Article in English | MEDLINE | ID: mdl-31926631

ABSTRACT

Under physiological conditions, vitamin C is the main antioxidant found in the central nervous system and is found in two states: reduced as ascorbic acid (AA) and oxidized as dehydroascorbic acid (DHA). However, under pathophysiological conditions, AA is oxidized to DHA. The oxidation of AA and subsequent production of DHA in neurons are associated with a decrease in GSH concentrations, alterations in glucose metabolism and neuronal death. To date, the endogenous molecules that act as intrinsic regulators of neuronal necroptosis under conditions of oxidative stress are unknown. Here, we show that treatment with AA regulates the expression of pro- and antiapoptotic genes. Vitamin C also regulates the expression of RIPK1/MLKL, whereas the oxidation of AA in neurons induces morphological alterations consistent with necroptosis and MLKL activation. The activation of necroptosis by AA oxidation in neurons results in bubble formation, loss of membrane integrity, and ultimately, cellular explosion. These data suggest that necroptosis is a target for cell death induced by vitamin C.


Subject(s)
Ascorbic Acid , Necroptosis , Ascorbic Acid/pharmacology , Dehydroascorbic Acid , Neurons , Oxidation-Reduction , Oxidative Stress
13.
Front Cell Neurosci ; 13: 380, 2019.
Article in English | MEDLINE | ID: mdl-31507379

ABSTRACT

Temporal Lobe Epilepsy (TLE) is the most common form of human epilepsy and available treatments with antiepileptic drugs are not disease-modifying therapies. The neuroinflammation, neuronal death and exacerbated plasticity that occur during the silent period, following the initial precipitating event (IPE), seem to be crucial for epileptogenesis. Damage Associated Molecular Patterns (DAMP) such as HMGB-1, are released early during this period concomitantly with a phenomenon of reactive gliosis and neurodegeneration. Here, using a combination of primary neuronal and glial cell cultures, we show that exposure to HMGB-1 induces dendrite loss and neurodegeneration in a glial-dependent manner. In glial cells, loss of function studies showed that HMGB-1 exposure induces NF-κB activation by engaging a signaling pathway that involves TLR2, TLR4, and RAGE. In the absence of glial cells, HMGB-1 failed to induce neurodegeneration of primary cultured cortical neurons. Moreover, purified astrocytes were unable to fully respond to HMGB-1 with NF-κB activation and required microglial cooperation. In agreement, in vivo HMGB-1 blockage with glycyrrhizin, immediately after pilocarpine-induced status epilepticus (SE), reduced neuronal degeneration, reactive astrogliosis and microgliosis in the long term. We conclude that microglial-astroglial cooperation is required for astrocytes to respond to HMGB-1 and to induce neurodegeneration. Disruption of this HMGB-1 mediated signaling pathway shows beneficial effects by reducing neuroinflammation and neurodegeneration after SE. Thus, early treatment strategies during the latency period aimed at blocking downstream signaling pathways activated by HMGB-1 are likely to have a significant effect in the neuroinflammation and neurodegeneration that are proposed as key factors in epileptogenesis.

14.
Front Pharmacol ; 9: 145, 2018.
Article in English | MEDLINE | ID: mdl-29527170

ABSTRACT

Neurodegenerative diseases affect millions of individuals worldwide. So far, no disease-modifying drug is available to treat patients, making the search for effective drugs an urgent need. Neurodegeneration is triggered by the activation of several cellular processes, including oxidative stress, mitochondrial impairment, neuroinflammation, aging, aggregate formation, glutamatergic excitotoxicity, and apoptosis. Therefore, many research groups aim to identify drugs that may inhibit one or more of these events leading to neuronal cell death. Venoms are fruitful natural sources of new molecules, which have been relentlessly enhanced by evolution through natural selection. Several studies indicate that venom components can exhibit selectivity and affinity for a wide variety of targets in mammalian systems. For instance, an expressive number of natural peptides identified in venoms from animals, such as snakes, scorpions, bees, and spiders, were shown to lessen inflammation, regulate glutamate release, modify neurotransmitter levels, block ion channel activation, decrease the number of protein aggregates, and increase the levels of neuroprotective factors. Thus, these venom components hold potential as therapeutic tools to slow or even halt neurodegeneration. However, there are many technological issues to overcome, as venom peptides are hard to obtain and characterize and the amount obtained from natural sources is insufficient to perform all the necessary experiments and tests. Fortunately, technological improvements regarding heterologous protein expression, as well as peptide chemical synthesis will help to provide enough quantities and allow chemical and pharmacological enhancements of these natural occurring compounds. Thus, the main focus of this review is to highlight the most promising studies evaluating animal toxins as therapeutic tools to treat a wide variety of neurodegenerative conditions, including Alzheimer's disease, Parkinson's disease, brain ischemia, glaucoma, amyotrophic lateral sclerosis, and multiple sclerosis.

15.
Channels (Austin) ; 11(6): 624-635, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28876976

ABSTRACT

Cerebral ischemia-reperfusion injury triggers a deleterious process ending in neuronal death. This process has two components, a glutamate-dependent and a glutamate-independent mechanism. In the glutamate-independent mechanism, neurons undergo a slow depolarization eventually leading to neuronal death. However, little is known about the molecules that take part in this process. Here we show by using mice cortical neurons in culture and ischemia-reperfusion protocols that TRPM4 is fundamental for the glutamate-independent neuronal damage. Thus, by blocking excitotoxicity, we reveal a slow activating, glibenclamide- and 9-phenanthrol-sensitive current, which is activated within 5 min upon ischemia-reperfusion onset. TRPM4 shRNA-based silenced neurons show a reduced ischemia-reperfusion induced current and depolarization. Neurons were protected from neuronal death up to 3 hours after the ischemia-reperfusion challenge. The activation of TRPM4 during ischemia-reperfusion injury involves the increase in both, intracellular calcium and H2O2, which may act together to produce a sustained activation of the channel.


Subject(s)
Brain Ischemia/metabolism , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Oxygen/metabolism , Reperfusion Injury/pathology , TRPM Cation Channels/metabolism , Animals , Cell Death , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Female , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/metabolism
16.
Phytomedicine ; 34: 212-218, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28899505

ABSTRACT

BACKGROUND: The brain is exposed to many excitotoxic insults that can lead to neuronal damage. Among these, Epilepsy is a neurological disease that affects a large percentage of world population and is commonly associated with cognitive disorders and excitotoxic neuronal death. Most experimental strategies are focused on preventing Status Epilepticus (SE), but once it has already occurred, the key question is whether it is possible to save neurons. PURPOSE: The aim of this study was to determine if a purified alkaloid extract (AE) obtained from Phlegmariurus saururus, a genus of Lycophyte plants (sometimes known as firmossesor fir club mosses) could induce neuroprotection following SE. METHODS: In vitro and in vivo techniques were applied for this purpose. Protein levels were measured by western blotting procedures. Neuronal death analysis was performed by calcein-ethidium staining and the presence of the NeuN protein as a marker for presence or absence of cells (in vitro experiments) and by Fluoro Jade B staining for the in vivo experiments. RESULTS: The effect of AE in the hippocampal neurons culture was the first determination, where we found an increase in neuronal survival and in the level of pErk and TrkB activation, 24 h after the addition of AE. In a well-established in vitro model of SE, we found that 24 h after being added to the hippocampal neuron-astrocyte co-culture, the AE induces a significant increase in neuronal survival. In addition to this, in the in vivo Li-pilocarpine model of SE, the AE induced a remarkable neuroprotection in areas such as the entorhinal cortex and hippocampal CA1 area. CONCLUSION: These results make the AE an excellent candidate for potential clinical use in neurological disorders where memory impairment and neuronal death occurs.


Subject(s)
Lycopodiaceae/chemistry , Neuroprotection , Plant Extracts/pharmacology , Status Epilepticus/drug therapy , Animals , Apoptosis , Astrocytes/drug effects , Cell Death/drug effects , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Hippocampus/cytology , Male , Neurons/drug effects , Pilocarpine , Rats , Rats, Sprague-Dawley
17.
Epilepsy Behav ; 73: 180-188, 2017 08.
Article in English | MEDLINE | ID: mdl-28645087

ABSTRACT

Epilepsy is a common and devastating neurological disease affecting more than 50 million people worldwide. Accumulating experimental and clinical evidence suggests that inflammatory pathways contribute to the development of seizures in various forms of epilepsy. In this context, while the activation of the PGE2 EP2 receptor causes early neuroprotective and late neurotoxic effects, the role of EP2 receptor in seizures remains unclear. We investigated whether the systemic administration of the highly selective EP2 agonist ONO-AE1-259-01 prevented acute pentylenetetrazole (PTZ)- and pilocarpine-induced seizures. The effect of ONO-AE1-259-01 on cell death in the hippocampal formation of adult male mice seven days after pilocarpine-induced status epilepticus (SE) was also evaluated. ONO-AE1-259-01 (10µg/kg, s.c.) attenuated PTZ- and pilocarpine-induced seizures, evidenced by the increased latency to seizures, decreased number and duration of seizures episodes and decreased mean amplitude of electrographic seizures. ONO-AE1-259-01 and pilocarpine alone significantly increased the number of pyknotic cells per se in all hippocampal subfields. The EP2 agonist also additively increased pilocarpine-induced pyknosis in the pyramidal cell layer of CA1 but reduced pilocarpine-induced pyknosis in the granule cell layer of the dentate gyrus (DG). Although the systemic administration of ONO-AE1-259-01 caused a significant anticonvulsant effect in our assays, this EP2 agonist caused extensive cell death. These findings limit the likelihood of EP2 receptor agonists being considered as novel potential anticonvulsant drugs.


Subject(s)
Anticonvulsants/therapeutic use , Dinoprostone/analogs & derivatives , Hippocampus/drug effects , Neurotoxicity Syndromes/etiology , Seizures/drug therapy , Status Epilepticus/drug therapy , Animals , Anticonvulsants/administration & dosage , Anticonvulsants/adverse effects , Dinoprostone/administration & dosage , Dinoprostone/adverse effects , Dinoprostone/therapeutic use , Male , Mice , Neurons/drug effects , Pentylenetetrazole , Pilocarpine , Seizures/chemically induced , Status Epilepticus/chemically induced
18.
mBio ; 8(2)2017 04 25.
Article in English | MEDLINE | ID: mdl-28442607

ABSTRACT

Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N-methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration.IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment.


Subject(s)
Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Neuroprotective Agents/administration & dosage , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Zika Virus Infection/complications , Zika Virus Infection/pathology , Zika Virus/growth & development , Animals , Disease Models, Animal , Mice , Treatment Outcome
19.
Mol Ther ; 25(2): 392-400, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28153090

ABSTRACT

Brain ischemia is a major cause of adult disability and death, and it represents a worldwide health problem with significant economic burden for modern society. The identification of the molecular pathways activated after brain ischemia, together with efficient technologies of gene delivery to the CNS, may lead to novel treatments based on gene therapy. Recombinant adeno-associated virus (rAAV) is an effective platform for gene transfer to the CNS. Here, we used a serotype 8 rAAV bearing the Y733F mutation (rAAV8-733) to overexpress co-chaperone E3 ligase CHIP (also known as Stub-1) in rat hippocampal neurons, both in an oxygen and glucose deprivation model in vitro and in a four-vessel occlusion model of ischemia in vivo. We show that CHIP overexpression prevented neuronal degeneration in both cases and led to a decrease of both eIF2α (serine 51) and AKT (serine 473) phosphorylation, as well as reduced amounts of ubiquitinated proteins following hypoxia or ischemia. These data add to current knowledge of ischemia-related signaling in the brain and suggest that gene therapy based on the role of CHIP in proteostasis may provide a new venue for brain ischemia treatment.


Subject(s)
Brain Ischemia/genetics , Cell Death/genetics , Dependovirus/genetics , Genetic Vectors/genetics , Pyramidal Cells/metabolism , Transduction, Genetic , Ubiquitin-Protein Ligases/genetics , Animals , Brain Ischemia/metabolism , Brain Ischemia/pathology , Dependovirus/classification , Disease Models, Animal , Gene Expression , Gene Transfer Techniques , Genetic Therapy , Genetic Vectors/administration & dosage , Glucose/metabolism , Hypoxia/metabolism , Oxygen/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Pyramidal Cells/pathology , Rats , Ubiquitination
20.
Brain Res Bull ; 127: 177-186, 2016 10.
Article in English | MEDLINE | ID: mdl-27679397

ABSTRACT

The deleterious effects of ethanol (EtOH) on the brain have been widely described, but its effects on the neuronal cytoskeleton during differentiation have not yet been firmly established. In this context, our aim was to investigate the direct effect of EtOH on cortical neurons during the period of differentiation. Primary cultures of cortical neurons obtained from 1-day-old rats were exposed to EtOH after 7days of culture, and viability and morphology were analyzed at structural and ultrastructural levels after 24-h EtOH exposure. EtOH caused a significant reduction of 73±7% in the viability of cultured cortical neurons, by preferentially inducing apoptotic cellular death. This effect was accompanied by an increase in caspase 3 and 9 expression. Furthermore, EtOH induced a reduction in total dendrite length and in the number of dendrites per cell. Ultrastructural studies showed that EtOH increased the number of lipidic vacuoles, lysosomes and multilamellar vesicles and induced a dilated endoplasmatic reticulum lumen and a disorganized Golgi apparatus with a ring-shape appearance. Microtubules showed a disorganized distribution. Apposition between pre- and postsynaptic membranes without a defined synaptic cleft and a delay in presynaptic vesicle organization were also observed. Synaptophysin and PSD95 expression, proteins pre- and postsynaptically located, were reduced in EtOH-exposed cultures. Overall, our study shows that EtOH induces neuronal apoptosis and changes in the cytoskeleton and membrane proteins related with the establishment of mature synapses. These direct effects of EtOH on neurons may partially explain its effects on brain development.


Subject(s)
Cell Survival/drug effects , Ethanol/toxicity , Neurons/drug effects , Neurons/pathology , Synapses/drug effects , Synapses/pathology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Blotting, Western , Cell Nucleus Shape/drug effects , Cell Survival/physiology , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/pathology , DNA Breaks, Double-Stranded/drug effects , Fluorescent Antibody Technique , In Situ Nick-End Labeling , Microscopy, Electron , Microscopy, Fluorescence , Microtubule-Associated Proteins/metabolism , Neurogenesis/drug effects , Neurogenesis/physiology , Neurons/physiology , Rats, Wistar , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL