Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
BMC Microbiol ; 23(1): 61, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882692

ABSTRACT

Glyphosate is a herbicide widely used in food production that blocks the synthesis of aromatic amino acids in plants and in microorganisms and also induces the accumulation of the alarmone (p)ppGpp. The purpose of this study was to investigate whether glyphosate affects the resistance, tolerance or persistence of bacteria towards three different classes of antibiotics and the possible role of (p)ppGpp in this activity. Glyphosate did not affect the minimum inhibitory concentration of the tested antibiotics, but enhanced bacterial tolerance and/or persistence towards them. The upshift in ciprofloxacin and kanamycin tolerance was partially dependent on the presence of relA that promotes (p)ppGpp accumulation in response to glyphosate. Conversely, the strong increase in ampicillin tolerance caused by glyphosate was independent of relA. We conclude that by inducing aromatic amino acid starvation glyphosate contributes to the temporary increase in E. coli tolerance or persistence, but does not affect antibiotic resistance.


Subject(s)
Escherichia coli , Guanosine Pentaphosphate , Escherichia coli/genetics , Drug Resistance, Microbial , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Glyphosate
2.
Clin Transl Oncol ; 24(2): 244-253, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34236615

ABSTRACT

BACKGROUND: Bacterial-mediated cancer immunotherapy (BCI) elicits a more robust initial immune response than conventional immunotherapy, but does not prevent tumor recurrence and metastasis. BCI is associated with recruitment of tumor-infiltrating neutrophils, which could suppress the therapeutic efficacy of this modality. Development endothelial locus 1 (Del-1), a potent inhibitor of neutrophil recruitment, antagonizes lymphocyte function-associated antigen-1 on the vascular endothelium. Here, we aimed to determine the effect of Del-1-secreting S.t△ppGpp on anti-tumor activity and tumor-infiltrating neutrophil recruitment in a mouse model of colon cancer. METHODS: We investigated the anti-cancer activity of Del-1-secreting engineered Salmonella (△ppGpp S. Typhimurium) in the mice colon cancer models. RESULTS: In the present study, we identified that Del-1-secreting engineered Salmonella had more potent anti-cancer activity compared with normal S.t△ppGpp without Del-1 secretion. We postulated that Del-1 expression increased M1 macrophage recruitment to tumors by decreasing tumor-infiltrating neutrophils. This approach could enhance the anti-cancer effects of S.t△ppGpp. CONCLUSIONS: Collectively, the approach of using engineered bacteria that deliver Del-1 to block tumor-infiltrating neutrophil recruitment is a potential therapeutic approach.


Subject(s)
Biological Therapy/methods , Calcium-Binding Proteins/physiology , Cell Adhesion Molecules/physiology , Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Neutrophil Infiltration , Salmonella typhimurium , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Treatment Outcome
3.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34590996

ABSTRACT

The S. Typhi leuO gene, which codes for the LysR-type transcriptional regulator LeuO, contains five forward promoters named P3, P1, P2, P5 and P4, and two reverse promoters, P6 and P7. The activity of the forward promoters was revealed by primer extension using gene reporter fusions in an S. Typhi hns lrp mutant strain. Likewise, the activity of the reverse promoters was revealed in an hns background. Derepression of the transcription of the chromosomal gene was confirmed by RT-PCR in the hns lrp mutant. The leuOP1 transcriptional reporter fusion, which contained only the major P1 promoter, had a lower expression in a relA spoT mutant strain, indicating that the steady-state levels of the (p)ppGpp alarmone positively regulate it. In contrast, the leuOP3, leuOP5P4, leuOP6 and leuOP7 transcriptional fusions were derepressed in the relA spoT background, indicating that the alarmone has a negative effect on their expression. Thus, the search for genetic regulators and environmental cues that would differentially derepress leuO gene expression by antagonizing the action of the H-NS and Lrp nucleoid-associated proteins, or that would fine-tune the expression of the various promoters, will further our understanding of the significance that multiple promoters have in the control of LeuO expression.


Subject(s)
Bacterial Proteins/genetics , Promoter Regions, Genetic , Salmonella typhi/genetics , Transcription Factors/genetics , Promoter Regions, Genetic/genetics , Promoter Regions, Genetic/physiology , RNA, Bacterial/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
4.
Front Microbiol ; 11: 1759, 2020.
Article in English | MEDLINE | ID: mdl-32903406

ABSTRACT

(p)ppGpp is at the core of global bacterial regulation as it controls growth, the most important aspect of life. It would therefore be expected that at least across a species the intrinsic (basal) levels of (p)ppGpp would be reasonably constant. On the other hand, the historical contingency driven by the selective pressures on bacterial populations vary widely resulting in broad genetic polymorphism. Given that (p)ppGpp controls the expression of many genes including those involved in the bacterial response to environmental challenges, it is not surprising that the intrinsic levels of (p)ppGpp would also vary considerably. In fact, null mutations or less severe genetic polymorphisms in genes associated with (p)ppGpp synthesis and hydrolysis are common. Such variation can be observed in laboratory strains, in natural isolates as well as in evolution experiments. High (p)ppGpp levels result in low growth rate and high tolerance to environmental stresses. Other aspects such as virulence and antimicrobial resistance are also influenced by the intrinsic levels of (p)ppGpp. A case in point is the production of Shiga toxin by certain E. coli strains which is inversely correlated to (p)ppGpp basal level. Conversely, (p)ppGpp concentration is positively correlated to increased tolerance to different antibiotics such as ß-lactams, vancomycin, and others. Here we review the variations in intrinsic (p)ppGpp levels and its consequences across the E. coli species.

5.
Microbiology (Reading) ; 166(8): 735-750, 2020 08.
Article in English | MEDLINE | ID: mdl-32496187

ABSTRACT

Pseudomonas aeruginosa, a versatile bacterium present in terrestrial and aquatic environments and a relevant opportunistic human pathogen, is largely known for the production of robust biofilms. The unique properties of these structures complicate biofilm eradication, because they make the biofilms very resistant to diverse antibacterial agents. Biofilm development and establishment is a complex process regulated by multiple regulatory genetic systems, among them is quorum sensing (QS), a mechanism employed by bacteria to regulate gene transcription in response to population density. In addition, environmental factors such as UVA radiation (400-315 nm) have been linked to biofilm formation. In this work, we further investigate the mechanism underlying the induction of biofilm formation by UVA, analysing the role of QS in this phenomenon. We demonstrate that UVA induces key genes of the Las and Rhl QS systems at the transcriptional level. We also report that pelA and pslA genes, which are essential for biofilm formation and whose transcription depends in part on QS, are significantly induced under UVA exposure. Finally, the results demonstrate that in a relA strain (impaired for ppGpp production), the UVA treatment does not induce biofilm formation or QS genes, suggesting that the increase of biofilm formation due to exposure to UVA in P. aeruginosa could rely on a ppGpp-dependent QS induction.


Subject(s)
Biofilms/radiation effects , Pseudomonas aeruginosa/physiology , Quorum Sensing/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/genetics , 4-Butyrolactone/metabolism , Biofilms/growth & development , Gene Expression Regulation, Bacterial/radiation effects , Genes, Bacterial/genetics , Guanosine Tetraphosphate/genetics , Guanosine Tetraphosphate/metabolism , Mutation , Polysaccharides, Bacterial/genetics , Polysaccharides, Bacterial/metabolism , Pseudomonas aeruginosa/radiation effects , Quorum Sensing/genetics , Quorum Sensing/radiation effects , Transcription, Genetic/radiation effects , Ultraviolet Rays
6.
Front Microbiol ; 10: 381, 2019.
Article in English | MEDLINE | ID: mdl-30899248

ABSTRACT

Cyclic and linear nucleotides are key elements of the signal transduction networks linking perception of the environment to specific cellular behavior of prokaryotes. These molecular mechanisms are particularly important in bacteria exposed to different, and frequently simultaneous, types of extreme conditions. This is the case in acidithiobacilli, a group of extremophilic bacteria thriving in highly acidic biotopes, that must also cope with significant variations in temperature, osmotic potentials and concentrations of various transition metals and metalloids. Environmental cues sensed by bacteria are transduced into differential levels of nucleotides acting as intracellular second messengers, promoting the activation or inhibition of target components and eliciting different output phenotypes. Cyclic (c) di-GMP, one of the most common bacterial second messengers, plays a key role in lifestyle changes in many bacteria, including acidithiobacilli. The presence of functional c-di-GMP-dependent signal transduction pathways in representative strains of the best-known linages of this species complex has been reported. However, a comprehensive panorama of the c-di-GMP modulated networks, the cognate input signals and output responses, are still missing for this group of extremophiles. Moreover, little fundamental understanding has been gathered for other nucleotides acting as second messengers. Taking advantage of the increasing number of sequenced genomes of the taxon, here we address the challenge of disentangling the nucleotide-driven signal transduction pathways in this group of polyextremophiles using comparative genomic tools and strategies. Results indicate that the acidithiobacilli possess all the genetic elements required to establish functional transduction pathways based in three different nucleotide-second messengers: (p)ppGpp, cyclic AMP (cAMP), and c-di-GMP. The elements related with the metabolism and transduction of (p)ppGpp and cAMP appear highly conserved, integrating signals related with nutrient starvation and polyphosphate metabolism, respectively. In contrast, c-di-GMP networks appear diverse and complex, differing both at the species and strain levels. Molecular elements of c-di-GMP metabolism and transduction were mostly found scattered along the flexible genome of the acidithiobacilli, allowing the identification of probable control modules that could be critical for substrate colonization, biofilm development and intercellular interactions. These may ultimately convey increased endurance to environmental stress and increased potential for gene sharing and adaptation to changing conditions.

7.
Mol Genet Genomics ; 294(1): 191-198, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30284619

ABSTRACT

Glyphosate, the most widely used herbicide in both agricultural and urban areas is toxic for plants and for many bacterial species. The mechanism of action of glyphosate is through the inhibition of the EPSP synthase, a key enzyme in the biosynthetic pathway of aromatic amino acids. Here we show that glyphosate induces the stringent response in Escherichia coli. Bacteria treated with glyphosate stop growing and accumulate ppGpp. Both growth arrest and ppGpp accumulation are restored to normal levels upon addition of aromatic amino acids. Glyphosate-induced ppGpp accumulation is dependent on the presence of the (p)ppGpp synthetase RelA. However, unlike other cases of amino acid starvation, pppGpp could not be discerned. In a gppA background both ppGpp and pppGpp accumulated when exposed to glyphosate. Conversely, the wild-type strain and gppA mutant treated with serine hydroxamate accumulated high levels of both ppGpp and pppGpp. Altogether, the data indicate that glyphosate induces amino acid starvation resulting in a moderate accumulation of ppGpp and a reversible stringent response.


Subject(s)
Escherichia coli/drug effects , Glycine/analogs & derivatives , Guanosine Tetraphosphate/biosynthesis , Amino Acids, Aromatic/pharmacology , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Proteins , Glycine/pharmacology , Ligases/genetics , Ligases/metabolism , Mutation , Serine/analogs & derivatives , Serine/pharmacology , Glyphosate
8.
Article in English | MEDLINE | ID: mdl-31998656

ABSTRACT

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, a systemic infection of salmonid fish species. P. salmonis infects and survives in its host cell, a process that correlates with the expression of virulence factors including components of the type IVB secretion system. To gain further insights into the cellular and molecular mechanism behind the adaptive response of P. salmonis during host infection, we established an in vitro model of infection using the SHK-1 cell line from Atlantic salmon head kidney. The results indicated that in comparison to uninfected SHK-1 cells, infection significantly decreased cell viability after 10 days along with a significant increment of P. salmonis genome equivalents. At that time, the intracellular bacteria were localized within a spacious cytoplasmic vacuole. By using a whole-genome microarray of P. salmonis LF-89, the transcriptome of this bacterium was examined during intracellular growth in the SHK-1 cell line and exponential growth in broth. Transcriptome analysis revealed a global shutdown of translation during P. salmonis intracellular growth and suggested an induction of the stringent response. Accordingly, key genes of the stringent response pathway were up-regulated during intracellular growth as well as at stationary phase bacteria, suggesting a role of the stringent response on bacterial virulence. Our results also reinforce the participation of the Dot/Icm type IVB secretion system during P. salmonis infection and reveals many unexplored genes with potential roles in the adaptation to intracellular growth. Finally, we proposed that intracellular P. salmonis alternates between a replicative phase and a stationary phase in which the stringent response is activated.


Subject(s)
Macrophages/microbiology , Piscirickettsia/metabolism , Piscirickettsiaceae Infections/microbiology , Salmon/microbiology , Transcriptome , Animals , Bacterial Secretion Systems , Cell Line , Cell Survival , Cytoplasm/microbiology , Fish Diseases/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genome, Bacterial , Kidney , Macrophages/metabolism , Piscirickettsia/genetics , Piscirickettsia/growth & development , Piscirickettsia/pathogenicity , Virulence Factors
9.
Article in English | MEDLINE | ID: mdl-30170292

ABSTRACT

A fast and facile hydrophilic interaction liquid chromatography (HILIC) method was developed and applied to quantify physiologically important ppGpp and its analogues in a tough sample, the astaxanthin-accumulating alga Hameatococcus pluvialis. The method is able to analyze simultaneously seven nucleotides, including ppGpp at the order of pmol g-1 cells within 12 min. Mechanism on the elution order was investigated. It was found that 1) phosphate salt competed for the amide groups on the HILIC column with the phosphate groups of the nucleotides; 2) intramolecular hydrogen bonds might contribute to the elution order by offsetting and reducing the number of free hydrogen acceptor/donor of the nucleotide molecules interacting with the amide groups. This is the first HILIC method for ppGpp, which is feasible and applicable to a wide range of samples, especially tough samples, e.g., algae and plants.


Subject(s)
Chromatography, High Pressure Liquid/methods , Guanosine Tetraphosphate/analysis , Volvocida/chemistry , Acetonitriles , Guanosine Tetraphosphate/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results
10.
Epidemiol Infect ; 145(11): 2204-2211, 2017 08.
Article in English | MEDLINE | ID: mdl-28587697

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is a known food pathogen, which main reservoir is the intestine of ruminants. The abundance of different STEC lineages in nature reflect a heterogeneity that is characterised by the differential expression of certain genotypic characteristics, which in turn are influenced by the environmental conditions to which the microorganism is exposed. Bacterial homeostasis and stress response are under the control of the alarmone guanosine tetraphosphate (ppGpp), which intrinsic levels varies across the E. coli species. In the present study, 50 STEC isolates from healthy sheep were evaluated regarding their ppGpp content, cytotoxicity and other relevant genetic and phenotypic characteristics. We found that the level of ppGpp and cytotoxicity varied considerably among the examined strains. Isolates that harboured the stx2 gene were the least cytotoxic and presented the highest levels of ppGpp. All stx2 isolates belonged to phylogroup A, while strains that carried stx1 or both stx1 and stx2 genes pertained to phylogroup B1. All but two stx2 isolates belonged to the stx2b subtype. Strains that belonged to phylogroup B1 displayed on average low levels of ppGpp and high cytotoxicity. Overall, there was a negative correlation between cytotoxicity and ppGpp.


Subject(s)
Guanosine Pentaphosphate/metabolism , Guanosine Tetraphosphate/metabolism , Sheep Diseases/microbiology , Sheep/microbiology , Shiga-Toxigenic Escherichia coli/genetics , Virulence Factors/genetics , Animals , Disease Reservoirs , Escherichia coli Infections/microbiology , Genetic Variation , Sheep Diseases/epidemiology , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/immunology , Shiga-Toxigenic Escherichia coli/isolation & purification
11.
São Paulo; s.n; s.n; 2017. 106 p. tab, ilus, graf.
Thesis in Portuguese | LILACS | ID: biblio-883613

ABSTRACT

Seja no meio ambiente, dentro de um hospedeiro ou em outro habitat, bactérias estarão frequentemente enfrentando condições adversas, como exposição a compostos antibacterianos ou carência nutricional. Em situações como essas, as bactérias são capazes de ativar a chamada resposta estringente, modulada pelo alarmônio (p)ppGpp. O acúmulo de (p)ppGpp promove a inibição da transcrição de rRNAs e tRNAs e a supressão do processo de tradução, e a ativação de operons de biossíntese de aminoácidos. Sabe-se também hoje que a resposta estringente está relacionada a outras importantes carências nutricionais em Escherichia coli, como a falta de ácidos graxos, porém não se sabe se o mesmo ocorre em Bacillus subtilis ou em outras Grampositivas. (p)ppGpp atua também direta e indiretamente em vários outros processos celulares, como motilidade, resistência a antibióticos, virulência e persistência, indicando que (p)ppGpp é um regulador central que integra informação metabólica e respostas adaptativas. O presente trabalho buscou estudar a correlação da resposta estringente de B. subtilis com a carência de ácidos graxos e a busca por pequenas moléculas capazes de modular RelA (a principal proteína envolvida na síntese de (p)ppGpp) e impedir o acúmulo de (p)ppGpp. Para a indução da carência de ácidos graxos, foram utilizadas duas estratégias; uso da droga Cerulenina (inibidor de FabF) e mutantes condicionais no gene FabF. Observou-se que mutantes incapazes de ativar a resposta estringente (cepa ppGpp(0) ou RelAD264G) apresentaram grande perda de viabilidade celular durante a carência de ácidos graxos, ao passo que a cepa selvagem manteve sua viabilidade celular. A causa da morte se deu majoritariamente devido ao colapso do potencial de membrana. Apesar de não termos observado aumento de (p)ppGpp nas células selvagens durante a carência de ácidos graxos, observou-se uma redução da razão GTP/ATP, ao passo que na cepa ppGpp(0), a razão GTP/ATP aumentou, devido ao acúmulo de GTP. O uso da droga decoinina, capaz de reduzir os níveis intracelulares de GTP, resgatou parcialmente a viabilidade da cepa e impediu a perda do potencial de membrana, indicando que os níveis de GTP são importantes durante a carência de ácidos graxos em B. subtilis. Para a triagem de pequenas moléculas inibidoras do acúmulo de (p)ppGpp, foi utilizada uma biblioteca de 2320 diferentes compostos químicos, e buscou-se drogas capazes de reverter o fenótipo de crescimento lento de cepas de B. subtilis que acumulam (p)ppGpp (via mutação pontual; mutante RelAH77A e via tratamento com o indutor hidroxamato de arginina) em meio rico. A primeira etapa selecionou 40 moléculas capazes de resgatar o crescimento de células tratadas com arginina-hidroxamato, porém apenas uma, salicilanilida, foi capaz de também resgatar o crescimento da cepa RelAH77A. Todavia, apesar de ser capaz de acelerar o crescimento de B. subtilis esse efeito é limitado. Diversos análogos de salicilanilida foram testados, porém não apresentaram efeito superior a salicilanilida para a reversão do fenótipo de crescimento lento de B. subtilis. Em adição, a droga não foi capaz de aumentar a sensibilidade dos organismos a diversos antibióticos testados, e aparentemente é incapaz de alterar os níveis internos de (p)ppGpp, porém é capaz de causar alterações nos níveis de ATP. Logo, acredita-se que o efeito observado para o crescimento das células seja devido a efeitos indiretos, possivelmente envolvendo alteração de outros nucleotídeos fosforilados


In the environment, inside a host or other habitat, bacteria will always face adverse conditions, as for example exposure to antimicrobials or starvation. In situations like those, bacteria activate the stringent response, modulated by the alarmone (p)ppGpp. (p)ppGpp accumulation promotes inhibition of rRNA and tRNA transcription and suppression of translational process, at the same time that it activates several amino acid biosynthesis operons. It is known also that the stringent response it is related to other starvation stress in Escherichia coli, like lack of fatty acids, but there is no knowledge if the same occurs for Bacillus subtilis or other gram-positive bacteria. ppGpp acts directly and indirectly affecting several other cellular process, as motility, resistance to antibiotics, virulence and persistence, indicating that (p)ppGpp is a central regulator that integrates metabolic information and adaptive responses. This work aimed to study the correlation between the stringent response in B. subtilis with fatty acid starvation, and search for small moleculas capable of modulating RelA (the main enzyme responsible for ppGpp synthesis) and stop (p)ppGpp production. For fatty acid starvation induction, two strategies were used; use of the drug Cerulenin (inhibitor of the FabF protein) and conditional mutants of the FabF gene. We observed that mutants incapable of activating the stringent response (strains ppGpp(0) ou RelAD264G) presented great loss of viability during fatty acid starvation, whereas the wild-type strain keeps its viability. The main cause of death is due membrane rupture in some cells, but mainly due to membrane potential collapse. Although we did not observed increase of (p)ppGpp in wild-type strains during fatty acid starvation, we observed reduction in GTP/ATP ratios, a hallmark of (p)ppGpp production in gram-positive bacteria. In the strain ppGpp(0) GTP/ATP ratio increased, mainly due to GTP increase. Using the drug decoyinine, capable of reducing GTP levels, partially recued viability and protects cells of losing its membrane potential, indicating that GTP levels plays an important role during fatty acid starvation in B. subtilis. For the screening of small molecules capable of inhibit (p)ppGpp production, a library of 2320 different chemical compounds were used, and we looked for drugs capable of reverting the slow growth phenotype of B. subtilis strains with (p)ppGpp accumulation (using a mutant RelAH77A; and using a stringent response inductor, arginine hidroxamate). The first step selected for 40 molecules capable of rescuing the growth of cells treated with arginine hidroxamate, but only one drug, salicilanilyde could also rescue the growth of the strain RelAH77A. Although capable of rescuing growth of B. subtilis that accumulates (p)ppGpp, this rescue is limited. Several analogues of salicilanilyde were tested, but none were stronger than salicilanilyde itself in rescuing growth of slow growing strains of B. subtilis. In addition, the drug was not capable of increasing antibiotic sensibility and it is incapable of changing intracellular (p)ppGpp levels, but it does shifts ATP levels. Therefore, we believe that the observed effects of salicilanilyde is due indirect action, probably involving other phosphorylated nucleotides, rather than modifying (p)ppGpp levels


Subject(s)
Bacillus subtilis/metabolism , Transcription Factor RelA , Salicylanilides/administration & dosage , Microbial Sensitivity Tests/methods , Cerulenin/administration & dosage , Triage , Chromatography, High Pressure Liquid , Fatty Acids/analysis , Microscopy, Fluorescence/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL