Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 979269, 2022.
Article in English | MEDLINE | ID: mdl-36172271

ABSTRACT

One peculiarity of protists belonging to classes Kinetoplastea and Diplonemea within the phylum Euglenozoa is compartmentalisation of most glycolytic enzymes within peroxisomes that are hence called glycosomes. This pathway is not sequestered in peroxisomes of the third Euglenozoan class, Euglenida. Previous analysis of well-studied kinetoplastids, the 'TriTryps' parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp., identified within glycosomes other metabolic processes usually not present in peroxisomes. In addition, trypanosomatid peroxins, i.e. proteins involved in biogenesis of these organelles, are divergent from human and yeast orthologues. In recent years, genomes, transcriptomes and proteomes for a variety of euglenozoans have become available. Here, we track the possible evolution of glycosomes by querying these databases, as well as the genome of Naegleria gruberi, a non-euglenozoan, which belongs to the same protist supergroup Discoba. We searched for orthologues of TriTryps proteins involved in glycosomal metabolism and biogenesis. Predicted cellular location(s) of each metabolic enzyme identified was inferred from presence or absence of peroxisomal-targeting signals. Combined with a survey of relevant literature, we refine extensively our previously postulated hypothesis about glycosome evolution. The data agree glycolysis was compartmentalised in a common ancestor of the kinetoplastids and diplonemids, yet additionally indicates most other processes found in glycosomes of extant trypanosomatids, but not in peroxisomes of other eukaryotes were either sequestered in this ancestor or shortly after separation of the two lineages. In contrast, peroxin divergence is evident in all euglenozoans. Following their gain of pathway complexity, subsequent evolution of peroxisome/glycosome function is complex. We hypothesize compartmentalisation in glycosomes of glycolytic enzymes, their cofactors and subsequently other metabolic enzymes provided selective advantage to kinetoplastids and diplonemids during their evolution in changing marine environments. We contend two specific properties derived from the ancestral peroxisomes were key: existence of nonselective pores for small solutes and the possibility of high turnover by pexophagy. Critically, such pores and pexophagy are characterised in extant trypanosomatids. Increasing amenability of free-living kinetoplastids and recently isolated diplonemids to experimental study means our hypothesis and interpretation of bioinformatic data are suited to experimental interrogation.

2.
J Fungi (Basel) ; 6(4)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233491

ABSTRACT

Peroxisomes and mitochondria are organelles that perform major functions in the cell and whose activity is very closely associated. In fungi, the function of these organelles is critical for many developmental processes. Recent studies have disclosed that, additionally, fungal development comprises a dynamic regulation of the activity of these organelles, which involves a developmental regulation of organelle assembly, as well as a dynamic modulation of the abundance, distribution, and morphology of these organelles. Furthermore, for many of these processes, the dynamics of peroxisomes and mitochondria are governed by common factors. Notably, intense research has revealed that the process that drives the division of mitochondria and peroxisomes contributes to several developmental processes-including the formation of asexual spores, the differentiation of infective structures by pathogenic fungi, and sexual development-and that these processes rely on selective removal of these organelles via autophagy. Furthermore, evidence has been obtained suggesting a coordinated regulation of organelle assembly and dynamics during development and supporting the existence of regulatory systems controlling fungal development in response to mitochondrial activity. Gathered information underscores an important role for mitochondrial and peroxisome dynamics in fungal development and suggests that this process involves the concerted activity of these organelles.

3.
Cell Biol Int ; 44(3): 918-923, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31814220

ABSTRACT

Peroxisomicine A1 (PA1) is a potential antineoplastic agent with high and selective toxicity toward peroxisomes of tumor cells. Pexophagy is a selective autophagy process that degrades damaged peroxisomes; this process has been studied mainly in methylotrophic yeasts. There are two main modes of pexophagy in yeast: macropexophagy and micropexophagy. Previous studies showed that peroxisomes damaged by a prolonged exposition to PA1 are eliminated by macropexophagy. In this work, Candida boidinii was grown in methanol-containing media, and PA1 was added to the cultures at 2 µg/mL after they reached the mid-exponential growth phase. Samples were taken at 5, 10, 15, 20, and 25 min after the addition of PA1 and processed for ultrastructural analysis. Typical morphological characteristics of micropexophagy were observed: the direct engulfment of peroxisomes by the vacuolar membrane and the presence of the micropexophagic membrane apparatus (MIPA), which mediates the fusion between the opposing tips of the vacuole to complete sequestration of peroxisomes from the cytosol. In conclusion, here we report that, in addition to macropexophagy, peroxisomes damaged by PA1 can be eliminated by micropexophagy. This information is useful to deepen the knowledge of the mechanism of action of PA1 and of that of pexophagy per se.


Subject(s)
Anthracenes/pharmacology , Antineoplastic Agents/pharmacology , Candida/drug effects , Macroautophagy/drug effects , Microautophagy/drug effects , Peroxisomes/drug effects , Fungal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL