Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154.731
Filter
1.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003073

ABSTRACT

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Subject(s)
Drinking Water , Drug Resistance, Microbial , Metagenomics , Drug Resistance, Microbial/genetics , Drinking Water/microbiology , China , Environmental Monitoring , Anti-Bacterial Agents/pharmacology , Water Microbiology
2.
Biomaterials ; 313: 122804, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39236631

ABSTRACT

Insulin resistance and pancreatic ß-cell dysfunction are the main pathogenesis of type 2 diabetes mellitus (T2DM). However, insulin therapy and diabetes medications do not effectively solve the two problems simultaneously. In this study, a biomimetic oral hydrogen nanogenerator that leverages the benefits of edible plant-derived exosomes and hydrogen therapy was constructed to overcome this dilemma by modulating gut microbiota and ameliorating oxidative stress and inflammatory responses. Hollow mesoporous silica (HMS) nanoparticles encapsulating ammonia borane (A) were used to overcome the inefficiency of H2 delivery in traditional hydrogen therapy, and exosomes originating from ginger (GE) were employed to enhance biocompatibility and regulate intestinal flora. Our study showed that HMS/A@GE not only considerably ameliorated insulin resistance and liver steatosis, but inhibited the dedifferentiation of islet ß-cell and enhanced pancreatic ß-cell proportion in T2DM model mice. In addition to its antioxidant and anti-inflammatory effects, HMS/A@GE augmented the abundance of Lactobacilli spp. and tryptophan metabolites, such as indole and indole acetic acid, which further activated the AhR/IL-22 pathway to improve intestinal-barrier function and metabolic impairments. This study offers a potentially viable strategy for addressing the current limitations of diabetes treatment by integrating gut-microbiota remodelling with antioxidant therapies.


Subject(s)
Antioxidants , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Insulin-Secreting Cells , Nanoparticles , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Antioxidants/pharmacology , Gastrointestinal Microbiome/drug effects , Nanoparticles/chemistry , Mice , Male , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Mice, Inbred C57BL , Zingiber officinale/chemistry , Silicon Dioxide/chemistry , Exosomes/metabolism , Biomimetics/methods , Oxidative Stress/drug effects
3.
Clin Chim Acta ; 564: 119948, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39214396

ABSTRACT

Chronic renal failure (CRF) is an incurable disease with unique challenges. Anemia is a frequent complication affecting dialysis patients. Erythropoietin (EPO) is used to treat anemia, but a poor response may result. We investigated genetic polymorphisms of store-operated calcium channel (SOC) signaling, an important erythropoietin-activated pathway that may induce EPO resistance in patients with renal failure. A total of 108 end stage renal disease (ESRD) patients were selected for this study. Patients were divided into two groups according to their erythropoietin resistance index (ERI): 39 patients with an ERI>10 and 69 patients with an ERI<10. We selected four tagging single nucleotide polymorphisms (tSNPs) in STIM1 and five in ORAI1 in our study. A polymerase chain reaction was performed, and genotyping against EPO resistance was correlated. Patients with the AG genotype of rs1561876 in STIM1, the TC genotype of rs6486795 in ORAI1, and the TG or GG genotypes of rs12320939 in ORAI1 were associated with an increased risk of erythropoietin resistance. Overall, we reported a moderately significant relationship between genetic polymorphisms of STIM1 and EPO resistance. We also reported a highly significant relationship between genetic polymorphisms of ORAI1 and EPO resistance. The (A-A-G) haplotype of STIM1 and the (G-T-G-T-A, G-C-G-C-G, or G-T-T-C-G) haplotypes of ORAI1 were significantly associated with EPO resistance.


Subject(s)
Erythropoietin , Kidney Failure, Chronic , Neoplasm Proteins , ORAI1 Protein , Polymorphism, Single Nucleotide , Stromal Interaction Molecule 1 , Humans , Stromal Interaction Molecule 1/genetics , Egypt , Kidney Failure, Chronic/genetics , Male , Erythropoietin/genetics , Female , ORAI1 Protein/genetics , Middle Aged , Neoplasm Proteins/genetics , Adult , Drug Resistance/genetics
4.
Methods Mol Biol ; 2852: 211-222, 2025.
Article in English | MEDLINE | ID: mdl-39235747

ABSTRACT

Unveiling the strategies of bacterial adaptation to stress constitute a challenging area of research. The understanding of mechanisms governing emergence of resistance to antimicrobials is of particular importance regarding the increasing threat of antibiotic resistance on public health worldwide. In the last decades, the fast democratization of sequencing technologies along with the development of dedicated bioinformatical tools to process data offered new opportunities to characterize genomic variations underlying bacterial adaptation. Thereby, research teams have now the possibility to dive deeper in the deciphering of bacterial adaptive mechanisms through the identification of specific genetic targets mediating survival to stress. In this chapter, we proposed a step-by-step bioinformatical pipeline enabling the identification of mutational events underlying biocidal stress adaptation associated with antimicrobial resistance development using Escherichia marmotae as an illustrative model.


Subject(s)
Computational Biology , Genome, Bacterial , Genomics , Mutation , Genomics/methods , Computational Biology/methods , Bacteria/genetics , Bacteria/drug effects , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Software , High-Throughput Nucleotide Sequencing/methods
5.
Methods Mol Biol ; 2852: 289-309, 2025.
Article in English | MEDLINE | ID: mdl-39235751

ABSTRACT

Next-generation sequencing revolutionized food safety management these last years providing access to a huge quantity of valuable data to identify, characterize, and monitor bacterial pathogens on the food chain. Shotgun metagenomics emerged as a particularly promising approach as it enables in-depth taxonomic profiling and functional investigation of food microbial communities. In this chapter, we provide a comprehensive step-by-step bioinformatical workflow to characterize bacterial ecology and resistome composition from metagenomic short-reads obtained by shotgun sequencing.


Subject(s)
Bacteria , Computational Biology , Food Microbiology , High-Throughput Nucleotide Sequencing , Metagenomics , Metagenomics/methods , Computational Biology/methods , Food Microbiology/methods , Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , Metagenome , Microbiota/genetics
6.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095190

ABSTRACT

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Subject(s)
Graphite , Oxidation-Reduction , Platinum , Sulfur Dioxide , Titanium , Titanium/chemistry , Graphite/chemistry , Sulfur Dioxide/chemistry , Platinum/chemistry , Catalysis , Carbon Monoxide/chemistry , Water/chemistry , Air Pollutants/chemistry , Models, Chemical
7.
Biomaterials ; 313: 122800, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39241551

ABSTRACT

The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.


Subject(s)
Durapatite , Osseointegration , Titanium , Titanium/chemistry , Durapatite/chemistry , Animals , Osseointegration/drug effects , Rabbits , Osteogenesis/drug effects , Corrosion , Mice , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Differentiation/drug effects
8.
Biomaterials ; 313: 122814, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39243672

ABSTRACT

Radiotherapy as a mainstay of in-depth cervical cancer (CC) treatment suffers from its radioresistance. Radiodynamic therapy (RDT) effectively reverses radio-resistance by generating reactive oxygen species (ROS) with deep tissue penetration. However, the photosensitizers stimulated by X-ray have high toxicity and energy attenuation. Therefore, X-ray responsive diselenide-bridged mesoporous silica nanoparticles (DMSNs) are designed, loading X-ray-activated photosensitizer acridine orange (AO) for spot blasting RDT like Trojan-horse against radio-resistance cervical cancer (R-CC). DMSNs can encapsulate a large amount of AO, in the tumor microenvironment (TME), which has a high concentration of hydrogen peroxide, X-ray radiation triggers the cleavage of diselenide bonds, leading to the degradation of DMSNs and the consequent release of AO directly at the tumor site. On the one hand, it solves the problems of rapid drug clearance, adverse distribution, and side effects caused by simple AO treatment. On the other hand, it fully utilizes the advantages of highly penetrating X-ray responsive RDT to enhance radiotherapy sensitivity. This approach results in ROS-induced mitochondria damage, inhibition of DNA damage repair, cell cycle arrest and promotion of cancer cell apoptosis in R-CC. The X-ray responsive DMSNs@AO hold considerable potential in overcoming obstacles for advanced RDT in the treatment of R-CC.


Subject(s)
Nanoparticles , Silicon Dioxide , Humans , Animals , X-Rays , Nanoparticles/chemistry , Female , Silicon Dioxide/chemistry , Mice , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Reactive Oxygen Species/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Radiation Tolerance/drug effects , Tumor Microenvironment/drug effects , Mice, Nude , HeLa Cells , Mice, Inbred BALB C , Apoptosis/drug effects , Cell Line, Tumor
9.
J Environ Sci (China) ; 150: 422-431, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306417

ABSTRACT

In recent years, the biodegradable plastics has extensively used in industry, agriculture, and daily life. Herein, the effects of two biodegradable microplastics (BMPs), poly(butyleneadipate-co-terephthalate) (PBAT) and polyhydroxyalkanoate (PHA), on soil sulfamethoxazole (SMX) degradation and sul genes development were comparatively studied based on the type, dosage, and state. The addition of virgin BMPs significantly increased soil DOC following a sequential order PBAT > PHA and high dose > low dose. Meanwhile virgin PBAT significantly reduced soil pH. In general, the addition of BMPs not only promoted soil SMX degradation but also increased the abundance of sul genes, with an exception that pH reduction in virgin PBAT inhibited the proliferation of sul genes. The driving effects of BMPs on soil microbial diversity following the same order as that on DOC. Specific bacteria stimulated by BMPs, such as Arthrobacter and two genera affiliated with phylum TM7, accounted for the accelerated degradation of SMX. Intriguingly, UV-aging hindered the release of DOC from BMPs and the reduction in pH, mitigated the stimulation of microbial communities, and ultimately reduced the promotion effect of BMPs on SMX degradation and sul genes proliferation. Our results suggest that more attention should be paid to the proliferation risk of ARGs in the environment affected by BMPs and UV-aging can be employed sometimes to reduce this risk.


Subject(s)
Biodegradation, Environmental , Soil Microbiology , Soil Pollutants , Soil , Sulfamethoxazole , Sulfamethoxazole/toxicity , Soil/chemistry , Microplastics/toxicity , Ultraviolet Rays , Biodegradable Plastics
10.
Noncoding RNA Res ; 10: 130-139, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39385998

ABSTRACT

Cancer cell drug resistance hinders significantly therapeutic modalities in oncology. Dacarbazine is chemotherapeutic agent traditionally used for melanoma treatment although it's effectiveness insufficient. In the present study we performed NGS-based transcriptomic profiling of B16 melanoma tumors after Dacarbazine treatment in vivo. Whole transcriptome sequencing revealed 34 differentially expressed genes most of them associated with drug resistance and apoptosis evading. In accordance to bionformatic analysis, 6 signaling cascades: "D-Amino acid metabolism", "NF-kappa B signaling pathway", "Phosphatidylinositol signaling system", "P53 signaling pathway", "IL-17 signaling pathway" and "Bile secretion" were enriched by differentially expressed genes. Next we provided a combined treatment by Dacarbazine and miR-204-5p mimic as miR-204-5p was considered previously implicated in cancer drug resistance. This approach lead to an increase of miR-204-5p expression in B16 melanoma cells in vivo that was accompanied by subsequent decrease in the expression of miR-204-5p target genes - BCL2 and SIRT1 in the primary tumors. MiR-204-5p overexpression with Dacarbazine application resulted in increased the weight, and volume of primary tumors and diminished the proportion of ß-Galactosidase expression in melanoma B16-bearing mice. Taking together, our study revealed that although miR-204-5p showed antiproliferative capacities in vitro, it's mimic in combination with Dacarbazine is able to potentiate tumor growth triggering probably a switch from senescent to proliferative phenotype of malignant cells.

11.
J Colloid Interface Sci ; 677(Pt B): 523-540, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39154445

ABSTRACT

Co-delivering multiple drugs or circumventing the drug efflux mechanism can significantly decrease multidrug resistance (MDR), a major cause of cancer treatment failure. In this study, we designed and fabricated a universal "three-in-one" self-delivery system for synergistic cancer therapy using a computer-aided strategy. First, we engineered two glutathione (GSH)-responsive heterodimers, ERL-SS-CPT (erlotinib [ERL] linked with camptothecin [CPT] via a disulfide bond [SS]) and CPT-SS-ERI (CPT conjugated with erianin [ERI]), which serve as both cargo and carrier material. Next, molecular dynamics simulations indicated that multiple noncovalent molecular forces, including π-π stacking, hydrogen bonds, hydrophobic interactions, and sulfur bonds, drive the self-assembly process of these heterodimers. We then explored the universality of the heterodimers and developed a "triadic" drug delivery platform comprising 40 variants. Subsequently, we conducted case studies on docetaxel (DTX)-loaded ERL-SS-CPT nanoparticles (denoted as DTX@ERL-SS-CPT NPs) and curcumin (CUR)-loaded ERL-SS-CPT NPs (identified as CUR@CPT-SS-ERI NPs) to comprehensively investigate their self-assembly mechanism, physicochemical properties, storage stability, GSH-responsive drug release, cellular uptake, apoptosis effects, biocompatibility, and cytotoxicity. Both NPs exhibited well-defined spherical structures, high drug loading rates, and excellent storage stability. DTX@ERL-SS-CPT NPs exhibited the strongest cytotoxicity in A549 cells, following the order of DTX@ERL-SS-CPT NPs > ERL-SS-CPT NPs > CPT > DTX > ERL. Conversely, DTX@ERL-SS-CPT NPs showed negligible cytotoxicity in normal human bronchial epithelium cell line (BEAS-2B), indicating good biocompatibility and safety. Similar observations were made for CUR@CPT-SS-ERI NPs regarding biocompatibility and cytotoxicity. Upon endocytosis and encountering intracellular overexpressed GSH, the disulfide-bond linker is cleaved, resulting in the release of the versatile NPs into three parts. The spherical NPs enhance water solubility, reduce the required dosage of free drugs, and increase cellular drug accumulation while suppressing P-glycoprotein (P-gp) expression, leading to apoptosis. This work provides a computer-aided universal strategy-a heterodimer-based "triadic" drug delivery platform-to enhance anticancer efficiency while reducing multidrug resistance.


Subject(s)
Antineoplastic Agents , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Multiple/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Delivery Systems , Molecular Dynamics Simulation , Drug Screening Assays, Antitumor , A549 Cells , Camptothecin/pharmacology , Camptothecin/chemistry , Curcumin/pharmacology , Curcumin/chemistry , Cell Survival/drug effects , Nanoparticles/chemistry , Drug Liberation , Particle Size , Cell Proliferation/drug effects , Docetaxel/pharmacology , Docetaxel/chemistry , Dimerization , Drug Carriers/chemistry , Glutathione/chemistry , Glutathione/metabolism
12.
J Colloid Interface Sci ; 677(Pt A): 273-281, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39094488

ABSTRACT

Wearable electronics based on conductive hydrogels (CHs) offer remarkable flexibility, conductivity, and versatility. However, the flexibility, adhesiveness, and conductivity of traditional CHs deteriorate when they freeze, thereby limiting their utility in challenging environments. In this work, we introduce a PHEA-NaSS/G hydrogel that can be conveniently fabricated into a freeze-resistant conductive hydrogel by weakening the hydrogen bonds between water molecules. This is achieved through the synergistic interaction between the charged polar end group (-SO3-) and the glycerol-water binary solvent system. The conductive hydrogel is simultaneously endowed with tunable mechanical properties and conductive pathways by the modulation caused by varying material compositions. Due to the uniform interconnectivity of the network structure resulting from strong intermolecular interactions and the enhancement effect of charged polar end-groups, the resulting hydrogel exhibits 174 kPa tensile strength, 2105 % tensile strain, and excellent sensing ability (GF = 2.86, response time: 121 ms), and the sensor is well suited for repeatable and stable monitoring of human motion. Additionally, using the Full Convolutional Network (FCN) algorithm, the sensor can be used to recognize English letter handwriting with an accuracy of 96.4 %. This hydrogel strain sensor provides a simple method for creating multi-functional electronic devices, with significant potential in the fields of multifunctional electronics such as soft robotics, health monitoring, and human-computer interaction.

13.
J Colloid Interface Sci ; 677(Pt A): 390-399, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39096707

ABSTRACT

Regenerated cellulose (RC) films are considered a sustainable packaging material that can replace non-degradable petroleum-based plastics. However, their susceptibility to water vapor and oxygen can limit their effectiveness in protecting products. This study introduces a novel approach for enhancing RC films to create durable, flexible, hydrophobic, high-barrier, and biodegradable packaging materials. By exploring the impact of ascorbic acid coagulation bath treatment and plasma-enhanced chemical vapor deposition (PECVD) on the properties of RC films, we found that the coagulation bath treatment facilitated the organized reconfiguration of cellulose chains, while PECVD applied a dense SiOx coating on the film surface. The results demonstrated a significant enhancement in water vapor and oxygen barrier properties of the composite film, almost reaching the level of commercial barrier films. Moreover, the composite film displayed exceptional biodegradability, fully degrading in soil within 35 days. Additionally, it showcased impressive mechanical strength, hydrophobic characteristics, and freshness preservation, positioning it as a valuable option for bio-based high-barrier packaging applications.

14.
J Colloid Interface Sci ; 677(Pt A): 853-862, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39126803

ABSTRACT

The admire activity, selective and corrosion resistance electrocatalysts for oxygen evolution reaction (OER) are the bottleneck restricting seawater electrolysis owing to the side reactions of chloride ions (Cl-). Herein, we developed a local amorphous S-modified NiFe-LDH ultrathin nanosheets with large spacing on NiFe foam (la-S-NiFe-LDH/NFF) in-situ via the fast H2O2 assisted etching-anion regulation, resulting in a superior OER catalytic activity for seawater electrolysis. Benefitting from the local amorphous architecture induced by S, enhanced the metal-oxygen covalency, triggered lattice oxygen activity, and reduced the desorption energy of O2, the la-S-NiFe-LDH/NFF accelerated the OER progress via the lattice-oxygen-mediated (LOM) mechanism. Additionally, the preferential adsorbed OH- and reconstructed SO42- cooperated to prevent the proximity and erosion of Cl- and enhanced the corrosion resistance for seawater electrolysis. The assembled electrolyzer of Pt/C || la-S-NiFe-LDH/NFF possessed an industrial level of 500 mA cm-2 at 1.83 V potential for seawater electrolysis, and sustained response for 100 h.

15.
J Colloid Interface Sci ; 677(Pt A): 1080-1097, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39137610

ABSTRACT

HYPOTHESIS: Although antimicrobial peptides (AMPs) are a promising class of new antibiotics, their inherent susceptibility to degradation requires nanocarrier-mediated delivery. While cubosome nanocarriers have been extensively studied for delivery of AMPs, we do not currently understand why cubosome encapsulation improves antimicrobial efficacy for some compounds but not others. This study therefore aims to investigate the link between the mechanism of action and permeation efficiency of the peptides, their encapsulation efficacy, and the antimicrobial activity of these systems. EXPERIMENTS: Encapsulation and delivery of Indolicidin, and its ultra-short derivative, Priscilicidin, were investigated using SAXS, cryo-TEM and circular dichroism. Molecular dynamics simulations were used to understand the loading of these peptides within cubosomes. The antimicrobial efficacy was assessed against gram-negative (E. coli) and gram-positive (MRSA) bacteria. FINDINGS: A high ionic strength solution was required to facilitate high loading of the cationic AMPs, with bilayer encapsulation driven by tryptophan and Fmoc moieties. Cubosome encapsulation did not improve the antimicrobial efficacy of the AMPs consistent with their high permeation, as explained by a recent 'diffusion to capture model'. This suggests that cubosome encapsulation may not be an effective strategy for all antimicrobial compounds, paving the way for improved selection of nanocarriers for AMPs, and other antimicrobial compounds.


Subject(s)
Anti-Bacterial Agents , Drug Carriers , Escherichia coli , Nanoparticles , Drug Carriers/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Nanoparticles/chemistry , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Lipids/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Particle Size
16.
J Environ Sci (China) ; 150: 373-384, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306413

ABSTRACT

Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil.


Subject(s)
Drug Resistance, Microbial , Soil Microbiology , Soil , Soil/chemistry , Drug Resistance, Microbial/genetics , Genes, Bacterial , Bacteria/drug effects , Bacteria/genetics , Soil Pollutants/toxicity
17.
J Environ Sci (China) ; 150: 451-465, 2025 Apr.
Article in English | MEDLINE | ID: mdl-39306420

ABSTRACT

Nitrogen oxides (NOx) from diesel engine exhaust, is one of the major sources of environmental pollution. Currently, selective catalytic reduction with ammonia (NH3-SCR) is considered to be the most effective protocol for reducing NOx emissions. Nowadays, zeolite-based NH3-SCR catalysts have been industrialized and widespread used in this field. Nevertheless, with the increasingly stringent environmental regulations and implementation of the requirement of "zero emission" of diesel engine exhaust, it is extremely urgent to prepare catalysts with superior NH3-SCR activity and exceptional resistance to poisons (SO2, alkali metals, hydrocarbons, etc.). Core-shell structure zeolite-based catalysts (CSCs) have shown great promise in NH3-SCR of NOx in recent years by virtue of its relatively higher low-temperature activity, broader operation temperature window and outstanding resistance to poisons. This review mainly focuses on the recent progress of CSCs for NH3-SCR of NOx with three extensively investigated SSZ-13, ZSM-5, Beta zeolites as cores. The reaction mechanisms of resistance to sulfur poisoning, alkali metal poisoning, hydrocarbon poisoning, and hydrothermal aging are summarized. Moreover, the important role of interfacial effect between core and shell in the reaction of NH3-SCR was clarified. Finally, the future development and application outlook of CSCs are prospected.


Subject(s)
Air Pollutants , Nitrogen Oxides , Vehicle Emissions , Zeolites , Zeolites/chemistry , Nitrogen Oxides/chemistry , Catalysis , Air Pollutants/chemistry , Vehicle Emissions/analysis , Air Pollution/prevention & control , Ammonia/chemistry
18.
Ther Adv Med Oncol ; 16: 17588359241266179, 2024.
Article in English | MEDLINE | ID: mdl-39386314

ABSTRACT

Gastrointestinal stromal tumours (GISTs) are mesenchymal tumours that originate from the interstitial cells of Cajal. GISTs are mainly driven by gain-of-function mutations in receptor tyrosine kinase or platelet-derived growth factor receptor alpha. Surgical resection is the only curative treatment for localized tumours and all currently approved medical GIST treatments are based on orally available tyrosine kinase inhibitors. Recent discoveries in the molecular and clinical features of GISTs have greatly impacted GIST management. Due to the provincially rather than nationally administered Canadian healthcare system, there have been inconsistencies in the treatment of GISTs across the country. Therefore, guidance on the latest knowledge, clinical management and treatment of GIST is needed to standardize the approach to GIST management nationwide. To establish pan-Canadian guidance, provide up-to-date data and harmonize the clinical practice of GIST management in high- and low-throughput centres across Canada; a panel of 20 physicians with extensive clinical experience in GIST management reviewed relevant literature. This included radiologists, pathologists, interventional radiologists, surgeons and medical oncologists across Canada. The structured literature focused on seven key domains: molecular profiling, radiological techniques/reporting, targeted localized therapy, intricacies of systemic treatments, emerging tests, multidisciplinary care and patient advocacy. This literature review, along with clinical expertise and opinion, was used to develop this concise and clinically relevant consensus paper to harmonize the knowledge and clinical practice on GIST management across Canada. The content presented here will help guide healthcare providers, especially in Canada, in terms of approaching and managing GIST.

19.
Middle East J Dig Dis ; 16(3): 147-154, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39386340

ABSTRACT

Background: Helicobacter pylori, the most prevalent infection in the world, has great importance due to being related to peptic ulcer disease, gastric metaplasia, dysplasia, and even gastric adenocarcinoma or mucosa-associated lymphoid tissue (MALT) lymphoma. The standard H. pylori eradication regimen is based on antibiotic susceptibility testing. If susceptibility testing is not available, a standard treatment regimen will be recommended based on records of H. pylori resistance rates to antibiotics in a region or locally proven highly effective regimens (equal to or higher than 90% eradication rate). The aim of this review was to define suitable recommendations for local treatment in different cities of Iran. Methods: This review article consists of randomized controlled trials related to H. pylori eradication in Iran. Data including the kind of therapy, number of patients and per-protocol H. pylori eradication rates were recorded in data gathering forms. Data search was conducted in PubMed and Google Scholar databases from 2018 to December 2023. Results: According to our review of Iranian articles regarding first-line H. pylori eradication regimens, these treatment protocols could be recommended: Bismuth-clarithromycin quadruple therapy in Ardabil, bismuth-clarithromycin quadruple therapy with probiotics in Birjand, standard triple therapy in Ilam, bismuth quadruple therapy or bismuth triple therapy or concomitant regimen in Sari, sequential therapy in Tehran and bismuth quadruple therapy in Yazd. These regimes can be extended to other regions that have a similar situation. According to the reports of Iranian researchers, a quinolone-containing regimen (levofloxacin preferred) is recommended for second-line eradication therapy. Conclusion: Various H. pylori eradication regimens can be used as first-line therapy; however, choices for second-line therapy are limited. We recommend the quinolone-containing regimens as the preferred second-line therapy.

20.
New Microbes New Infect ; 62: 101486, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39386352

ABSTRACT

Objectives: We investigated the genomic epidemiology of extended-spectrum ß-lactamase-producing Enterobacter cloacae (ESBL-Ec) isolates from patients and hospital environment to better understand their distribution to help devising effective strategies for infection prevention and control. Methods: We screened ESBL-Ec at Bugando Medical Center (BMC) in Mwanza, Tanzania. Rectal swabs from orthopedic patients on admission and swabs from the neighboring inanimate environment were collected. Following microbial culture, DNA was extracted from pure ESBL-Ec, and whole-genome sequencing was done. Sequence typing (ST), plasmid replicons, drug resistance, and virulence genes were deciphered using the Rapid Microbial Analysis Pipeline (rMAP). Results: We obtained 209 ESBL isolates, of which 15 (7.2 %) were ESBL-Ec [8 (53.3 %) from patients and 7 (46.7 %) from the environment]. Seven isolates were novel and eight were diverse, each with a unique ST. All isolates harbored two to five ß-lactamase genes, with the predominance of bla CTX-M-15 (15/15), bla OXA-1 (14/15), bla TEM (14/15) and bla ACT (12/15). The most common non ß-lactam drug resistance genes were aac(3)-IIa (14/15), aac(6')-Ib-cr (14/15), fosA (14/15), and qnrB1 (12/15), aph(3″)-Ib (10/15) and aph(6)-Id (10/15). Eleven different types of plasmid replicons were identified in 14/15 of the isolates, harboring one to five plasmids, with the most common plasmids being IncFII (11/15) and IncFIB (10/15). All isolates harbored the outer membrane protein (ompA), and curli protein (csg) was in 14/15 isolates. Conclusion: Admitted orthopedic patients and the hospital environment act as a reservoir of ESBL-Ec with diverse STs and endowed with drug resistance and arsenals of virulence genes, calling for their routine screening on admission for mitigation of potential subsequent infections.

SELECTION OF CITATIONS
SEARCH DETAIL