Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.031
Filter
1.
Small ; : e2406526, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39363779

ABSTRACT

Due to their nanoscale thickness (≈1 nm) and exceptional selectivity for permeation of gases, nanomembranes made of 2D materials possess high potential for energy-efficient nanofiltration applications. In this respect, organic carbon nanomembranes (CNMs), synthesized via electron irradiation-induced crosslinking of aromatic self-assembled monolayers (SAMs), are particularly attractive, as their structure can be flexibly tuned by choice of molecular precursors. However, tailored permeation of CNMs, defined by their molecular design, has not been yet demonstrated. In this work, it is shown that the permeation of helium (He), deuterium (D2) and heavy water (D2O) for CNMs synthesized from biphenyl-based SAMs on silver (C6H5-C6H4-(CH2)n-COO/Ag, n = 2-6) can be tuned by orders of magnitude by changing the structure of the molecular precursors by just a single methylene unit. The selectivity in permeation of D2O/D2 with an unprecedented value of 200 000 can be achieved in this way. The temperature-dependent study reveals a clear correlation between the molecular design and the permeation mechanisms facilitating therewith tailored synthesis of molecular 2D materials for separation technologies.

2.
Sci Rep ; 14(1): 22793, 2024 10 01.
Article in English | MEDLINE | ID: mdl-39354022

ABSTRACT

Retinol is widely used to treat skin ageing because of its effect on cell differentiation, proliferation and apoptosis. However, its potential benefits appear to be limited by its skin permeability. Herein, we investigated the transcutaneous behavior of retinol in semisolid cosmetics, in both in vitro and in vivo experiments. In vitro experiments used the modified Franz diffusion cell combined with Raman spectroscopy. In in vivo experiments, the content of retinol in rat skin and plasma was detected with HPLC. Retinol in semisolid cosmetics was mainly concentrated in the stratum corneum in the skin of the three animal models tested, and in any case did not cross the skin barrier after a 24 h dermatologic topical treatment in Franz diffusion cells tests. Similar results were obtained in live mice and rats, where retinol did not cross the skin barrier and did not enter the blood circulation. Raman spectroscopy was used to test the penetration depth of retinol in skin, which reached 16 µm out of 34 µm in pig skin, whereas the skin of mouse and rat showed too strong bakground interference. To explore epidermal transport mechanism and intradermal residence, skin transcriptomics was performed in rats, which identified 126 genes upregulated related to retinol transport and metabolism, relevant to the search terms "retinoid metabolic process" and "transporter activity". The identity of these upregulated genes suggests that the mechanism of retinol action is linked to epidermis, skin, tissue and epithelium development.


Subject(s)
Cosmetics , Skin Absorption , Skin , Vitamin A , Animals , Vitamin A/metabolism , Vitamin A/pharmacokinetics , Mice , Rats , Skin/metabolism , Administration, Cutaneous , Spectrum Analysis, Raman , Swine , Male , Permeability , Epidermis/metabolism
3.
AAPS PharmSciTech ; 25(7): 237, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39384727

ABSTRACT

Cellulite (CLT) is one of the commonly known lipodystrophy syndromes affecting post-adolescent women worldwide. It is topographically characterized by an orange-peel, dimpled skin appearance hence, it is an unacceptable cosmetic problem. CLT can be modulated by surgical procedures such as; liposuction and mesotherapy. But, these options are invasive, expensive and risky. For these reasons, topical CLT treatments are more preferred. Caffeine (CA), is a natural alkaloid that is well-known for its prominent anti-cellulite effects. However, its hydrophilicity hinders its cutaneous permeation. Therefore, in the present study CA was loaded into solid lipid nanoparticles (SLNs) by high shear homogenization/ultrasonication. CA-SLNs were prepared using Compritol® 888 ATO and stearic acid as solid lipids, and span 60 and brij™35, as lipid dispersion stabilizing agents. Formulation variables were adjusted to obtain entrapment efficiency (EE > 75%), particle size (PS < 350 nm), zeta potential (ZP < -25 mV) and polydispersity index (PDI < 0.5). CA-SLN-4 was selected and showed maximized EE (92.03 ± 0.16%), minimized PS (232.7 ± 1.90 nm), and optimum ZP (-25.15 ± 0.65 mV) and PDI values (0.24 ± 0.02). CA-SLN-4 showed superior CA release (99.44 ± 0.36%) compared to the rest CA-SLNs at 1 h. TEM analysis showed spherical, nanosized CA-SLN-4 vesicles. Con-LSM analysis showed successful CA-SLN-4 permeation transepidermally and via shunt diffusion. CA-SLN-4 incorporated into Noveon AA-1® hydrogel (CA-SLN-Ngel) showed accepted physical/rheological properties, and in vitro release profile. Histological studies showed that CA-SLN-Ngel significantly reduced mean subcutaneous fat tissue (SFT) thickness with 4.66 fold (p = 0.035) and 4.16 fold (p = 0.0001) compared to CA-gel, at 7th and 21st days, respectively. Also, significant mean SFT thickness reduction was observed compared to untreated group with 4.83 fold (p = 0.0005) and 3.83 fold (p = 0.0043), at 7th and 21st days, respectively. This study opened new avenue for CA skin delivery via advocating the importance of skin appendages. Hence, CA-SLN-Ngel could be a promising nanocosmeceutical gel for effective CLT treatment.


Subject(s)
Caffeine , Cellulite , Nanoparticles , Particle Size , Animals , Caffeine/administration & dosage , Caffeine/chemistry , Caffeine/pharmacokinetics , Cellulite/drug therapy , Rats , Nanoparticles/chemistry , Skin Absorption/physiology , Skin Absorption/drug effects , Administration, Cutaneous , Skin/metabolism , Skin/drug effects , Permeability , Lipids/chemistry , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Rats, Wistar , Administration, Topical , Drug Carriers/chemistry , Female , Liposomes
4.
J Physiol ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373834

ABSTRACT

Computational methods such as molecular dynamics (MD) have illuminated how single-atom ions permeate membrane channels and how selectivity among them is achieved. Much less is understood about molecular permeation through eukaryotic channels that mediate the flux of small molecules (e.g. connexins, pannexins, LRRC8s, CALHMs). Here we describe computational methods that have been profitably employed to explore the movements of molecules through wide pores, revealing mechanistic insights, guiding experiments, and suggesting testable hypotheses. This review illustrates MD techniques such as voltage-driven flux, potential of mean force, and mean first-passage-time calculations, as applied to molecular permeation through wide pores. These techniques have enabled detailed and quantitative modeling of molecular interactions and movement of permeants at the atomic level. We highlight novel contributors to the transit of molecules through these wide pathways. In particular, the flexibility and anisotropic nature of permeant molecules, coupled with the dynamics of pore-lining residues, lead to bespoke permeation dynamics. As more eukaryotic large-pore channel structures and functional data become available, these insights and approaches will be important for understanding the physical principles underlying molecular permeation and as guides for experimental design.

5.
Sci Rep ; 14(1): 23866, 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39394201

ABSTRACT

The purpose of the current work was to develop and characterize ethosomes of vitamin D3 gel that could more effectively work against psoriasis. Psoriasis is a chronic immune-mediated inflammatory skin disease. Due to vitamin D3 role in proliferation and maturation of keratinocytes, it has become an important local therapeutic option in the treatment of psoriasis. In this research we have initiated worked on ethosomes gels containing vitamin D3 to treat psoriasis. Soya lecithin 1-8% (w/v), propylene glycol and ethanol were used to create the formulations, which were then tested for vesicle size, shape, surface morphology, entrapment effectiveness, and in vitro drug permeation. The drug encapsulation efficiency of ethosomes was 96.25% ± 0.3. The particle sizes of the optimized ethosomes was 148 and 657 nm, and the PDI value was 0.770 ± 0.12 along with negative charge - 14 ± 3. Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) along with thermogravimetric analysis (TGA) studies confirmed the absence of interactions between vitamin D3 and other ingredients. It was determined that the total amount of medication that penetrated the membrane was 95.34% ± 3. Percentage lysis was very negligible for all strengths which were found less than 15%. Based on our research, ethosomes appear to be safe for use. The vitamin D3 ethosomal gel order, description, pH, and viscosity were all within the specified ranges, according to the findings of a 6-month investigation into the stability profile of the completed system. In this research, we successfully prepared ethosomes loaded with vitamin D3 and then converted it into gel for patients' easy applications.


Subject(s)
Cholecalciferol , Gels , Cholecalciferol/chemistry , Cholecalciferol/administration & dosage , Gels/chemistry , Animals , Psoriasis/drug therapy , Psoriasis/pathology , Humans , Particle Size , Spectroscopy, Fourier Transform Infrared , Liposomes/chemistry , Calorimetry, Differential Scanning , Lecithins/chemistry , Skin/drug effects , Skin/pathology , Skin/metabolism , Skin Absorption
6.
Eur J Pharm Sci ; : 106933, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39395699

ABSTRACT

The topical application of heat offers considerable potential for enhancing the delivery of non-steroidal anti-inflammatory drugs across the skin barrier. A better understanding of the mechanisms underpinning the improved skin permeation and how heat can be best used to work with complementary enhancement strategies would help to realise this potential. In this study the effect of heat on the permeation of diclofenac and piroxicam across different membranes, including human skin was investigated along with use of complementary enhancement strategies including selection of formulation pH, drug salt form and inclusion of chemical penetration enhancers. Heat alone improved drug delivery across human skin for both drugs, with larger increases for piroxicam. This increase was produced by improvements in drug release, molecular diffusivity and partitioning into the stratum corneum. In combination with chemical penetration enhancers, heat synergistically increased the skin permeation of diclofenac and piroxicam up to 13 and 40-fold respectively, with the increase in permeation being ascribed primarily to improvements in drug and enhancer partitioning into the stratum corneum. An Arrhenius plot of diclofenac permeation across skin was linear indicating that the orthorhombic to hexagonal stratum corneum lipid packing transition did not have a significant effect on skin permeation in response to heat.

7.
J Oleo Sci ; 73(9): 1221-1240, 2024.
Article in English | MEDLINE | ID: mdl-39218639

ABSTRACT

Luteolin (LN), is an herbal bioactive flavone and exhibits many pharmacological activities. However, the bioavailability of LN is limited due to its inadequate solubility and significant first-pass metabolism. The present study developed transdermal LN-loaded invasomes (IVM) gel to improve the therapeutic efficacy. The LN-IVM was prepared and optimized by 2 3 factorial designs. LN-IVM was characterized for physicochemical parameters. The optimized LN-IVM (LN-IVMopt) was incorporated into HPMC-K4M gel and evaluated for viscosity, spreadability, and irritation. Further LN-IVM gel was evaluated for drug release, ex-vivo permeation, pharmacokinetic and pharmacodynamics study. LN-IVMopt showed 300.8±2.67 nm of VS, 0.258 of PDI, 89.92±1.29% of EE, and a zeta potential of -18.2 mV. LN-IVM exhibited spherical morphology. FTIR and XRD results demonstrated that LN was encapsulated into IVM matrix. The optimized IVM gel (LN-IVMoptG2) exhibited excellent viscosity, spreadability, and sustained release of LN (91.32±2.95% in 24 h). LN-IVMoptG2 exhibited statistically significant (p < 0.05) higher flux (5.79 µg/h/cm2 ) than LN-gel (2.09 µg/h/cm2 ). The apparent permeability coefficient of plain LN gel and LN- IVMoptG was 1.15×10-5 cm/min and 3.22×10-5 cm/min respectively. LN-IVMoptG2 showed no irritation (score 0.0) throughout the study (60 min). The relative bioavailability of LN from LN-IVMopt-G2 (transdermal) was 2.38±0.19 fold as compared to LN-Sus (oral) and 1.81±0.15-fold than plain LN-gel (transdermal). The LN-IVMoptG2 showed a substantial lessening in the paw volume up to 12 h (17.48±1.94% swelling) than plain LN-gel (44.77±2.82% swelling). The finding concluded that the IVM gel is a novel, effective, and safe approach for the delivery of LN transdermally to improve its therapeutic efficacy.


Subject(s)
Administration, Cutaneous , Drug Liberation , Gels , Luteolin , Animals , Luteolin/administration & dosage , Luteolin/pharmacokinetics , Viscosity , Skin Absorption/drug effects , Solubility , Male , Biological Availability , Drug Delivery Systems , Chemical Phenomena , Permeability , Rats, Sprague-Dawley
8.
Article in English | MEDLINE | ID: mdl-39240454

ABSTRACT

The purpose of this study was to design a drug-in-adhesive (DIA) patch for transdermal delivery of ketoprofen, using hot-melt pressure-sensitive adhesive as the matrix of the patch. The adhesion properties and skin permeation of the patches were examined, and in vivo pharmacokinetics and tissue distribution of patches were evaluated. The novel ketoprofen patch with high adhesion was prepared by holt-melt method. The effects of different percentages of L-menthol on in vitro permeation were screened, 3% was added as the amount of permeation enhancer and the 24 h cumulative permeation amount(277.46 ± 15.58 µg/cm2) comparable to that of commercial patch MOHRUS®(279.74 ± 29.23 µg/cm2). Pharmacokinetic and the tissue distribution study showed no matter in plasma, muscle or skin, the drug concentration of self-made ketoprofen patch was equivalent to that of commercial patch. These data indicated that the self-made patch provided a new reference for the development of ketoprofen dosage forms and promising alternative strategy for analgesic treatment.

9.
Materials (Basel) ; 17(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39274793

ABSTRACT

P91 steel (X10CrMoVNb9-1) is widely used in the energy industry. It is characterized by good mechanical properties, creep resistance, corrosion resistance, impact toughness, and resistance to thermal fatigue. Due to their operating conditions and martensitic structure, components made from P91 steel are often subject to damage related to the presence of hydrogen. This article compares the results of the mechanical properties evaluation for P91 steel in an aggressive solution charged under load and without load. Based on the research, it was found that the hydrogen environment significantly affects the mechanical properties of P91 steel, reducing strength and yield strength, and decreasing ductility. It was revealed that in samples tested after 72 h without preloading, the tensile strength decreased by 1.5%, and the elongation decreased by about 29% for the sample, compared to the delivered condition sample. Under loaded conditions, the difference in tensile strength increased by approximately 8%, while elongation increased by nearly 50.

10.
AAPS PharmSciTech ; 25(7): 201, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235493

ABSTRACT

Percutaneous delivery is explored as alternative pathway for addressing the drawbacks associated with the oral administration of otherwise efficacious drugs. Short of breaching the skin by physical means, the preference goes to formulation strategies that augment passive diffusion across the skin. One such strategy lies in the use of skin penetration and permeation enhancers notably of hydroxylated solvents like propylene glycol (PG), ethanol (EtOH), and diethylene glycol monoethyl ether (Transcutol®, TRC). In a previous publication, we focused on the role of Transcutol® as enhancer in neat or diluted systems. Herein, we explore its' role in complex formulation systems, including patches, emulsions, vesicles, solid lipid nanoparticles, and micro or nanoemulsions. This review discusses enhancement mechanisms associated with hydroalcoholic solvents in general and TRC in particular, as manifested in multi-component formulation settings alongside other solvents and enhancers. The principles that govern skin penetration and permeation, notably the importance of drug diffusion due to solubilization and thermodynamic activity in the vehicle (formulation), drug solubilization and partitioning in the stratum corneum (SC), and/or solvent drag across the skin into deeper tissue for systemic absorption are discussed. Emphasized also are the interplay between the drug properties, the skin barrier function and the formulation parameters that are key to successful (trans)dermal delivery.


Subject(s)
Administration, Cutaneous , Ethylene Glycols , Permeability , Skin Absorption , Skin , Solvents , Skin Absorption/physiology , Skin Absorption/drug effects , Ethylene Glycols/chemistry , Humans , Skin/metabolism , Animals , Solvents/chemistry , Chemistry, Pharmaceutical/methods , Solubility , Drug Delivery Systems/methods , Emulsions/chemistry , Nanoparticles/chemistry , Ethanol/chemistry , Ethanol/administration & dosage
11.
Bioorg Chem ; 153: 107811, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39270527

ABSTRACT

The complex nature of Alzheimer's disease (AD) etiopathology is among the principal hurdles to developing effective anti-Alzheimer agents. Tau pathology and Amyloid-ß (Aß) accumulation are hallmarks and validated therapeutic strategies of AD. GSK-3ß is a serine/threonine kinase involved in tau phosphorylation. Its excessive activity also contributes to the production of Aß plaques, making GSK-3ß an attractive AD target. Taking this into account, In this article, we outline the design, synthesis, and biological validation of a focused library of 1,2,3,4-tetrahydropyrimidine based derivatives as inhibitors of GSK-3ß, tau phosphorylation, and Aß accumulation. The inhibitory activity of forty nine synthetic compounds was tested against GSK-3ß and other AD-relevant kinases. The kinetic experiments revealed the mode of GSK-3ß inhibition by the most potent compound 44. The in- vitro drug metabolism and pharmacokinetic studies were thereafter performed. The anti-aggregation activity of the most potent GSK-3ß inhibitor was tested using AD transgenic Caenorhabditis elegans (C. elegans) strain CL2006 for quantification of Aß plaques and BR5706 C. elegans strain for tau pathology evaluation. We then evaluated the blood-brain barrier permeability and got promising results. Therefore, we present compound 44 as a potential ATP-competitive GSK-3ß inhibitor with good metabolism and pharmacokinetic profile, anti-aggregation properties for amyloid beta protein, and reduction in tau-phosphorylation levels. We recommend more investigation into compound 44-based small molecules as possible targets for AD disease-modifying treatments.

12.
Gels ; 10(9)2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39330210

ABSTRACT

Sulpiride (Sul) is a medication that blocks dopamine D2 receptors. It is used to treat gastrointestinal disturbances and has antipsychotic effects depending on the dose given. Sulpiride is subject to P-glycoprotein efflux, resulting in limited bioavailability and erratic absorption. Hence, the aim of this study was to generate a glycerosomal in situ gel of sulpiride for intranasal administration, specifically targeting children with schizophrenia who may have difficulty swallowing traditional solid medications, for enhancing its bioavailability. This study aimed to demonstrate the efficacy of intranasal administration of glycerin-encapsulated lipid-nanovesicles (glycerosomes) mixed with in situ gels for prolonged release of anti-psychotic medication. A Box-Behnken design was utilized to create sulpiride-loaded glycerosomes (Sul-GMs), with the lipid amount (A), glycerin concentration (B), and sonication time (C) acting as independent variables. Their impact on the entrapment efficiency, EE% (Y1), and in vitro drug release (Y2) were evaluated. The sulpiride EE% showed an increase when the glycerin concentration was raised to 25% v/v. Nevertheless, when the glycerin concentration was raised to 40% v/v, there was a notable decrease in the EE%. The optimized glycerosome was added to pH triggered carbopol 974P in situ gel formulations including HPMC K15M with different concentrations. The in situ gel formulation (G3) comprising 0.6% carbopol 974P and 0.6% hydroxypropyl methyl cellulose-K15M (HPMC K15M) demonstrated suitable pH, viscosity, desired gel strength, spreadability, and mucoadhesive strength. Consequently, it was selected for in vitro study, ex vivo permeation investigation, and in vivo evaluations. The glycerosomal in situ gel exhibited favorable ex vivo permeability of SU when applied to the nasal mucosa. The pharmacokinetic investigation revealed that the optimized Sul-loaded glycerosomal in situ gel exhibited a significant fourfold and twofold enhancement in systemic bioavailability compared to both the control gel and the commercially available formulation. Finally, the intranasal administration of Sul-loaded glycerosomal in situ gel is a promising alternative to oral treatment for pediatric patients with psychosis.

13.
Pharm Dev Technol ; : 1-7, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39286857

ABSTRACT

Understanding drug behavior within the skin, especially for photosensitive compounds, is crucial for developing effective and safe topical therapies. This study employs Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) to investigate the skin permeation and photostability of selumetinib, a MEK inhibitor used in treating type 1 neurofibromatosis (NF1). The highest amounts of selumetinib in the skin sections were obtained when using the gel formulation, suggesting that it is to be preferred to cream formulations to achieve higher permeation of the drug. Our study also revealed that selumetinib is amenable to photodegradation in ex vivo skin explants, and yields one main degradation product, whose degradation is likely triggered by hydrogen abstraction. MALDI-MSI results showed selumetinib and its degradation product concentrate in skin appendages, indicating these structures might serve as drug reservoirs, potentially prolonging retention and efficacy. This study demonstrates that combining MALDI-MSI with LC/MS-MS can highly contribute to the characterization of the fate of photosensitive compounds in the skin, an essential prerequisite to the development of compound-specific photoprotective measures. It will also pave the way for innovative topical delivery strategies for NF1 treatment.

14.
Int J Biol Macromol ; 280(Pt 2): 135849, 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39313060

ABSTRACT

The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.

15.
Int J Pharm ; 666: 124741, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332457

ABSTRACT

Ocular drug delivery presents significant challenges due to various anatomical and physiological barriers. Ultradeformable vesicles have emerged as better vesicular systems for achieving deeper corneal penetration and enhanced ocular bioavailability. This research aims to develop a hybrid vesicular system with improved deformability and compare it to conventional vesicular carriers. The ultradeformable vesicle, termed "transniosomes," is a combination of niosomes, liposomes, and transfersomes, loaded with brinzolamide as model drug. The brinzolamide-loaded transniosomes (BRZ-TN) was formulated and compared with different vesicular systems through in vitro, ex vivo, and in vivo characterizations. The optimized BRZ-TN demonstrated a vesicle size of 112.06 ± 4.13 nm and an entrapment efficiency of 93.63 ± 0.30 %. With a deformability index of 6.405, the BRZ-TN exhibited a permeability of 86.68 ± 2.51 % over 10 h, which is approximately 1.3 times higher than other conventional vesicular systems. Additionally, the BRZ-TN showed a drug flux of 0.247 ± 0.01 mg/cm2/h and an apparent permeability of 0.09 ± 1.21 cm/s. Pre-clinical experiments confirmed the superiority of the optimized BRZ-TN, achieving a 37 % reduction in intraocular pressure (IOP), post 6hr of administration, indicating its prolonged therapeutic effect and improved ocular bioavailability. The findings of this study suggest that transniosomes are superior to other carriers and hold great promise as a nanocarrier for ocular drug delivery.

16.
Adv Sci (Weinh) ; : e2405983, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39342651

ABSTRACT

Ionic liquids (ILs) are salts with melting points typically <100 °C, composed of specific anions and cations. Recently, IL application has expanded into material engineering and biomedicine. Due to their unique properties, ILs have garnered significant interest in pharmacological research as solubilizers, transdermal absorption enhancers, antibacterial agents, and stabilizers of insoluble pharmaceutical active ingredients. The improvement of skin permeability by ILs is closely associated with their specific physicochemical characteristics, which are identified by their ionic composition. However, the existing literature on transdermal medication administration is insufficient in terms of a comprehensive knowledge base. This review provides a comprehensive assessment of the design principles involved in IL synthesis. Additionally, it discusses the methods utilized to assess skin permeability and provides a focused outline of IL application in transdermal drug administration.

17.
ACS Appl Mater Interfaces ; 16(38): 50407-50429, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39259941

ABSTRACT

Modern drug delivery research focuses on developing biodegradable nanopolymer systems. The present study proposed a polymer-based composite nanogel as a transdermal drug delivery system for the pH-responsive targeted and controlled delivery of anticancer drug doxorubicin (DOX). Nanogels have properties of both hydrogels and nanomaterials. The ß-cyclodextrin-based nanogels can enhance the loading capacity of poorly soluble drugs and promote a sustained drug release. The ß-cyclodextrin-grafted methacrylic acid conjugated hyaluronic acid composite nanogel was successfully synthesized. ß-Cyclodextrin was first grafted onto methacrylic acid. The composite nanogel-based drug carrier was prepared by controlled radical polymerization (CRP) of ß-cyclodextrin-grafted methacrylic acid with hyaluronic acid. The doxorubicin-loaded carrier was characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, zeta potential analysis, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The drug loading and release efficiencies were carried out at different pH levels. The maximum drug loading and encapsulation efficiencies of the synthesized final nanogel composite material at pH 8.0 were 86.44 ± 2.12 and 96.07 ± 2.01%, respectively. The DOX-loaded final material showed a 90.0 ± 2.6% release percentage of DOX at pH 5.5, whereas at pH 7.4, the release percentage of DOX was observed to be only 35.0 ± 0.3%. In vitro swelling, degradation, hemocompatibility, drug release kinetics, cytotoxicity, apoptosis, cell colocalization, skin irritation, and skin permeation studies, along with in vivo pharmacokinetic studies, were performed to prove the efficacy of the synthesized nanogel composite as a transdermal carrier for doxorubicin.


Subject(s)
Breast Neoplasms , Doxorubicin , Drug Carriers , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Female , Animals , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Drug Carriers/chemistry , Nanogels/chemistry , Administration, Cutaneous , beta-Cyclodextrins/chemistry , Polyethyleneimine/chemistry , Polyethylene Glycols/chemistry , Drug Liberation , MCF-7 Cells , Skin/metabolism , Skin/drug effects , Mice , Hydrogen-Ion Concentration
18.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337510

ABSTRACT

In the pharmaceutical sector, solid lipid nanoparticles (SLN) are vital for drug delivery incorporating a lipid core. Chondroitin sulfate (CHON) is crucial for cartilage health. It is often used in osteoarthritis (OA) treatment. Due to conflicting results from clinical trials on CHON's efficacy in OA treatment, there has been a shift toward exploring effective topical systems utilizing nanotechnology. This study aimed to optimize a solid lipid nanoparticle formulation aiming to enhance CHON permeation for OA therapy. A 3 × 3 × 2 Design of these experiments determined the ideal parameters: a CHON concentration of 0.4 mg/mL, operating at 20,000 rpm speed, and processing for 10 min for SLN production. Transmission electron microscopy analysis confirmed the nanoparticles' spherical morphology, ensuring crucial uniformity for efficient drug delivery. Cell viability assessments showed no significant cytotoxicity within the tested parameters, indicating a safe profile for potential clinical application. The cell internalization assay indicates successful internalization at 1.5 h and 24 h post-treatment. Biopharmaceutical studies supported SLNs, indicating them to be effective CHON carriers through the skin, showcasing improved skin permeation and CHON retention compared to conventional methods. In summary, this study successfully optimized SLN formulation for efficient CHON transport through pig ear skin with no cellular toxicity, highlighting SLNs' potential as promising carriers to enhance CHON delivery in OA treatment and advance nanotechnology-based therapeutic strategies in pharmaceutical formulations.


Subject(s)
Chondroitin Sulfates , Nanoparticles , Chondroitin Sulfates/chemistry , Animals , Swine , Nanoparticles/chemistry , Regeneration/drug effects , Cartilage/drug effects , Cartilage/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Cell Survival/drug effects , Humans , Administration, Topical , Nanostructures/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Skin/drug effects , Skin/metabolism
19.
Polymers (Basel) ; 16(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339104

ABSTRACT

Phosvitin shows chelating abilities, an affinity for ACTH (corticotropin), growth factors, antioxidant properties, and acidic nature. An attempt was made to use this protein in hydrogels as a transporter of other protein substances: somatotropin (STH) and (ACTH). The aim of the study was to evaluate the effect of phosvitin on the permeation of ACTH and STH from semi-solid forms of the drug applied to the skin. Four hydrogel substrates were prepared using natural polymers: sodium alginate, methylcellulose, and starch. Based on the evaluation of physicochemical parameters, the hydrogel with the most favorable properties was selected and loaded with the active substances STH and ACTH, followed by the addition of phosvitin. A study of the permeation of STH and ACTH through the artificial cellulose membrane and through porcine skin was carried out without and with the addition of phosvitin. The effect of protein substances on rheological and textural parameters was studied. The evaluation of physicochemical parameters showed a favorable effect of STH and Phosvitin on the stability of the hydrogel with 4% methylcellulose and no effect of ACTH. All prepared formulations showed a reaction close to the natural pH of human skin. In the porcine skin permeation study, the addition of Phosvitin to the hydrogel with STH caused a slight increase in the amount of STH permeated and an increase in the time for STH to permeate porcine skin by 30 min. Phosvitin caused an increase in the amount of ACTH permeated through porcine skin almost twofold. Phosvitin may prove to be a promising permeation promoter for model protein-peptide substances when applied to the skin surface.

20.
Pharmaceutics ; 16(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39339178

ABSTRACT

Despite the safety and convenience of oral administration, poorly water-soluble drugs compromise absorption and bioavailability. These drugs can exhibit low dissolution rates, variability between fed and fasted states, difficulty permeating the mucus layer, and P-glycoprotein efflux. Drug nanocrystals offer a promising strategy to address these challenges. This review focuses on the opportunities to develop orally administered nanocrystals based on pharmacokinetic outcomes. The impacts of the drug particle size, morphology, dissolution rate, crystalline state on oral bioavailability are discussed. The potential of the improved dissolution rate to eliminate food effects during absorption is also addressed. This review also explores whether permeation or dissolution drives nanocrystal absorption. Additionally, it addresses the functional roles of stabilizers. Drug nanocrystals may result in prolonged concentrations in the bloodstream in some cases. Therefore, nanocrystals represent a promising strategy to overcome the challenges of poorly water-soluble drugs, thus encouraging further investigation into unclear mechanisms during oral administration.

SELECTION OF CITATIONS
SEARCH DETAIL