Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 543
Filter
1.
Tree Physiol ; 44(10)2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39298566

ABSTRACT

Predicting how plants respond to drought requires an understanding of how physiological mechanisms and drought response strategies occur, as these strategies underlie rates of gas exchange and productivity. We assessed the response of 11 plant traits to repeated experimental droughts in four co-occurring species of central Australia. The main goals of this study were to: (i) compare the response to drought between species; (ii) evaluate whether plants acclimated to repeated drought; and (iii) examine the degree of recovery in leaf gas exchange after cessation of drought. Our four species of study were two tree species and two shrub species, which field studies have shown to occupy different ecohydrological niches. The two tree species (Eucalyptus camaldulensis Dehnh. and Corymbia opaca (D.J.Carr & S.G.M.Carr) K.D.Hill & L.A.S.Johnson) had large reductions in stomatal conductance (gs) values, declining by 90% in the second drought. By contrast, the shrub species (Acacia aptaneura Maslin & J.E.Reid and Hakea macrocarpa A.Cunn. ex R.Br.) had smaller reductions gs in the second drought of 52 and 65%, respectively. Only A. aptaneura showed a physiological acclimatation to drought due to small declines in gs versus á´ªpd (0.08 slope) during repeated droughts, meaning they maintained higher rates of gs compared with plants that only experienced one final drought (0.19 slope). All species in all treatments rapidly recovered leaf gas exchange and leaf mass per area following drought, displaying physiological plasticity to drought exposure. This research refines our understanding of plant physiological responses to recurrent water stress, which has implications for modelling of vegetation, carbon assimilation and water use in semi-arid environments under drought.


Subject(s)
Droughts , Plant Leaves , Trees , Plant Leaves/physiology , Trees/physiology , Australia , Plant Transpiration/physiology , Species Specificity , Acclimatization/physiology
2.
Plants (Basel) ; 13(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39124160

ABSTRACT

In a scenario of accelerated global climate change, the continuous growth of the world population, and the excessive use of chemical fertiliser, the search for sustainable alternatives for agricultural production is crucial. The present study was conducted to evaluate the plant growth-promoting (PGP) characteristics of two yeast strains, Candida guilliermondii and Rhodotorula mucilaginosa, and the physicochemical characteristics of nanometric capsules and iron oxide nanoparticles (Fe2O3-NPs) for the formulation of nanobiofertilisers. The physiological and productive effects were evaluated in a greenhouse assay using lettuce plants. The results showed that C. guilliermondii exhibited higher tricalcium phosphate solubilisation capacity, and R. mucilaginosa had a greater indole-3-acetic acid (IAA) content. The encapsulation of C. guilliermondii in sodium alginate capsules significantly improved the growth, stomatal conductance, and photosynthetic rate of the lettuce plants. Physicochemical characterisation of the Fe2O3-NPs revealed a particle size of 304.1 nm and a negative Z-potential, which indicated their stability and suitability for agricultural applications. The incorporation of Fe2O3-NPs into the capsules was confirmed by SEM-EDX analysis, which showed the presence of Fe as the main element. In summary, this study highlights the potential of nanobiofertilisers containing yeast strains encapsulated in sodium alginate with Fe2O3-NPs to improve plant growth and photosynthetic efficiency as a path toward more sustainable agriculture.

3.
Front Plant Sci ; 15: 1415682, 2024.
Article in English | MEDLINE | ID: mdl-39015291

ABSTRACT

Introduction: Salicylic acid has shown promise in alleviating water stress in cultivated plants. However, there is a lack of studies confirming its effectiveness in cowpea plants grown in field conditions. Therefore, this research aimed to evaluate the use of salicylic acid as a water stress mitigator in cowpea cultivars under different irrigation depths in field conditions. Methods: Four cowpea cultivars (BRS Novaera, BRS Tapaihum, BRS Pujante, and BRS Pajeú) were subjected to different treatments: control (W100: 100% replacement of crop evapotranspiration - ETc), W50 (50% of ETc), W50+SA2 (50% of ETc + 276 mg L-1 of SA), and W50+SA4 (50% of ETc + 552 mg L-1 of SA). The treatments were combined in a 4×4 factorial scheme with three replications, arranged in a randomized block design. Results: Water restriction had a negative impact on the water status, growth, gas exchange, and production of the cultivars while also leading to changes in the antioxidant metabolism and osmolyte concentration. The application of SA enhanced antioxidant activity and the synthesis of osmotic adjusters under stress conditions. The most effective concentration was 276 mg L-1 in stage R2 and 552 mg L-1 in stage V7, respectively. The BRS Pujante cultivar showed increased productivity under water restriction with SA application, while the BRS Tapaihum was the most tolerant among the cultivars studied. Discussion: In summary, our findings underscore the importance of using SA to mitigate the effects of water restriction on cowpea cultivation. These discoveries are crucial for the sustainability of cowpea production in regions susceptible to drought, which can contribute to food security. We further add that the adoption of new agricultural practices can enhance the resilience and productivity of cowpea as an essential and sustainable food source for vulnerable populations in various parts of the world.

4.
New Phytol ; 244(4): 1238-1249, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38736030

ABSTRACT

As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (Topt) of trees from a VPD-confounded apparent Topt of c. 30-31°C to a VPD-independent Topt of c. 33-36°C, while for lianas no VPD-independent Topt was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining Topt misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.


A medida que aumenta la temperatura, disminuye la absorción neta de carbono en los bosques tropicales, sin embargo, aún no se conocen bien los mecanismos que la subyacen. Las altas temperaturas pueden limitar la fotosíntesis directamente, por ejemplo, reduciendo la eficiencia de los procesos bioquímicos, pero también de forma indirecta a través del aumento del déficit de presión de vapor (DPV) que resulta en el cierre estomático. Para explorar los efectos independientes de la temperatura y el DPV en la fotosíntesis, analizamos datos de la absorción neta de carbono del dosel de dos bosques tropicales en Panamá utilizando modelos aditivos generalizados. La conductancia estomática y la fotosíntesis disminuyó consistentemente con el aumento de DPV, y considerando el DPV en modelas estadísticas, la temperatura óptima de la fotosíntesis (Topt) aumentó, de un Topt aparente influida por la DVP de c. 30­31°C a un Topt independiente del DPV de c. 33­36°C. Los árboles y las lianas mostraron respuestas similares a la temperatura y a la DVP en ambos bosques, a pesar de la diferencia de 1500 mm en la precipitación media anual. La fotosíntesis en los bosques tropicales está limitada en gran medida por los efectos indirectos del aumento de la temperatura, a través de cambios en el DPV y no por los efectos directos en los procesos bioquímicos. Si no se tiene en cuenta el DPV al determinar el Topt, se atribuye erróneamente el mecanismo causal subyacente y, por lo tanto, se obstaculiza el avance en la comprensión de los efectos del calentamiento global en la dinámica del carbono.


Subject(s)
Forests , Photosynthesis , Plant Stomata , Temperature , Tropical Climate , Vapor Pressure , Photosynthesis/physiology , Plant Stomata/physiology , Trees/physiology , Panama
5.
Chemphyschem ; 25(14): e202400246, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38656666

ABSTRACT

In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568 ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.

6.
Plants (Basel) ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38592779

ABSTRACT

The accumulation of crystal calcium oxalate (CaOx) in plants is linked to a type of stress-induced photosynthesis termed 'alarm photosynthesis', serving as a carbon reservoir when carbon dioxide (CO2) exchange is constrained. Colobanthus quitensis is an extremophyte found from southern Mexico to Antarctica, which thrives in high-altitude Andean regions. Growing under common garden conditions, C. quitensis from different latitudinal provenances display significant variations in CaOx crystal accumulation. This raises the following questions: are these differences maintained under natural conditions? And is the CaOx accumulation related to mesophyll conductance (gm) and net photosynthesis (AN) performed in situ? It is hypothesized that in provenances with lower gm, C. quitensis will exhibit an increase in the use of CaOx crystals, resulting in reduced crystal leaf abundance. Plants from Central Chile (33°), Patagonia (51°), and Antarctica (62°) were measured in situ and sampled to determine gas exchange and CaOx crystal accumulation, respectively. Both AN and gm decrease towards higher latitudes, correlating with increases in leaf mass area and leaf density. The crystal accumulation decreases at higher latitudes, correlating positively with AN and gm. Thus, in provenances where environmental conditions induce more xeric traits, the CO2 availability for photosynthesis decreases, making the activation of alarm photosynthesis feasible as an internal source of CO2.

7.
Sci Total Environ ; 928: 172500, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631630

ABSTRACT

The physical and chemical properties of silver nanoparticles (AgNPs) have led to their increasing use in various fields such as medicine, food, and industry. Evidence has proven that AgNPs cause adverse effects in aquatic ecosystems, especially when the release of Ag is prolonged in time. Several studies have shown short-term adverse effects of AgNPs on freshwater phytoplankton, but few studies have analysed the impact of long-term exposures on these populations. Our studies were carried out to assess the effects of AgNPs on growth rate, photosynthesis activity, and reactive oxygen species (ROS) generation on the freshwater green algae Scenedesmus armatus and the cyanobacteria Microcystis aeruginosa, and additionally on microcystin (MC-LR) generation from these cyanobacteria. The tests were conducted both in single-species cultures and in phytoplanktonic communities exposed to 1 ngL-1 AgNPs for 28 days. The results showed that cell growth rate of both single-species cultures decreased significantly at the beginning and progressively reached control-like values at 28 days post-exposure. This effect was similar for the community-cultured cyanobacteria, but not for the green algae, which maintained a sustained decrease in growth rate. While gross photosynthesis (Pg) increased in both strains exposed in single cultures, dark respiration (R) and net photosynthesis (Pn) decreased in S. armatus and M. aeruginosa, respectively. These effects were mitigated when both strains were exposed under community culture conditions. Similarly, the ROS generation shown by both strains exposed in single-species cultures was mitigated when exposure occurred in community cultures. MC-LR production and release were significantly decreased in both single-species and community exposures. These results can supply helpful information to further investigate the potential risks of AgNPs and ultimately help policymakers make better-informed decisions about their utilization for environmental restoration.


Subject(s)
Fresh Water , Metal Nanoparticles , Microcystis , Phytoplankton , Scenedesmus , Silver , Water Pollutants, Chemical , Metal Nanoparticles/toxicity , Silver/toxicity , Phytoplankton/drug effects , Microcystis/drug effects , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Microcystins/toxicity , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism
9.
Plants (Basel) ; 13(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475480

ABSTRACT

Plant endogenous mechanisms are not always sufficient enough to mitigate drought stress, therefore, the exogenous application of elicitors, such as salicylic acid, is necessary. In this study, we assessed the mitigating action of salicylic acid (SA) in cowpea genotypes under drought conditions. An experiment was conducted with two cowpea genotypes and six treatments of drought stress and salicylic acid (T1 = Control, T2 = drought stress (stress), T3 = stress + 0.1 mM of SA, T4 = stress + 0.5 mM of SA, T5 = stress + 1.0 mM of SA, and T6 = stress + 2.0 mM of SA). Plants were evaluated in areas of leaf area, stomatal conductance, photosynthesis, proline content, the activity of antioxidant enzymes, and dry grain production. Drought stress reduces the leaf area, stomatal conductance, photosynthesis, and, consequently, the production of both cowpea genotypes. The growth and production of the BRS Paraguaçu genotype outcompetes the Pingo de Ouro-1-2 genotype, regardless of the stress conditions. The exogenous application of 0.5 mM salicylic acid to cowpea leaves increases SOD activity, decreases CAT activity, and improves the production of both genotypes. The application of 0.5 mM of salicylic acid mitigates drought stress in the cowpea genotype, and the BRS Paraguaçu genotype is more tolerant to drought stress.

10.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38498536

ABSTRACT

Maydis leaf blight (MLB), caused by the necrotrophic fungus Bipolaris maydis, has caused considerable yield losses in maize production. The hypothesis that maize plants with higher foliar silicon (Si) concentration can be more resistant against MLB was investigated in this study. This goal was achieved through an in-depth analysis of the photosynthetic apparatus (parameters of leaf gas exchange chlorophyll (Chl) a fluorescence and photosynthetic pigments) changes in activities of defense and antioxidative enzymes in leaves of maize plants with (+Si; 2 mM) and without (-Si; 0 mM) Si supplied, as well as challenged and not with B. maydis. The +Si plants showed reduced MLB symptoms (smaller lesions and lower disease severity) due to higher foliar Si concentration and less production of malondialdehyde, hydrogen peroxide, and radical anion superoxide compared to -Si plants. Higher values for leaf gas exchange (rate of net CO2 assimilation, stomatal conductance to water vapor, and transpiration rate) and Chl a fluorescence (variable-to-maximum Chl a fluorescence ratio, photochemical yield, and yield for dissipation by downregulation) parameters along with preserved pool of chlorophyll a+b and carotenoids were noticed for infected +Si plants compared to infected -Si plants. Activities of defense (chitinase, ß-1,3-glucanase, phenylalanine ammonia-lyase, polyphenoloxidase, peroxidase, and lipoxygenase) and antioxidative (ascorbate peroxidase, catalase, superoxide dismutase, and glutathione reductase) enzymes were higher for infected +Si plants compared to infected -Si plants. Collectively, this study highlights the importance of using Si to boost maize resistance against MLB considering the more operative defense reactions and the robustness of the antioxidative metabolism of plants along with the preservation of their photosynthetic apparatus.

11.
J Exp Bot ; 75(15): 4625-4640, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38364822

ABSTRACT

Foliar development involves successive phases of cell proliferation and expansion that determine the final leaf size, and is characterized by an early burst of reactive oxygen species generated in the photosynthetic electron transport chain (PETC). Introduction of the alternative PETC acceptor flavodoxin in tobacco chloroplasts led to a reduction in leaf size associated to lower cell expansion, without affecting cell number per leaf. Proteomic analysis showed that the biogenesis of the PETC proceeded stepwise in wild-type leaves, with accumulation of light-harvesting proteins preceding that of electron transport components, which might explain the increased energy and electron transfer to oxygen and reactive oxygen species build-up at this stage. Flavodoxin expression did not affect biogenesis of the PETC but prevented hydroperoxide formation through its function as electron sink. Mature leaves from flavodoxin-expressing plants were shown to contain higher levels of transcripts encoding components of the proteasome, a key negative modulator of organ size. Proteome profiling revealed that this differential accumulation was initiated during expansion and led to increased proteasomal activity, whereas a proteasome inhibitor reverted the flavodoxin-dependent size phenotype. Cells expressing plastid-targeted flavodoxin displayed lower endoreduplication, also associated to decreased organ size. These results provide novel insights into the regulation of leaf growth by chloroplast-generated redox signals, and highlight the potential of alternative electron shuttles to investigate the link(s) between photosynthesis and plant development.


Subject(s)
Chloroplasts , Nicotiana , Plant Leaves , Proteasome Endopeptidase Complex , Chloroplasts/metabolism , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/genetics , Proteasome Endopeptidase Complex/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/growth & development , Electron Transport , Photosynthesis , Flavodoxin/metabolism , Flavodoxin/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
12.
BMC Plant Biol ; 24(1): 146, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413850

ABSTRACT

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS: The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION: Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.


Subject(s)
Nanoparticles , Solanum lycopersicum , Titanium , Seedlings/metabolism , Chlorophyll/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Photosystem II Protein Complex/metabolism
13.
Chem Biodivers ; 21(4): e202301564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373281

ABSTRACT

The development of novel phytotoxic compounds has been an important aim of weed control research. In this study, we synthesized fluorinated chalcone derivatives featuring both electron-donating and electron-withdrawing groups. These compounds were evaluated both as inhibitors of the photosystem II (PSII) electron chain as well as inhibitors of the germination and seedling growth of Amaranthus plants. Chlorophyll a (Chl a) fluorescence assay was employed to evaluate their effects on PSII, while germination experiments were conducted to assess their impact on germination and seedling development. The results revealed promising herbicidal activity for (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (7 a) and (E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (7 e). Compounds 7 a and 7 e exhibited a reduction in Chl a parameters associated with performance indexes and electron transport per reaction center. This reduction suggests a decrease in PSII activity, attributed to the blockage of electron flow at the quinone pool. Molecular docking analyses of chalcone derivatives with the D1 protein of PSII revealed a stable binding conformation, wherein the carbonyl and fluorine groups interacted with Phe265 and His215 residues, respectively. Additionally, at a concentration of 100 µM, compound 7 e demonstrated pre- and post-emergent herbicidal activity, resulting in a reduction of the seed germination index, radicle and hypocotyl lengths of Amaranthus weeds.


Subject(s)
Amaranthus , Chalcones , Herbicides , Seedlings , Photosystem II Protein Complex , Chalcones/pharmacology , Molecular Docking Simulation , Growth Inhibitors/pharmacology , Chlorophyll A , Herbicides/chemistry , Plant Weeds , Chlorophyll
14.
Plant Cell Environ ; 47(5): 1865-1876, 2024 May.
Article in English | MEDLINE | ID: mdl-38334166

ABSTRACT

The response of plants to increasing atmospheric CO2 depends on the ecological context where the plants are found. Several experiments with elevated CO2 (eCO2) have been done worldwide, but the Amazonian forest understory has been neglected. As the central Amazon is limited by light and phosphorus, understanding how understory responds to eCO2 is important for foreseeing how the forest will function in the future. In the understory of a natural forest in the Central Amazon, we installed four open-top chambers as control replicates and another four under eCO2 (+250 ppm above ambient levels). Under eCO2, we observed increases in carbon assimilation rate (67%), maximum electron transport rate (19%), quantum yield (56%), and water use efficiency (78%). We also detected an increase in leaf area (51%) and stem diameter increment (65%). Central Amazon understory responded positively to eCO2 by increasing their ability to capture and use light and the extra primary productivity was allocated to supporting more leaf and conducting tissues. The increment in leaf area while maintaining transpiration rates suggests that the understory will increase its contribution to evapotranspiration. Therefore, this forest might be less resistant in the future to extreme drought, as no reduction in transpiration rates were detected.


Subject(s)
Carbon Dioxide , Photosynthesis , Photosynthesis/physiology , Forests , Electron Transport , Plant Leaves
15.
Recent Pat Biotechnol ; 18(1): 22-51, 2024.
Article in English | MEDLINE | ID: mdl-38205773

ABSTRACT

Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.


Subject(s)
Microalgae , Patents as Topic , Biotechnology , Environment
16.
Environ Sci Pollut Res Int ; 31(6): 9661-9670, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38194170

ABSTRACT

Manganese (Mn) is essential for plants but very toxic at high rates. However, hyperaccumulators can tolerate high Mn concentrations in plant tissue, especially when properly fertilized with N. Tanzania guinea grass (Megathyrsus maximus Jacq.) has been indicated as metal tolerant and a good candidate for Mn phytoextraction due to its fast growth and high biomass. The objective was to evaluate the Mn hyperaccumulator potential of Tanzania guinea grass grown as affected by proportions of nitrate/ammonium (NO3-/NH4+). An experiment in a growth chamber with nutrient solution, combining NO3-/NH4+ proportions (100/0 and 70/30) and Mn rates (10, 500, 1500, and 3000 µmol L-1), was carried out. The highest Mn concentration was verified in plants grown with 100/0 NO3-/NH4+ and Mn at 3000 µmol L-1, reaching up to 5500 and 21,187 mg kg-1 in shoots and roots, respectively, an overall concentration of 13,345 mg kg-1. These numbers are typically seen in hyperaccumulators. At that combination, Mn accumulation in shoots was also the highest, reaching up to 76.2 mg per pot, a phytoextraction rate of 23.1%. Excess Mn increased both H2O2 concentration in roots and non-photochemical quenching and therefore decreased net photosynthesis, stomatal conductance, electron transport rate, and photochemical quenching. Nevertheless, proline concentration in roots affected by excess Mn was high and indicates its important role for mitigating stress since Mn rates did not even affect the dry biomass. Tanzania guinea grass is highly tolerant to excess Mn as much as a hyperaccumulator. However, to show all its potential, the grass needs to be supplied with N as NO3-. We indicate Tanzania guinea grass as a Mn hyperaccumulator plant.


Subject(s)
Nitrates , Panicum , Nitrates/analysis , Manganese , Tanzania , Guinea , Hydrogen Peroxide , Plant Roots/chemistry
17.
J Plant Physiol ; 293: 154170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271894

ABSTRACT

Although significant efforts to produce carotenoid-enriched foods either by biotechnology or traditional breeding strategies have been carried out, our understanding of how changes in the carotenoid biosynthesis might affect overall plant performance remains limited. Here, we investigate how the metabolic machinery of well characterized tomato carotenoid mutant plants [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] adjusts itself to varying carotenoid biosynthesis and whether these adjustments are supported by a reprogramming of photosynthetic and central metabolism in the source organs (leaves). We observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded on the leaves, with an increase in levels of amino acids and reduction of organic acids. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato leaves metabolism to support changes in carotenoid biosynthesis on fruits (sinks). We discuss these data in the context of our current understanding of metabolic adjustments and carotenoid biosynthesis as well as regarding to improving human nutrition.


Subject(s)
Solanum lycopersicum , Humans , Solanum lycopersicum/genetics , Fruit/metabolism , Metabolic Reprogramming , Carotenoids/metabolism , Plants/metabolism , Plant Leaves/metabolism , Gene Expression Regulation, Plant
18.
J Exp Bot ; 75(7): 2013-2026, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38173309

ABSTRACT

One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.


Subject(s)
Photosynthesis , Plant Leaves , Temperature , Antarctic Regions , Plant Leaves/physiology , Photosynthesis/physiology , Plants
19.
Ecotoxicology ; 33(1): 104-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236330

ABSTRACT

Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities. To the best of our knowledge, there are no studies that investigated the combined effects of these metals on a freshwater Chlorophyceae. Therefore, this study analyzed the isolated and combined effects of Co and Ni in cell density, physiological and morphological parameters, reactive oxygen species (ROS), carbohydrates and photosynthetic parameters of the microalga Raphidocelis subcapitata. Data showed that Co affected the cell density from 0.25 mg Co L-1; the fluorescence of chlorophyll a (Chl a) (0.10 mg Co L-1); ROS production (0.50 mg Co L-1), total carbohydrates and efficiency of the oxygen evolving complex (OEC) at all tested concentrations; and the maximum quantum yield (ΦM) from 0.50 mg Co L-1. Ni exposure decreased ROS and cell density (0.35 mg Ni L-1); altered Chl a fluorescence and carbohydrates at all tested concentrations; and did not alter photosynthetic parameters. Regarding the Co-Ni mixtures, our data best fitted the concentration addition (CA) model and dose-ratio dependent (DR) deviation in which synergism was observed at low doses of Co and high doses of Ni and antagonism occurred at high doses of Co and low doses of Ni. The combined metals affected ROS production, carbohydrates, ΦM, OEC and morphological and physiological parameters.


Subject(s)
Chlorophyceae , Microalgae , Water Pollutants, Chemical , Humans , Nickel/toxicity , Chlorophyll A/pharmacology , Cobalt/toxicity , Reactive Oxygen Species , Metals , Carbohydrates/pharmacology , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
20.
Int J Radiat Biol ; 100(3): 445-452, 2024.
Article in English | MEDLINE | ID: mdl-38166555

ABSTRACT

PURPOSE: Evaluate the structural damage and the changes in the photosynthesis and transpiration rates of aquatic lirium leaves caused by ultrasound (US) irradiation in search of environmentally friendly methodologies for the control of this weed. MATERIALS AND METHODS: Aquatic lirium plants were extracted from Xochimilco water canals in Mexico City. A part of the group of plants was selected for irradiation, and the rest formed the control group. The irradiation plants group was exposed to US irradiation of 17 kHz frequency and 30 W × 4 output power for 2 h, at noon and 25 °C room temperature. The structural analysis was done with a MOTICAM 1 digital camera, 800 × 600 pixels, incorporated into the MOTIC PSM-1000 optical microscope and edited with Motic Images Plus 2.0 ML software. The total stomata density and the damaged stomata density were determined by dividing the numbers of total and damaged stomata by the visual field area (67,917 mm2), respectively. The leaves' photosynthesis and transpiration rates were measured using an LI-6400XT Portable Photosynthesis System. RESULTS: Significant damage was observed in the stomata and epidermal cells, finding that the average ratio between the damaged and total stomata densities as a function of time (days) showed an exponential increase described by a Box-Lucas equation with a saturation value near unity and a maximum rate of change of the density of damaged stomata on zero-day (immediately after irradiation), decreasing as the days go by. The transpiration rate showed a sudden increase during the first hour after irradiation, reaching a maximum of 36% of its value before irradiation. It then quickly fell during the next 6 days and more slowly until the 21st day, decreasing 79.9% of its value before irradiation. The photosynthetic rate showed similar behavior with a 37.7% maximum increment and a 73.6% minimum decrease of its value before irradiation. CONCLUSIONS: The results of structural stomata damage on the ultrasound-irradiated aquatic lirium leaves are consistent with an excessive ultrasound stimulation on stomata's mechanical operation by guard cells that produce the measured significant increase of the photosynthetic and transpiration rates during the first hour after irradiation. The initial high evaporation could alter the water potential gradient, with a possible generation of tensions in the xylem that could cause embolism in their conduits. The loss of xylem conductivity or hydraulic failure would be consistent with the observed significant fall in the photosynthesis and transpiration rates of the aquatic lirium leaves after its sudden rise in the first hour after irradiation.


Subject(s)
Plant Stomata , Plant Transpiration , Plant Stomata/physiology , Plant Transpiration/physiology , Photosynthesis , Plant Leaves , Water
SELECTION OF CITATIONS
SEARCH DETAIL