Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Mol Model ; 30(11): 379, 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39412700

ABSTRACT

CONTEXT: Describing chemical processes at solid-liquid interfaces as a function of a fixed electron chemical potential presents a challenge for electronic structure calculations and is essential for understanding electrochemical phenomena. Grand Canonical Density Functional Theory (GCDFT) allows treating solid-liquid interfaces in such a way that studying the influence of a fixed electron potential arises naturally. In this work, GCDFT is used to compute the adsorption grand potential (AGP), a key parameter for understanding and predicting the behavior of adsorbates on surfaces. We focused on the adsorption of an OH molecule on three metallic surfaces commonly used in electrochemical processes, such as the oxygen evolution reaction (OER). Our study aims to offer insights into how AGP can be used to compare adsorption strengths under different fixed electron chemical potentials, which is crucial for designing efficient electrode materials. By determining the average number of electrons self-consistently under varying chemical potentials, we showed how one can distinguish between electron acquisition and depletion during the adsorption process, offering a deeper understanding of the adsorbate-surface interactions. METHODS: The approach used in this work employs the Kohn-Sham-Mermin formulation of the Grand Canonical Density Functional Theory. The computations were performed using the periodic open-source density functional theory software, JDFTx, with the Garrity-Bennett-Rabe-Vanderbilt library of ultrasoft pseudopotentials. Calculations were made using truncated Coulomb potentials and the auxiliary Hamiltonian method with the PBE exchange-correlation functional, along with DFT-D2 long-range dispersion corrections. The implicit solvation model CANDLE was used to describe the electrolyte with a 1 M concentration.

2.
Heliyon ; 10(15): e35414, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170148

ABSTRACT

This study investigates the effect of temperature on the rate of the oxygen evolution reaction (OER) during the electrochemical production of ferrate(VI) through anodic iron dissolution. We employed a membrane-divided electrochemical cell with a galvanostatically operated three-electrode setup. During the experiments, we recorded the anode potential at various temperatures and monitored temperature variations over time. Simultaneously, we measured the rates of ferrate(VI) formation and the oxygen evolution reaction. The latter, considered a parasitic reaction, competes with ferrate synthesis. By quantifying the extent to which the OER consumed the applied charge, we discovered that the OER rate decreases with temperature. Specifically, at 25 °C and 168 Am-2, the OER consumes more than double the charge of the produced ferrate, at higher temperatures the rate sensibly decays and with it the consumed charge by the OER. The specific energy required for ferrate(VI) production decreases as temperatures increase, aligning well with current efficiency and space-time yield values within the same temperature range.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234449

ABSTRACT

Silver nanoparticles (AgNPs) are known and widely used for their antibacterial properties. However, the ever-increasing resistance of microorganisms compels the design of novel nanomaterials which are able to surpass their capabilities. Herein, we synthesized silver nanoparticles using, for the first time, polyhydroxy fullerene (PHF) as a reducing and capping agent, through a one-pot synthesis method. The resulting nanoparticles (PHF-AgNPs) were compared to AgNPs that were synthesized using sodium citrate (citrate-AgNPs). They were characterized using high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering, and UV-visible spectroscopy. Our results showed that PHF-AgNPs have a smaller size and a narrower size distribution than citrate-AgNPs, which suggests that PHF may be a better capping agent than citrate. Antibacterial assays using E. coli showed enhanced antimicrobial activity for PHF-AgNPs compared to citrate-AgNPs. The electrocatalytic activity of nanoparticles towards oxygen evolution and reduction reaction (OER and ORR, respectively) was tested through cyclic voltammetry. Both nanoparticles are found to promote OER and ORR, but PHF-AgNPs showed a significant increase in activity with respect to citrate-AgNPs. Thus, our results demonstrate that the properties of forming nanoparticles can be tuned by choosing the appropriate reducing/capping agent. Specifically, this suggests that PHF-AgNPs can find potential applications for both catalytic and biomedical applications.

4.
Polymers (Basel) ; 14(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145928

ABSTRACT

Recently, electro-oxidation of kraft lignin has been reported as a prominent electrochemical reaction to generate hydrogen at lower overpotential in alkaline water electrolysis. However, this reaction is highly limited by the low performance of existing electrocatalysts. Herein, we report a novel yet effective catalyst that comprises nonprecious trimetallic (Ni, Fe, and Co) nanoalloy as a core in a phosphidated nitrogen-doped carbon shell (referred to as sample P-NiFeCo/NC) for efficient electro-oxidation of kraft lignin at different temperatures in alkaline medium. The as-synthesized catalyst electro-oxidizes lignin only at 0.2 V versus Hg/HgO, which is almost three times less positive potential than in the conventional oxygen evolution reaction (0.59 V versus Hg/HgO) at 6.4 mA/cm2 in 1 M KOH. The catalyst demonstrates a turnover frequency (TOF) three to five times greater in lignin containing 1 M KOH than that of pure 1 M KOH. More importantly, the catalyst P-NiFeCo/NC shows theoretical hydrogen production of about 0.37 µmoles/min in the presence of lignin, much higher than that in pure 1 M KOH (0.0078 µ moles/min). Thus, this work verifies the benefit of the NiFeCo nanoalloy incorporated in carbon matrix, providing the way to realize a highly active catalyst for the electro-oxidation of kraft lignin.

5.
Molecules ; 27(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35889469

ABSTRACT

A new supramolecular electrocatalyst for Oxygen Evolution Reaction (OER) was synthesized from a central multibridging cobalt tetrapyridylporphyrazine (CoTPyPz) species by attaching four [Ru(bpy)2Cl]+ groups. Both CoTPyPz and the tetraruthenated cobalt porphyrazine species, TRuCoTPyPz, form very homogenous molecular films just by dropcasting their methanol solutions onto GCE electrodes. Such films exhibited low overpotentials for O2 evolution, e.g., 560 e 340 mV, respectively, displaying high stability, typically exceeding 15 h. The kinetic parameters obtained from the Tafel plots showed that the peripheral complexes are very important for the electrocatalytic activity. Hyperspectral Raman images taken along the electrochemical process demonstrated that the cobalt center is the primary active catalyst site, but its performance is enhanced by the ruthenium complexes, which act as electron-donating groups, in the supramolecular system.


Subject(s)
Cobalt , Ruthenium , Catalysis , Cobalt/chemistry , Electrons , Oxygen/chemistry
6.
J Colloid Interface Sci ; 582(Pt A): 124-136, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32823121

ABSTRACT

Cobalt-based oxides are among the most promising electrocatalysts for oxygen evolution reactions (OER). In this context, this work reports the synthesis of manganese-doped cobaltites using the Zeolitic-Imidazolate Frameworks 67 (ZIF-67) as template. The incorporation of manganese ions into ZIF-67 structure was evaluated in ethanol and methanol, in order to obtain the best synthetic route. Non-doped (ZIF-67C) and Mn-doped cobaltites (Mn/ZIF-67C(E) and Mn/ZIF-67C(M)) were obtained after thermal treatment at 350 °C. Structural and morphological properties were investigated and presence of Mn3+ and Mn4+ was confirmed by X-ray photoelectron spectroscopy (XPS) data and magnetization curves. The electrocatalytic activity in OER was investigated in alkaline medium for manganese cobaltites, and compared to the ZIF-67C. Overpotentials to generate a current of 10 mA cm-2 were 338 mV and 356 mV for Mn/ZIF-67C(E) and Mn/ZIF-67C(M), respectively. These results are superior to those found for similar materials in the literature. The material obtained in methanol (Mn/ZIF-67C(M)) presents lower overpotential, however, shows superior electrocatalytic performance for current density above 100 mA cm-2, therefore being an efficient electrode for commercial electrolysers.

7.
Chem Asian J ; 15(16): 2480-2486, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32558309

ABSTRACT

In this work, we have successfully constructed a cobalt-oxo (CoIII 4 O4 ) cubane complex on polymeric carbon nitride (PCN) through pyridine linkage. The covalently grafted CoIII 4 O4 cubane units were uniformly distributed on the PCN surface. The product exhibited greatly enhanced photocatalytic activities for water oxidation under visible-light irradiation. Further characterizations and spectroscopic analyses revealed that the grafted CoIII 4 O4 cubane units could effectively capture the photogenerated holes from excited PCN, lower the overpotential of oxygen evolution reaction (OER), and serve as efficient catalysts to promote the multi-electron water oxidation process. This work provides new insight into the future development of efficient photocatalysts by grafting molecular catalysts for artificial photosynthesis.

8.
Chemphyschem ; 21(6): 476-483, 2020 03 17.
Article in English | MEDLINE | ID: mdl-31943643

ABSTRACT

Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.

9.
Proc Natl Acad Sci U S A ; 114(15): 3855-3860, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28348217

ABSTRACT

The Co4O4 cubane is a representative structural model of oxidic cobalt oxygen-evolving catalysts (Co-OECs). The Co-OECs are active when residing at two oxidation levels above an all-Co(III) resting state. This doubly oxidized Co(IV)2 state may be captured in a Co(III)2(IV)2 cubane. We demonstrate that the Co(III)2(IV)2 cubane may be electrochemically generated and the electronic properties of this unique high-valent state may be probed by in situ spectroscopy. Intervalence charge-transfer (IVCT) bands in the near-IR are observed for the Co(III)2(IV)2 cubane, and spectroscopic analysis together with electrochemical kinetics measurements reveal a larger reorganization energy and a smaller electron transfer rate constant for the doubly versus singly oxidized cubane. Spectroelectrochemical X-ray absorption data further reveal systematic spectral changes with successive oxidations from the cubane resting state. Electronic structure calculations correlated to experimental data suggest that this state is best represented as a localized, antiferromagnetically coupled Co(IV)2 dimer. The exchange coupling in the cofacial Co(IV)2 site allows for parallels to be drawn between the electronic structure of the Co4O4 cubane model system and the high-valent active site of the Co-OEC, with specific emphasis on the manifestation of a doubly oxidized Co(IV)2 center on O-O bond formation.

10.
ACS Appl Mater Interfaces ; 8(2): 1536-44, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26704530

ABSTRACT

We have undertaken first-principles electronic structure calculations to show that the chemical functionalization of two-dimensional hydrogenated silicene (silicane) and germanene (germanane) can become a powerful tool to increase the photocatalytic water-splitting activity. Spin-polarized density functional theory within the GGA-PBE and HSE06 types of exchange correlation functionals has been used to obtain the structural, electronic, and optical properties of silicane and germanane functionalized with a series of nonmetals (N, P, and S), alkali metals (Li, Na, and K) and alkaline-earth metals (Mg and Ca). The surface-adsorbate interaction between the functionalized systems with H2 and O2 molecules that leads to envisaged hydrogen and oxygen evolution reaction activity has been determined.

11.
Chemistry ; 21(38): 13420-30, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26246131

ABSTRACT

Well-defined mixed-metal [CoMn3 O4 ] and [NiMn3 O4 ] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniques to gain insight into the structure-function relationships of the electrocatalysts' heterometallic composition. Depending on preparation conditions, the Co-Mn oxide was found to change metal composition during catalysis, while the Ni-Mn oxides maintained the NiMn3 ratio. XAS studies provided structural insights indicating that the electrocatalysts are different from the molecular precursors, but that the original NiMn3 O4 cubane-like geometry was maintained in the absence of thermal treatment (2-Ni). In contrast, the thermally generated 3-Ni develops an oxide-like extended structure. Both 2-Ni and 3-Ni undergo structural changes upon electrolysis, but they do not convert into the same material. The observed structural motifs in these heterogeneous electrocatalysts are reminiscent of the biological oxygen-evolving complex in Photosystem II, including the MMn3 O4 cubane moiety. The reported studies demonstrate the use of discrete heterometallic oxide clusters as precursors for heterogeneous water oxidation catalysts of novel composition and the distinct behavior of two sets of mixed metal oxides.


Subject(s)
Manganese Compounds/chemistry , Metals/chemistry , Oxides/chemistry , Oxygen/chemistry , Catalysis , Electrodes , Ions/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL