Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167318, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38909849

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury is a prevalent cause of myocardial injury, involving a series of interconnected pathophysiological processes. However, there is currently no clinical therapy for effectively mitigating myocardial I/R injury. Here, we show that p85α protein levels increase in response to I/R injury through a comprehensive analysis of cardiac proteomics, and confirm this in the I/R-injured murine heart and failing human myocardium. Genetic inhibition of p85α in mice activates the Akt-GSK3ß/Bcl-x(L) signaling pathway and ameliorates I/R-induced cardiac dysfunction, apoptosis, inflammation, and mitochondrial dysfunction. p85α silencing in cardiomyocytes alleviates hypoxia-reoxygenation (H/R) injury through activating the Akt-GSK3ß/Bcl-x(L) signaling pathway, while its overexpression exacerbates the damage. Mechanistically, the interaction between MG53 and p85α triggers the ubiquitination and degradation of p85α, consequently enhancing Akt phosphorylation and ultimately having cardioprotective effects. Collectively, our findings reveal that substantial reduction of p85α and subsequently activated Akt signaling have a protective effect against cardiac I/R injury, representing an important therapeutic strategy for mitigating myocardial damage.


Subject(s)
Myocardial Reperfusion Injury , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Mice , Humans , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Male , bcl-X Protein/metabolism , bcl-X Protein/genetics , Cell Survival , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Apoptosis , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Tumor Suppressor Protein p53
2.
Cell Rep ; 43(5): 114119, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38630589

ABSTRACT

Phosphatidylinositol 3-kinase α (PI3Kα) is a heterodimer of p110α catalytic and p85 adaptor subunits that is activated by agonist-stimulated receptor tyrosine kinases. Although p85α recruits p110α to activated receptors on membranes, p85α loss, which occurs commonly in cancer, paradoxically promotes agonist-stimulated PI3K/Akt signaling. p110α localizes to microtubules via microtubule-associated protein 4 (MAP4), facilitating its interaction with activated receptor kinases on endosomes to initiate PI3K/Akt signaling. Here, we demonstrate that in response to agonist stimulation and p85α knockdown, the residual p110α, coupled predominantly to p85ß, exhibits enhanced recruitment with receptor tyrosine kinases to endosomes. Moreover, the p110α C2 domain binds PI3-phosphate, and this interaction is also required to recruit p110α to endosomes and for PI3K/Akt signaling. Stable knockdown of p85α, which mimics the reduced p85α levels observed in cancer, enhances cell growth and tumorsphere formation, and these effects are abrogated by MAP4 or p85ß knockdown, underscoring their role in the tumor-promoting activity of p85α loss.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase , Endosomes , Microtubule-Associated Proteins , Phosphatidylinositol Phosphates , Signal Transduction , Animals , Humans , Cell Proliferation , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Endosomes/metabolism , Enzyme Activation , Microtubule-Associated Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism
3.
Acta Neuropathol Commun ; 11(1): 197, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093390

ABSTRACT

In sporadic Alzheimer's disease (sAD) specific regions, layers and neurons accumulate hyperphosphorylated Tau (pTau) and degenerate early while others remain unaffected even in advanced disease. ApoER2-Dab1 signaling suppresses Tau phosphorylation as part of a four-arm pathway that regulates lipoprotein internalization and the integrity of actin, microtubules, and synapses; however, the role of this pathway in sAD pathogenesis is not fully understood. We previously showed that multiple ApoER2-Dab1 pathway components including ApoE, Reelin, ApoER2, Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within entorhinal-hippocampal terminal zones in sAD, and proposed a unifying hypothesis wherein disruption of this pathway underlies multiple aspects of sAD pathogenesis. However, it is not yet known whether ApoER2-Dab1 disruption can help explain the origin(s) and early progression of pTau pathology in sAD. In the present study, we applied in situ hybridization and immunohistochemistry (IHC) to characterize ApoER2 expression and accumulation of ApoER2-Dab1 pathway components in five regions known to develop early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. We found that (1) these selectively vulnerable neuron populations strongly express ApoER2; and (2) multiple ApoER2-Dab1 components representing all four arms of this pathway accumulate in abnormal neurons and neuritic plaques in mild cognitive impairment (MCI) and sAD cases and correlate with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTauSer202/Thr205 and pPSD95Thr19 accumulate together within many of the same ApoER2-expressing neurons and in the immediate vicinity of ApoE/ApoJ-enriched extracellular plaques. Collective findings reveal that pTau is only one of many ApoER2-Dab1 pathway components that accumulate in multiple neuroanatomical sites in the earliest stages of sAD and provide support for the concept that ApoER2-Dab1 disruption drives pTau-associated neurodegeneration in human sAD.


Subject(s)
Alzheimer Disease , Receptors, LDL , Humans , Alzheimer Disease/genetics , Apolipoproteins E/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Nerve Tissue Proteins/metabolism , Phosphorylation , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism
4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628845

ABSTRACT

PIK3R1 (also known as p85α) is a regulatory subunit of phosphoinositide 3-kinases (PI3Ks). PI3K, a heterodimer of a regulatory subunit and a catalytic subunit, phosphorylates phosphatidylinositol into secondary signaling molecules involved in regulating metabolic homeostasis. PI3K converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate (PIP3), which recruits protein kinase AKT to the inner leaflet of the cell membrane to be activated and to participate in various metabolic functions. PIK3R1 stabilizes and inhibits p110 catalytic activity and serves as an adaptor to interact with insulin receptor substrate (IRS) proteins and growth factor receptors. Thus, mutations in PIK3R1 or altered expression of PIK3R1 could modulate the activity of PI3K and result in significant metabolic outcomes. Interestingly, recent studies also found PI3K-independent functions of PIK3R1. Overall, in this article, we will provide an updated review of the metabolic functions of PIK3R1 that includes studies of PIK3R1 in various metabolic tissues using animal models, the mechanisms modulating PIK3R1 activity, and studies on the mutations of human PIK3R1 gene.


Subject(s)
Insulin Resistance , Animals , Humans , Insulin Resistance/genetics , Genes, Regulator , Transcription Factors , Homeostasis , Catalytic Domain , Insulin Receptor Substrate Proteins , Class Ia Phosphatidylinositol 3-Kinase/genetics
5.
Res Sq ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37461602

ABSTRACT

BACKGROUND: Sporadic Alzheimer's disease (sAD) is not a global brain disease. Specific regions, layers and neurons degenerate early while others remain untouched even in advanced disease. The prevailing model used to explain this selective neurodegeneration-prion-like Tau spread-has key limitations and is not easily integrated with other defining sAD features. Instead, we propose that in humans Tau hyperphosphorylation occurs locally via disruption in ApoER2-Dab1 signaling and thus the presence of ApoER2 in neuronal membranes confers vulnerability to degeneration. Further, we propose that disruption of the Reelin/ApoE/ApoJ-ApoER2-Dab1-P85α-LIMK1-Tau-PSD95 (RAAAD-P-LTP) pathway induces deficits in memory and cognition by impeding neuronal lipoprotein internalization and destabilizing actin, microtubules, and synapses. This new model is based in part on our recent finding that ApoER2-Dab1 disruption is evident in entorhinal-hippocampal terminal zones in sAD. Here, we hypothesized that neurons that degenerate in the earliest stages of sAD (1) strongly express ApoER2 and (2) show evidence of ApoER2-Dab1 disruption through co-accumulation of multiple RAAAD-P-LTP components. METHODS: We applied in situ hybridization and immunohistochemistry to characterize ApoER2 expression and accumulation of RAAAD-P-LTP components in five regions that are prone to early pTau pathology in 64 rapidly autopsied cases spanning the clinicopathological spectrum of sAD. RESULTS: We found that: (1) selectively vulnerable neuron populations strongly express ApoER2; (2) numerous RAAAD-P-LTP pathway components accumulate in neuritic plaques and abnormal neurons; and (3) RAAAD-P-LTP components were higher in MCI and sAD cases and correlated with histological progression and cognitive deficits. Multiplex-IHC revealed that Dab1, pP85αTyr607, pLIMK1Thr508, pTau and pPSD95Thr19 accumulated together within dystrophic dendrites and soma of ApoER2-expressing neurons in the vicinity of ApoE/ApoJ-enriched extracellular plaques. These observations provide evidence for molecular derangements that can be traced back to ApoER2-Dab1 disruption, in each of the sampled regions, layers, and neuron populations that are prone to early pTau pathology. CONCLUSION: Findings support the RAAAD-P-LTP hypothesis, a unifying model that implicates dendritic ApoER2-Dab1 disruption as the major driver of both pTau accumulation and neurodegeneration in sAD. This model provides a new conceptual framework to explain why specific neurons degenerate and identifies RAAAD-P-LTP pathway components as potential mechanism-based biomarkers and therapeutic targets for sAD.

6.
IBRO Neurosci Rep ; 15: 100-106, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37485299

ABSTRACT

P-glycoprotein (Pgp) overexpressed in blood brain barrier (BBB) is hypothesized to lower brain drug concentrations and thus inhibit anticonvulsant effects in drug-resistant epilepsy. Pluronic P85 (P85) was proved to enhance the delivery of drugs into the brain by inhibition of Pgp. To determine whether the surfactant P85 [versus Pgp inhibitor tariquidar (TQD)] enhance phenytoin (PHT) into the brain in drug-resistant rats with chronic mesial temporal lobe epilepsy (MTLE) induced by lithium-pilocarpine, in brain of which Pgp were overexpressed, then direct verification of PHT transport via measurement of PHT concentration in brain using microdialysis. The drug-resistant model rats were randomly divided into three groups, which were treated with PHT, 1%P85 + PHT, or PHT+TQD, respectively. 1%P85 + PHT treatment displayed a lower ratio of the area under the curve (AUC) of the PHT concentration in the brain/plasma even than that of the PHT treatment in model rats (p < 0.05), while PHT+TQD showed the highest ratio of the AUC of all treatments. However, the ratio of the PHT concentration in the liver/plasma was similar in three model groups (p > 0.05). For the ratio of the kidney/plasma, PHT+TQD treatment model group had the highest ratio of the other treatments in model rats. Thus, P85 oppositely decreased PHT concentration in brain in drug-resistant model rats with Pgp overexpressed MTLE while TQD could increase PHT distribution in brain.

7.
Methods Mol Biol ; 2660: 295-310, 2023.
Article in English | MEDLINE | ID: mdl-37191806

ABSTRACT

DEPDC1B (aliases BRCC3, XTP8, XTP1) is a DEP (Dishevelled, Egl-1, Pleckstrin) and Rho-GAP-like domains containing predominately membrane-associated protein. Earlier, we and others have reported that DEPDC1B is a downstream effector of Raf-1 and long noncoding RNA lncNB1, and an upstream positive effector of pERK. Consistently, DEPDC1B knockdown is associated with downregulation of ligand-stimulated pERK expression. We demonstrate here that DEPDC1B N-terminus binds to the p85 subunit of PI3K, and DEPDC1B overexpression results in decreased ligand-stimulated tyrosine phosphorylation of p85 and downregulation of pAKT1. Collectively, we propose that DEPDC1B is a novel cross-regulator of AKT1 and ERK, two of the prominent pathways of tumor progression. Our data showing high levels of DEPDC1B mRNA and protein during the G2/M phase have significant implications in cell entry into mitosis. Indeed, DEPDC1B accumulation during the G2/M phase has been associated with disassembly of focal adhesions and cell de-adhesion, referred to as a DEPDC1B-mediated de-adhesion mitotic checkpoint. DEPDC1B is a direct target of transcription factor SOX10, and SOX10-DEPDC1B-SCUBE3 axis has been associated with angiogenesis and metastasis. The Scansite analysis of the DEPDC1B amino acid sequence shows binding motifs for three well-established cancer therapeutic targets CDK1, DNA-PK, and aurora kinase A/B. These interactions and functionalities, if validated, may further implicate DEPDC1B in regulation of DNA damage-repair and cell cycle progression processes. Finally, a survey of the publicly available datasets indicates that high DEPDC1B expression is a viable biomarker in breast, lung, pancreatic and renal cell carcinomas, and melanoma. Currently, the systems and integrative biology of DEPDC1B is far from comprehensive. Future investigations are necessary in order to understand how DEPDC1B might impact AKT, ERK, and other networks, albeit in a context-dependent manner, and influence the actionable molecular, spatial, and temporal vulnerabilities within these networks in cancer cells.


Subject(s)
Cell Cycle Proteins , Mitosis , Cell Line, Tumor , Ligands , Cell Cycle , Cell Cycle Proteins/metabolism
8.
Cell Calcium ; 111: 102718, 2023 05.
Article in English | MEDLINE | ID: mdl-36934559

ABSTRACT

Activation of phosphatidylinositol 3-kinase (PI3K) by lipid oxidation products, including lysophosphatidylcholine (lysoPC), increases the externalization of canonical transient receptor potential 6 (TRPC6) channels leading to a subsequent increase in intracellular calcium that contributes to cytoskeletal changes which inhibit endothelial cell (EC) migration in vitro and impair EC healing of arterial injuries in vivo. The PI3K p110α and p110δ catalytic subunit isoforms regulate lysoPC-induced TRPC6 externalization in vitro, but have many other functions. The goal of the current study is to identify the PI3K regulatory subunit isoform involved in TRPC6 externalization to potentially identify a more specific treatment regimen to improve EC migration and arterial healing, while minimizing off-target effects. Decreasing the p85α regulatory subunit isoform protein levels, but not the p85ß and p55γ regulatory subunit isoforms, with small interfering RNA inhibits lysoPC-induced translocation of the PI3K catalytic subunit to the plasma membrane, dramatically decreased phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production and TRPC6 externalization, and significantly improves EC migration in the presence of lysoPC. These results identify the important and specific role of p85α in controlling translocation of PI3K from the cytosol to the plasma membrane and PI3K-mediated TRPC externalization by oxidized lipids. Current PI3K inhibitors block the catalytic subunit, but our data suggest that the regulatory subunit is a novel therapeutic target to promote EC migration and healing after arterial injuries that occur with angioplasty.


Subject(s)
Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases/metabolism , TRPC6 Cation Channel , Protein Isoforms/metabolism , Cell Movement/physiology , Membranes/metabolism
9.
Front Endocrinol (Lausanne) ; 14: 1152579, 2023.
Article in English | MEDLINE | ID: mdl-38317714

ABSTRACT

The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85ß. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85ß. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85ß has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85ß have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85ß promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85ß regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85ß, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.


Subject(s)
Hyperinsulinism , Insulin Resistance , Neoplasms , Mice , Animals , Insulin Resistance/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Mice, Knockout , Insulin/metabolism , Glucose , Protein Isoforms
10.
J Virol ; 96(23): e0145322, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36416586

ABSTRACT

Phosphoinositide-3 kinase (PI3K) signaling regulates many cellular processes, including cell survival, differentiation, proliferation, cytoskeleton reorganization, and apoptosis. The actin cytoskeleton regulated by PI3K signaling plays an important role in plasma membrane rearrangement. Currently, it is known that respiratory syncytial virus (RSV) infection requires PI3K signaling. However, the regulatory pattern or corresponding molecular mechanism of PI3K signaling on cell-to-cell fusion during syncytium formation remains unclear. This study synthesized a novel PI3K inhibitor PIK-24 designed with PI3K as a target and used it as a molecular probe to investigate the involvement of PI3K signaling in syncytium formation during RSV infection. The results of the antiviral mechanism revealed that syncytium formation required PI3K signaling to activate RHO family GTPases Cdc42, to upregulate the inactive form of cofilin, and to increase the amount of F-actin in cells, thereby causing actin cytoskeleton reorganization and membrane fusion between adjacent cells. PIK-24 treatment significantly abolished the generation of these events by blocking the activation of PI3K signaling. Moreover, PIK-24 had an obvious binding activity with the p85α regulatory subunit of PI3K. The anti-RSV effect similar to PIK-24 was obtained after knockdown of p85α in vitro or knockout of p85α in vivo, suggesting that PIK-24 inhibited RSV infection by targeting PI3K p85α. Most importantly, PIK-24 exerted a potent anti-RSV activity, and its antiviral effect was stronger than that of the classic PI3K inhibitor LY294002, PI-103, and broad-spectrum antiviral drug ribavirin. Thus, PIK-24 has the potential to be developed into a novel anti-RSV agent targeting cellular PI3K signaling. IMPORTANCE PI3K protein has many functions and regulates various cellular processes. As an important regulatory subunit of PI3K, p85α can regulate the activity of PI3K signaling. Therefore, it serves as the key target for virus infection. Indeed, p85α-regulated PI3K signaling facilitates various intracellular plasma membrane rearrangement events by modulating the actin cytoskeleton, which may be critical for RSV-induced syncytium formation. In this study, we show that a novel PI3K inhibitor inhibits RSV-induced PI3K signaling activation and actin cytoskeleton reorganization by targeting the p85α protein, thereby inhibiting syncytium formation and exerting a potent antiviral effect. Respiratory syncytial virus (RSV) is one of the most common respiratory pathogens, causing enormous morbidity, mortality, and economic burden. Currently, no effective antiviral drugs or vaccines exist for RSV infection. This study contributes to understanding the molecular mechanism by which PI3K signaling regulates syncytium formation and provides a leading compound for anti-RSV infection drug development.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase , Giant Cells , Phosphoinositide-3 Kinase Inhibitors , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Actins/metabolism , Antiviral Agents/pharmacology , Giant Cells/virology , Respiratory Syncytial Virus, Human/physiology , rho GTP-Binding Proteins/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology
11.
Methods Mol Biol ; 2475: 97-111, 2022.
Article in English | MEDLINE | ID: mdl-35451751

ABSTRACT

Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling pathways are tightly regulated multistep chain reactions that involve a wide range of molecular interactions and enzymatic activities. The first signal induced by VEGF binding to VEGFR2, is the activation of the receptor tyrosine kinase and autophosphorylation of intracellular tyrosine residues of the receptor. In endothelial cells, five tyrosine residues in the VEGFR2 intracellular domain are essential in signal transmission and in the respective regulation of cellular processes. Because of their number and their localization on the receptor, it is challenging to locate the proteins with which these tyrosine residues interact that result in further downstream signaling cascades. In this chapter, we describe a method to precipitate phosphotyrosine binding proteins using phosphotyrosine-containing synthetic peptides immobilized to magnetic beads. The identity of the precipitated proteins is determined by mass spectrometry and the findings validated by Western blot. Using this method, we identified and verified two proteins, growth factor receptor binding-2 (GRB2) and phosphoinositide 3'-kinase (PI3Kp85), binding to the tyrosine 1214 of VEGFR2. Thereby, we can predict the signaling pathways downstream of pY1214.


Subject(s)
Endothelial Cells , Vascular Endothelial Growth Factor A , Endothelial Cells/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Tyrosine/metabolism , Vascular Endothelial Growth Factor A/metabolism , src Homology Domains
12.
J Biol Chem ; 298(6): 101916, 2022 06.
Article in English | MEDLINE | ID: mdl-35429500

ABSTRACT

Activated Cdc42-associated kinase (ACK) is an oncogenic nonreceptor tyrosine kinase associated with poor prognosis in several human cancers. ACK promotes proliferation, in part by contributing to the activation of Akt, the major effector of class 1A phosphoinositide 3-kinases (PI3Ks), which transduce signals via membrane phosphoinositol lipids. We now show that ACK also interacts with other key components of class 1A PI3K signaling, the PI3K regulatory subunits. We demonstrate ACK binds to all five PI3K regulatory subunit isoforms and directly phosphorylates p85α, p85ß, p50α, and p55α on Tyr607 (or analogous residues). We found that phosphorylation of p85ß promotes cell proliferation in HEK293T cells. We demonstrate that ACK interacts with p85α exclusively in nuclear-enriched cell fractions, where p85α phosphorylated at Tyr607 (pTyr607) also resides, and identify an interaction between pTyr607 and the N-terminal SH2 domain that supports dimerization of the regulatory subunits. We infer from this that ACK targets p110-independent p85 and further postulate that these regulatory subunit dimers undertake novel nuclear functions underpinning ACK activity. We conclude that these dimers represent a previously undescribed mode of regulation for the class1A PI3K regulatory subunits and potentially reveal additional avenues for therapeutic intervention.


Subject(s)
Phosphatidylinositol 3-Kinases , Protein-Tyrosine Kinases , Cell Nucleus/enzymology , HEK293 Cells , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Multimerization , Protein-Tyrosine Kinases/metabolism , Signal Transduction
13.
Pediatr Allergy Immunol ; 33 Suppl 27: 69-72, 2022 01.
Article in English | MEDLINE | ID: mdl-35080319

ABSTRACT

Activated phosphoinositide 3-kinase delta syndrome (APDS) is a recently described form of inborn error of immunity (IEI) caused by heterozygous mutations in PIK3CD or PIK3R1 genes, respectively, encoding leukocyte-restricted catalytic p110δ subunit and the ubiquitously expressed regulatory p85 α subunit of the phosphoinositide 3-kinase δ (PI3Kδ). The first described patients with respiratory infections, hypogammaglobulinemia with normal to elevated IgM serum levels, lymphopenia, and lymphoproliferation. Since the original description, it is becoming evident that the onset of disease may be somewhat variable over time, both in terms of age at presentation and in terms of clinical and immunological complications. In many cases, patients are referred to various specialists such as hematologists, rheumatologists, gastroenterologists, and others, before an immunological evaluation is performed, leading to delay in diagnosis, which negatively affects their prognosis. The significant heterogeneity in the clinical and immunological features affecting APDS patients requires awareness among clinicians since good results with p110δ inhibitors have been reported, certainly ameliorating these patients' quality of life and prognosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Primary Immunodeficiency Diseases , Class I Phosphatidylinositol 3-Kinases/genetics , Humans , Mutation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositols , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/genetics , Quality of Life
14.
Semin Cell Dev Biol ; 132: 51-61, 2022 12.
Article in English | MEDLINE | ID: mdl-34753687

ABSTRACT

The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is a major regulator of metabolism, migration, survival, proliferation, and antiviral immunity. Both an overactivation and an inhibition of the PI3K/AKT pathway are related to different pathologies. Activation of this signaling pathway is tightly controlled through a multistep process and its deregulation can be associated with aberrant post-translational modifications including SUMOylation. Here, we review the complex modulation of the PI3K/AKT pathway by SUMOylation and we discuss its putative incvolvement in human disease.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase , Proto-Oncogene Proteins c-akt , Sumoylation , Humans , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction
15.
Acta Mater Med ; 1(2): 193-196, 2022.
Article in English | MEDLINE | ID: mdl-37200937

ABSTRACT

The classical phosphatidylinositol 3-kinases (PI3Ks) are heterodimers of p110 and p85. PIK3CA, the gene encoding the catalytic p110α subunit, is one of the most frequently mutated oncogenes in human cancers with hot spot mutations occurring in the helical domain or in the kinase domain. Tumors with these two types of PIK3CA mutations show overlapping yet distinct phenotypes; however, the underlying mechanisms remain unclear. In a recent publication [1], Hao et al revealed exciting findings about the PI3K p85ß regulatory subunit in promoting PIK3CA helical domain mutation-driven cancer progression. The authors found that p85ß disassociated from the PI3K complex and translocated into the nucleus only in cancer cells harboring PIK3CA helical domain mutations. Disrupting nuclear localization of p85ß suppressed mouse tumor growth of cancer cells with PIK3CA helical domain mutation. Mechanistically, they elegantly showed that nuclear p85ß recruited the deubiquitinase USP7 to stabilize the histone methyltransferases EZH1/2, leading to enhanced H3K27 trimethylation and gene transcription. Combining an EZH inhibitor with a PI3K inhibitor specifically resulted in regression of mouse xenograft tumors with PIK3CA helical domain mutations. These findings illustrate a previously uncharacterized function of p85ß in tumor development and suggest an effective approach to target tumors with PIK3CA helical mutations.

16.
Front Pediatr ; 9: 703853, 2021.
Article in English | MEDLINE | ID: mdl-34540765

ABSTRACT

Activated PI3K-kinase Delta Syndrome (APDS) is an autosomal-dominant primary immunodeficiency (PID) caused by the constitutive activation of the PI3Kδ kinase. The consequent hyperactivation of the PI3K-Akt-mTOR pathway leads to an impaired T- and B-cells differentiation and function, causing progressive lymphopenia, hypogammaglobulinemia and hyper IgM. Patients with APDS show recurrent sinopulmonary and chronic herpes virus infections, immune dysregulation manifestations, including cytopenia, arthritis, inflammatory enteropathy, and a predisposition to persistent non-neoplastic splenomegaly/lymphoproliferation and lymphoma. The recurrence of the lymphoproliferative disorder and the difficulties in the proper definition of malignancy on histological examination represents the main challenge in the clinical management of APDS patients, since a prompt and correct diagnosis is needed to avoid major complications. Targeted therapies with PI3Kδ-Akt-mTOR pathway pharmacologic inhibitors (i.e., Rapamycin, Theophylline, PI3K inhibitors) represent a good therapeutic strategy. They can also be used as bridge therapies when HSCT is required in order to control refractory symptoms. Indeed, treated patients showed a good tolerance, improved immunologic phenotype and reduced incidence/severity of immune dysregulation manifestations. Here, we describe our experience in the management of four patients, one male affected with APDS1 (P1) and the other three, a male and two females, with APDS2 (P2, P3, P4) presenting with chronic EBV replication, recurrent episodes of immune dysregulation manifestations and lymphomas. These cases highlighted the importance of a tailored and close follow-up, including serial endoscopic and lymph nodes biopsies control to detect a prompt and correct diagnosis and offer the best therapeutic strategy.

17.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34507989

ABSTRACT

The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Catalytic Domain/genetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/genetics , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/physiology , HCT116 Cells , Humans , Mutation , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Domains/genetics , Proto-Oncogene Proteins c-akt/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, ErbB-3/metabolism , Signal Transduction , src Homology Domains
18.
J Neurosci ; 41(31): 6753-6774, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34099513

ABSTRACT

The development, persistence and relapse of drug addiction require drug memory that generally develops with drug administration-paired contextual stimuli. Adult hippocampal neurogenesis (AHN) contributes to cocaine memory formation; however, the underlying mechanism remains unclear. Male mice hippocampal expression of Tau was significantly decreased during the cocaine-associated memory formation. Genetic overexpression of four microtubule-binding repeats Tau (4R Tau) in the mice hippocampus disrupted cocaine memory by suppressing AHN. Furthermore, 4R Tau directly interacted with phosphoinositide 3-kinase (PI3K)-p85 and impaired its nuclear translocation and PI3K-AKT signaling, processes required for hippocampal neuron proliferation. Collectively, 4R Tau modulates cocaine memory formation by disrupting AHN, suggesting a novel mechanism underlying cocaine memory formation and provide a new strategy for the treatment of cocaine addiction.SIGNIFICANCE STATEMENT Drug memory that generally develops with drug-paired contextual stimuli and drug administration is critical for the development, persistence and relapse of drug addiction. Previous studies have suggested that adult hippocampal neurogenesis (AHN) plays a role in cocaine memory formation. Here, we showed that Tau was significantly downregulated in the hippocampus in the cocaine memory formation. Tau knock-out (KO) promoted AHN in the hippocampal dentate gyrus (DG), resulting in the enhanced memory formation evoked by cocaine-cue stimuli. In contrast, genetically overexpressed 4R Tau in the hippocampus disrupted cocaine-cue memory by suppressing AHN. In addition, 4R Tau interacted directly with phosphoinositide 3-kinase (PI3K)-p85 and hindered its nuclear translocation, eventually repressing PI3K-AKT signaling, which is essential for hippocampal neuronal proliferation.


Subject(s)
Cocaine-Related Disorders/metabolism , Hippocampus/metabolism , Memory/physiology , Neurogenesis/physiology , tau Proteins/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Protein Isoforms
19.
Neoplasia ; 23(7): 718-730, 2021 07.
Article in English | MEDLINE | ID: mdl-34144267

ABSTRACT

EGFR signaling promotes ovarian cancer tumorigenesis, and high EGFR expression correlates with poor prognosis. However, EGFR inhibitors alone have demonstrated limited clinical benefit for ovarian cancer patients, owing partly to tumor resistance and the lack of predictive biomarkers. Cotargeting EGFR and the PI3K pathway has been previously shown to yield synergistic antitumor effects in ovarian cancer. Therefore, we reasoned that PI3K may affect cellular response to EGFR inhibition. In this study, we revealed PI3K isoform-specific effects on the sensitivity of ovarian cancer cells to the EGFR inhibitor erlotinib. Gene silencing of PIK3CA (p110α) and PIK3CB (p110ß) rendered cells more susceptible to erlotinib. In contrast, low expression of PIK3R2 (p85ß) was associated with erlotinib resistance. Depletion of PIK3R2, but not PIK3CA or PIK3CB, led to increased DNA damage and reduced level of the nonhomologous end joining DNA repair protein BRD4. Intriguingly, these defects in DNA repair were reversed upon erlotinib treatment, which caused activation and nuclear import of p38 MAPK to promote DNA repair with increased protein levels of 53BP1 and BRD4 and foci formation of 53BP1. Remarkably, inhibition of p38 MAPK or BRD4 re-sensitized PIK3R2-depleted cells to erlotinib. Collectively, these data suggest that p38 MAPK activation and the subsequent DNA repair serve as a resistance mechanism to EGFR inhibitor. Combined inhibition of EGFR and p38 MAPK or DNA repair may maximize the therapeutic potential of EGFR inhibitor in ovarian cancer.


Subject(s)
Class Ia Phosphatidylinositol 3-Kinase/genetics , DNA Repair/drug effects , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase/metabolism , DNA Copy Number Variations , Disease Management , Disease Models, Animal , Disease Susceptibility , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Models, Biological , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction
20.
Oncol Rep ; 46(1)2021 07.
Article in English | MEDLINE | ID: mdl-34036396

ABSTRACT

Our previous study has shown that CD9 knockdown could suppress cell proliferation, adhesion, migration and invasion, and promote apoptosis and the cytotoxicity of chemotherapeutic drugs in the B­lineage acute lymphoblastic leukemia (B­ALL) cell line SUP­B15. In this study, we further investigated the molecular mechanism underlying the effects of CD9 on leukemic cell progression and the efficacy of chemotherapeutic agents in B­ALL cells. Using the CD9­knockdown SUP­B15 cells, we demonstrated that the silencing of the CD9 gene significantly reduced the expression of phosphorylated­phosphatidylinositol­3 kinase (p­PI3K), phosphorylated­protein kinase B (p­AKT), P­glycoprotein (P­gp), multidrug resistance­associated protein 1 (MRP1), breast cancer resistance protein (BCRP), matrix metalloproteinase 2 (MMP2) and phosphorylated­focal adhesion kinase (p­FAK). In addition, glutathione S­transferase (GST) pull­down assay showed the binding between CD9 and both PI3K­p85α and PI3K­p85ß in vitro, while co­immunoprecipitation assay showed the binding between CD9 and both PI3K­p85α and PI3K­p85ß in vivo. Furthermore, the PI3K/AKT inhibitor LY294002 mirrored the effects of CD9 knockdown in SUP­B15 cells. Taken together, these findings demonstrated that CD9 activates the PI3K/AKT signaling pathway through direct interaction with PI3K­p85 in B­ALL cells. Our data provide evidence for the inhibition of the PI3K/AKT pathway as a novel therapeutic option in CD9 antigen­positive B­ALL.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tetraspanin 29/genetics , Tetraspanin 29/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Chromones/pharmacology , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , HEK293 Cells , Humans , Morpholines/pharmacology , Phosphorylation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL