Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Diagnostics (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38248040

ABSTRACT

The lack of accurate and feasible diagnostic tests poses a significant challenge to visceral leishmaniasis (VL) healthcare services in endemic areas. To date, various VL diagnostic tests have been or are being developed, and their diagnostic performances need to be assessed. In the present study, the diagnostic performances of rk39 RDT, the direct agglutination test (DAT), microscopy, loop-mediated isothermal amplification (LAMP), and miniature direct-on-blood polymerase chain reaction-nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) were assessed using quantitative polymerase chain reaction (qPCR) as the reference test in an endemic region of Ethiopia. In this study, 235 suspected VL cases and 104 non-endemic healthy controls (NEHCs) were recruited. Among the suspected VL cases, 144 (61.28%) tested positive with qPCR. The sensitivities for rk39 RDT, DAT, microscopy, LAMP assay, and mini-dbPCR-NALFIA were 88.11%, 96.50%, 76.58%, 94.33%, and 95.80%, respectively. The specificities were 83.33%, 97.96%, 100%, 97.38%, and 98.92% for rk39 RDT, DAT, microscopy, LAMP assay, and mini-dbPCR-NALFIA, respectively. In conclusion, rk39 RDT and microscopy exhibited lower sensitivities, while DAT demonstrated excellent performance. LAMP and mini-dbPCR-NALFIA showed excellent performances with feasibility for implementation in remote endemic areas, although the latter requires further evaluation in such regions.

2.
MethodsX ; 11: 102372, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37744884

ABSTRACT

Viral infections continue to pose a significant threat to the public health, leading to high morbidity and mortality rates worldwide. To combat these challenges, early detection and treatment are essential in reducing hospitalizations and preventing severe complications. Simple, inexpensive, and sensitive diagnostic methods are in constant demand in many areas. In this study, we report the development of a nucleic acid-based lateral flow immunoassay device (NALFIA) and demonstrate its successful application in conjunction with a multiplexed reverse-transcription loop-mediated isothermal amplification assay (LAMP) for the detection of SARS-CoV-2 and influenza. In our approach the NALFIA part preparation is independent of the target, and has the potential to ensure widespread use in diagnostics particularly where testing speed is critical such as in respiratory viral infections.•Simple, inexpensive, sensitive and reliable rapid diagnostic tool.•Target independent design.•Effective use for respiratory samples due to practical sample extraction.

3.
Malar J ; 22(1): 98, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36932372

ABSTRACT

BACKGROUND: Point-of-care diagnosis of malaria is currently based on microscopy and rapid diagnostic tests. However, both techniques have their constraints, including poor sensitivity for low parasitaemias. Hence, more accurate diagnostic tests for field use and routine clinical settings are warranted. The miniature direct-on-blood PCR nucleic acid lateral flow immunoassay (mini-dbPCR-NALFIA) is an innovative, easy-to-use molecular assay for diagnosis of malaria in resource-limited settings. Unlike traditional molecular methods, mini-dbPCR-NALFIA does not require DNA extraction and makes use of a handheld, portable thermal cycler that can run on a solar-charged power pack. Result read-out is done using a rapid lateral flow strip enabling differentiation of Plasmodium falciparum and non-falciparum malaria infections. A laboratory evaluation was performed to assess the performance of the mini-dbPCR-NALFIA for diagnosis of pan-Plasmodium and P. falciparum infections in whole blood. METHODS: Diagnostic accuracy of the mini-dbPCR-NALFIA was determined by testing a set of Plasmodium-positive blood samples from returned travellers (n = 29), and Plasmodium-negative blood samples from travellers with suspected malaria (n = 23), the Dutch Blood Bank (n = 19) and intensive care patients at the Amsterdam University Medical Centers (n = 16). Alethia Malaria (LAMP) with microscopy for species differentiation were used as reference. Limit of detection for P. falciparum was determined by 23 measurements of a dilution series of a P. falciparum culture. A fixed sample set was tested three times by the same operator to evaluate the repeatability, and once by five different operators to assess the reproducibility. RESULTS: Overall sensitivity and specificity of the mini-dbPCR-NALFIA were 96.6% (95% CI, 82.2%-99.9%) and 98.3% (95% CI, 90.8%-100%). Limit of detection for P. falciparum was 10 parasites per microlitre of blood. The repeatability of the assay was 93.7% (95% CI, 89.5%-97.8%) and reproducibility was 84.6% (95% CI, 79.5%-89.6%). CONCLUSIONS: Mini-dbPCR-NALFIA is a sensitive, specific and robust method for molecular diagnosis of Plasmodium infections in whole blood and differentiation of P. falciparum. Incorporation of a miniature thermal cycler makes the assay well-adapted to resource-limited settings. A phase-3 field trial is currently being conducted to evaluate the potential implementation of this tool in different malaria transmission areas.


Subject(s)
Malaria, Falciparum , Malaria , Nucleic Acids , Plasmodium , Humans , Reproducibility of Results , Pathology, Molecular , Plasmodium/genetics , Polymerase Chain Reaction/methods , Malaria/diagnosis , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Sensitivity and Specificity , Immunoassay/methods , Molecular Diagnostic Techniques/methods , Diagnostic Tests, Routine/methods
4.
Biosensors (Basel) ; 11(3)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800856

ABSTRACT

The rapid detection of pathogens in infected wounds can significantly improve the clinical outcome. Wound exudate, which can be collected in a non-invasive way, offers an attractive sample material for the detection of pathogens at the point-of-care (POC). Here, we report the development of a nucleic acid lateral flow immunoassay for direct detection of isothermally amplified DNA combined with fast sample preparation. The streamlined protocol was evaluated using human wound exudate spiked with the opportunistic pathogen Pseudomonas aeruginosa that cause severe health issues upon wound colonization. A detection limit of 2.1 × 105 CFU per mL of wound fluid was achieved, and no cross-reaction with other pathogens was observed. Furthermore, we integrated an internal amplification control that excludes false negative results and, in combination with the flow control, ensures the validity of the test result. The paper-based approach with only three simple hands-on steps has a turn-around time of less than 30 min and covers the complete analytical process chain from sample to answer. This newly developed workflow for wound fluid diagnostics has tremendous potential for reliable pathogen POC testing and subsequent target-oriented therapy.


Subject(s)
Biosensing Techniques , Immunoassay , Nucleic Acids , Exudates and Transudates/microbiology , Humans , Limit of Detection , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Wounds and Injuries/microbiology
5.
Animals (Basel) ; 10(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096600

ABSTRACT

Bovine papillomatosis is a viral disease of cattle causing cutaneous warts. A diagnosis of this viral infection is very mandatory for combating the resulting economic losses. Given the limited data available about bovine papillomavirus (BPV) in Egypt, the present study involved the molecular diagnosis of bovine papillomavirus type-1 (BPV-1), -2, -4, -5, and -10 in cattle presenting cutaneous warts on the head and neck from New Valley Province, Egypt. The phylogenetic analysis of the detected types of BPV was also performed, followed by developing a point-of-need molecular assay for the rapid identification of identified BPV types. In this regard, a total of 308 cattle from private farms in Egypt were clinically examined, of which 13 animals presented cutaneous warts due to suspected BPV infection. The symptomatic animals were treated surgically, and biopsies from skin lesions were collected for BPV-1, -2, -4, -5, and -10 molecular identification using polymerase chain reaction (PCR). The presence of BPV-1 DNA was confirmed in 11 collected samples (84.6%), while BPV-2, -4, -5, and -10 were not detected. Sequencing of the PCR products suggested the Egyptian virus is closely related to BPV found in India. An isothermal nucleic acid amplification test (NAAT) with labeled primers specific for the BPV-1 L1 gene sequence, and based on recombinase polymerase amplification (RPA), in combination with a lateral flow strip assay for the detection of RPA products, was developed and tested. The point-of-need molecular assay demonstrated a diagnostic utility comparable to PCR-based testing. Taken together, the present study provides interesting molecular data related to the occurrence of BPV-1 in Egypt and reveals the genetic relatedness of the Egyptian BPV-1 with BPV-1 found in buffalo in India. In addition, a simple, low-cost combined test was also validated for diagnosis of the infection. The present study suggests the necessity of future investigations about the circulating strains of the virus among the cattle in Egypt to assess their genetic relatedness and better understand the epidemiological pattern of the disease.

6.
Mol Biol Rep ; 46(6): 6391-6397, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549369

ABSTRACT

Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) are two poultry pathogens affecting the respiratory tract of chickens, and cause major economic losses in the industry. Rapid detection of these viruses is crucial to inform implementation of appropriate control measures. The objective of our study is developing a simple, rapid and field applicable recombinase polymerase amplification (RPA)-nucleic acid lateral flow (NALF) immunoassay for detection of NDV and IBV. Isothermal amplification of the matrix protein (M) gene of NDV and the nucleoprotein (N) gene of IBV was implemented via recombinase polymerase amplification at 38 °C for 40 min and 20 min, respectively using modified labeled primers. NALF device used in this study utilizes antibodies for detection of labeled RPA amplicons. The results revealed that RPA-NALF immunoassays can detect both viruses after 40 min at 38 °C and only NDV after 20 min. The limit of detection (LOD) was 10 genomic copies/RPA reaction. The assays results on clinical samples collected from diseased chicken farms demonstrated a good performance in comparison with quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). The assays established in this study can facilitate rapid, on-site molecular diagnosis of suspected cases of ND and IB viral infections as the results can be detected by the naked eye without the need for measuring fluorescence. Furthermore, the NALF device could be adapted to detect other infectious agents.


Subject(s)
Infectious bronchitis virus/isolation & purification , Newcastle disease virus/isolation & purification , Poultry Diseases/virology , Recombinases/metabolism , Animals , Chickens , Immunoassay , Infectious bronchitis virus/genetics , Limit of Detection , Newcastle disease virus/genetics , Nucleic Acid Amplification Techniques/methods , Viral Proteins/genetics
7.
Article in English | WPRIM (Western Pacific) | ID: wpr-764034

ABSTRACT

Recently, the importance of on-site detection of pathogens has drawn attention in the field of molecular diagnostics. Unlike in a laboratory environment, on-site detection of pathogens is performed under limited resources. In this study, we tried to optimize the experimental conditions for on-site detection of pathogens using a combination of ultra-fast convection polymerase chain reaction (cPCR), which does not require regular electricity, and nucleic acid lateral flow (NALF) immunoassay. Salmonella species was used as the model pathogen. DNA was amplified within 21 minutes (equivalent to 30 cycles of polymerase chain reaction) using ultra-fast cPCR, and the amplified DNA was detected within approximately 5 minutes using NALF immunoassay with nucleic acid detection (NAD) cassettes. In order to avoid false-positive results with NAD cassettes, we reduced the primer concentration or ultra-fast cPCR run time. For singleplex ultra-fast cPCR, the primer concentration needed to be lowered to 3 µM or the run time needed to be reduced to 14 minutes. For duplex ultra-fast cPCR, 2 µM of each primer set needed to be used or the run time needed to be reduced to 14 minutes. Under the conditions optimized in this study, the combination of ultra-fast cPCR and NALF immunoassay can be applied to on-site detection of pathogens. The combination can be easily applied to the detection of oral pathogens.


Subject(s)
Convection , DNA , Electricity , Immunoassay , NAD , Pathology, Molecular , Polymerase Chain Reaction , Salmonella
8.
J Microbiol Methods ; 151: 118-128, 2018 08.
Article in English | MEDLINE | ID: mdl-29959955

ABSTRACT

The 'Nucleic Acid Lateral Flow Immunoassay' (NALFIA) using a generic 'Lateral Flow Device' (LFD), combined with PCR employing labelled primers (PCR-NALFIA), enables to circumvent the use of electrophoresis, making the diagnostic procedure more rapid and easier. If the specific amplicon is present in the sample, a coloured band, with an intensity proportional to the amplicon concentration, will develop on the LFD strip in addition to the control band. Species-specific primers for M. phaseolina based on the rDNA intergenic spacer (IGS) were developed and their specificity was checked and confirmed using 20 isolates of M. phaseolina and other 16 non-target fungi. A DNA extraction protocol based on a bead-beating technique using silica beads, skimmed milk and PVP was also developed. The M. phaseolina specific primers MP102F/MP102R, 5' labelled with biotin and FITC respectively, were used in the PCR-NALFIA assay to identify the pathogen starting from mycelium or microsclerotia. Microsclerotia of M. phaseolina (1, 10, 100 and 200) were manipulated under a stereomicroscope and their DNA was extracted using microsclerotia alone or mixed with different types of soil. The resulting DNA, used for the PCR-NALFIA assay, provided positive results for all the samples tested. A semi-quantitative grey-scale reference card based on the PCR-NALFIA assay using intervals corresponding to microsclerotia soil number was developed. For this purpose, the normalized pixel grey volumes obtained after a densitometric analysis of the test line intensity generated by the LFD dipsticks were used.


Subject(s)
Ascomycota/isolation & purification , DNA, Intergenic , DNA, Ribosomal/genetics , Immunoassay/methods , Nucleic Acids , Polymerase Chain Reaction/methods , Soil Microbiology , Ascomycota/genetics , DNA Primers/genetics , DNA, Fungal , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , Sequence Analysis , Soil/chemistry , Species Specificity
9.
Anal Biochem ; 543: 108-115, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29233680

ABSTRACT

Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings.


Subject(s)
DNA-Formamidopyrimidine Glycosylase/chemistry , Molecular Probes/chemistry , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Recombinases/chemistry , DNA-Formamidopyrimidine Glycosylase/metabolism , Escherichia coli O157/genetics , Humans , Molecular Probes/metabolism , RNA, Ribosomal, 16S/genetics , Recombinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL