Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Cureus ; 16(2): e53479, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38440034

ABSTRACT

Retinitis pigmentosa and age-related macular degeneration are the most frequent causes of irreversible visual impairment in the world. Existing therapeutic methods could be more effective, underscoring the necessity of new treatments. Reconstructing the retinal photoreceptors through the transplantation of human pluripotent stem cells, representing an attractive approach for restoring vision, has gained momentum. This paper gives an exhaustive account of what has been known in this field, the discoveries made, and the recent progress. This review paper outlines the retina's organisation, cell types, the pathophysiology of retinal injury/degeneration, and the reasoning behind using pluripotent stem cells in retinal regeneration. This article investigates differentiation strategies, molecular components that dictate cell type specification, and the recreation of retinal development in vitro, genetically engineering and manipulating epigenetic marks using various techniques for driving specific cell fates and improving therapy efficacy. Subretinal injection methods, cell encapsulation techniques, scaffold-based approaches, cell sheet transplantation, and their impact on integrating implanted cells into a functional retina are thoroughly reviewed. Using bioengineering approaches, biomaterials and growth factors form a favourable micro-ambience for grafted cells. Issues around safety and efficacy (tumorigenicity, immunological rejection, and long-term integration/functionality) are explored. Moreover, the paper emphasises the significance of rigorous characterisation, immunomodulatory strategies, and clinical and pre-clinical studies to ensure the safety and effectiveness of retinal regeneration therapy. Future perspectives and challenges are presented, looking at fine-tuning differentiation strategies, improving functional integration and regulatory aspects, and using co-therapy and supportive treatments.

2.
Int J Radiat Biol ; 100(1): 131-138, 2024.
Article in English | MEDLINE | ID: mdl-37555698

ABSTRACT

PURPOSE: Zebrafish, a small fish model, exhibits a multipotent ability for retinal regeneration after damage throughout its lifetime. Compared with zebrafish, birds and mammals exhibit such a regenerative capacity only during the embryonic period, and this capacity decreases with age. In medaka, another small fish model that has also been used extensively in biological research, the retina's inner nuclear layer (INL) failed to regenerate after injury in the hatchling at eight days postfertilization (dpf). We characterized the regenerative process of the embryonic retina when the retinal injury occurred during the early embryonic period in medaka. METHODS: We employed a 10 Gy dose of gamma-ray irradiation to initiate retinal injury in medaka embryos at 3 dpf and performed histopathological analyses up to 21 dpf. RESULTS: One day after irradiation, numerous apoptotic neurons were observed in the INL; however, these neurons were rarely observed in the ciliary marginal zone and the photoreceptor layer. Numerous pyknotic cells were clustered in the irradiated retina until two days after irradiation. These disappeared four days after irradiation, but the abnormal bridging structures between the INL and ganglion cell layer (GCL) were present until 11 days after irradiation, and the neural layers were completely regenerated 18 days after irradiation. After gamma-ray irradiation, the spindle-like Müller glial cells in the INL became rounder but did not lose their ability to express SOX2. CONCLUSIONS: Irradiated retina at 3 dpf of medaka embryos could be completely regenerated at 18 days after irradiation (21 dpf), although the abnormal layer structures bridging the INL and GCL were transiently formed in the retinas of all the irradiated embryos. Four days after irradiation, embryonic medaka Müller glia were reduced in number but maintained SOX2 expression as in nonirradiated embryos. This finding contrasts with previous reports that 8 dpf medaka larvae could not fully regenerate damaged retinas because of loss of SOX2 expression.


Subject(s)
Oryzias , Animals , Zebrafish , Retina/injuries , Retina/pathology , Neuroglia , Embryonic Development , Mammals
3.
Front Cell Neurosci ; 17: 1305896, 2023.
Article in English | MEDLINE | ID: mdl-38155865

ABSTRACT

Müller cells play an integral role in the development, maintenance, and photopic signal transmission of the retina. While lower vertebrate Müller cells can differentiate into various types of retinal neurons to support retinal repair following damage, there is limited neurogenic potential of mammalian Müller cells. Therefore, it is of great interest to harness the neurogenic potential of mammalian Müller cells to achieve self-repair of the retina. While multiple studies have endeavored to induce neuronal differentiation and proliferation of mammalian Müller cells under defined conditions, the efficiency and feasibility of these methods often fall short, rendering them inadequate for the requisites of retinal repair. As the mechanisms and methodologies of Müller cell reprogramming have been extensively explored, a summary of the reprogramming process of unlocking the neurogenic potential of Müller cells can provide insight into Müller cell fate development and facilitate their therapeutic use in retinal repair. In this review, we comprehensively summarize the progress in reprogramming mammalian Müller cells and discuss strategies for optimizing methods and enhancing efficiency based on the mechanisms of fate regulation.

4.
Development ; 150(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37971210

ABSTRACT

Recent studies have demonstrated the impact of pro-inflammatory signaling and reactive microglia/macrophages on the formation of Müller glial-derived progenitor cells (MGPCs) in the retina. In chick retina, ablation of microglia/macrophages prevents the formation of MGPCs. Analyses of single-cell RNA-sequencing chick retinal libraries revealed that quiescent and activated microglia/macrophages have a significant impact upon the transcriptomic profile of Müller glia (MG). In damaged monocyte-depleted retinas, MG fail to upregulate genes related to different cell signaling pathways, including those related to Wnt, heparin-binding epidermal growth factor (HBEGF), fibroblast growth factor (FGF) and retinoic acid receptors. Inhibition of GSK3ß, to simulate Wnt signaling, failed to rescue the deficit in MGPC formation, whereas application of HBEGF or FGF2 completely rescued the formation of MGPCs in monocyte-depleted retinas. Inhibition of Smad3 or activation of retinoic acid receptors partially rescued the formation of MGPCs in monocyte-depleted retinas. We conclude that signals produced by reactive microglia/macrophages in damaged retinas stimulate MG to upregulate cell signaling through HBEGF, FGF and retinoic acid, and downregulate signaling through TGFß/Smad3 to promote the reprogramming of MG into proliferating MGPCs.


Subject(s)
Fibroblast Growth Factor 2 , Microglia , Animals , Microglia/metabolism , Fibroblast Growth Factor 2/metabolism , Neuroglia/metabolism , Ependymoglial Cells/metabolism , Stem Cells , Chickens , Retina/metabolism , Macrophages , Wnt Signaling Pathway , Receptors, Retinoic Acid/metabolism , EGF Family of Proteins/metabolism , Heparin/pharmacology , Heparin/metabolism , Cell Proliferation/genetics
6.
Stem Cell Rev Rep ; 19(8): 2709-2723, 2023 11.
Article in English | MEDLINE | ID: mdl-37733198

ABSTRACT

The retina has restricted regeneration ability to recover injured cell layer because of reduced production of neurotrophic factors and increased inhibitory molecules against axon regrowth. A diseased retina could be regenerated by repopulating the damaged tissue with functional cell sources like mesenchymal stem cells (MSCs). The cells are able to release neurotrophic factors (NFs) to boost axonal regeneration and cell maintenance. In the current study, we comprehensively explore the potential of various types of stem cells (SCs) from oral cavity as promising therapeutic options in retinal regeneration. The oral MSCs derived from cranial neural crest cells (CNCCs) which explains their broad neural differentiation potential and secret rich NFs. They are comprised of dental pulp SCs (DPSCs), SCs from exfoliated deciduous teeth (SHED), SCs from apical papilla (SCAP), periodontal ligament-derived SCs (PDLSCs), gingival MSCs (GMSCs), and dental follicle SCs (DFSCs). The Oral MSCs are becoming a promising source of cells for cell-free or cell-based therapeutic approach to recover degenerated retinal. These cells have various mechanisms of action in retinal regeneration including cell replacement and the paracrine effect. It was demonstrated that they have more neuroprotective and neurotrophic effects on retinal cells than immediate replacement of injured cells in retina. This could be the reason that their therapeutic effects would be weakened over time. It can be concluded that neuronal and retinal regeneration through these cells is most likely due to their NFs that dramatically suppress oxidative stress, inflammation, and apoptosis. Although, oral MSCs are attractive therapeutic options for retinal injuries, more preclinical and clinical investigations are required.


Subject(s)
Mesenchymal Stem Cells , Retina , Stem Cells , Neurons , Nerve Growth Factors
7.
Glia ; 71(12): 2866-2883, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37584502

ABSTRACT

The zebrafish retina possesses tremendous regenerative potential. Müller glia underlie retinal regeneration through their ability to reprogram and generate multipotent neuronal progenitors that re-differentiate into lost neurons. Many factors required for Müller glia reprogramming and proliferation have been identified; however, we know little about the epigenetic and transcriptional regulation of these genes during regeneration. Here, we determined whether transcriptional regulation by members of the Bromodomain (Brd) family is required for Müller glia-dependent retinal regeneration. Our data demonstrate that three brd genes were expressed in Müller glia upon injury. brd2a and brd2b were expressed in all Müller glia and brd4 was expressed only in reprogramming Müller glia. Utilizing (+)-JQ1, a pharmacological inhibitor of Brd function, we demonstrate that transcriptional regulation by Brds plays a critical role in Müller glia reprogramming and regeneration. (+)-JQ1 treatment prevented cell cycle re-entry of Müller glia and the generation of neurogenic progenitors. Modulating the (+)-JQ1 exposure window, we identified the first 48 h post-injury as the time-period during which Müller glia reprogramming occurs. (+)-JQ1 treatments after 48 h post-injury had no effect on the re-differentiation of UV cones, indicating that Brd function is required only for Müller glia reprogramming and not subsequent specification/differentiation events. Brd inhibition also prevented the expression of reprogramming genes like ascl1a and lepb in Müller glia, but not effector genes like mmp9, nor did it affect microglial recruitment after injury. These results demonstrate that transcriptional regulation by Brds plays a critical role during Müller glia-dependent retinal regeneration in zebrafish.

8.
Front Mol Neurosci ; 16: 1087136, 2023.
Article in English | MEDLINE | ID: mdl-37575968

ABSTRACT

Introduction: Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results: To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion: Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.

9.
Front Cell Dev Biol ; 11: 1157893, 2023.
Article in English | MEDLINE | ID: mdl-37397254

ABSTRACT

Retinal degenerative diseases, characterized by retinal neuronal death and severe vision loss, affect millions of people worldwide. One of the most promising treatment methods for retinal degenerative diseases is to reprogram non-neuronal cells into stem or progenitor cells, which then have the potential to re-differentiate to replace the dead neurons, thereby promoting retinal regeneration. Müller glia are the major glial cell type and play an important regulatory role in retinal metabolism and retinal cell regeneration. Müller glia can serve as a source of neurogenic progenitor cells in organisms with the ability to regenerate the nervous system. Current evidence points toward the reprogramming process of Müller glia, involving changes in the expression of pluripotent factors and other key signaling molecules that may be regulated by epigenetic mechanisms. This review summarizes recent knowledge of epigenetic modifications involved in the reprogramming process of Müller glia and the subsequent changes to gene expression and the outcomes. In living organisms, epigenetic mechanisms mainly include DNA methylation, histone modification, and microRNA-mediated miRNA degradation, all of which play a crucial role in the reprogramming process of Müller glia. The information presented in this review will improve the understanding of the mechanisms underlying the Müller glial reprogramming process and provide a research basis for the development of Müller glial reprogramming therapy for retinal degenerative diseases.

10.
Adv Exp Med Biol ; 1415: 309-317, 2023.
Article in English | MEDLINE | ID: mdl-37440050

ABSTRACT

Nearly a billion people worldwide are affected by vision-impairing conditions, with retinal degenerative diseases being a major cause of blindness. Unfortunately, such diseases are often permanent and progressive, resulting in further degeneration and loss of sight, due to the human retina possessing little, if any, regenerative capacity. Despite numerous efforts and great progress being made to understand the molecular mechanisms of these diseases and possible therapies, the majority of investigations focused on cell-intrinsic factors. However, the microenvironment surrounding retinal cells throughout these processes also plays an important role, though our current understanding of its involvement remains limited. Here we present a brief overview of the current state of the field of extracellular matrix studies within the retina and its potential roles in retinal diseases and potential therapeutic approaches.


Subject(s)
Extracellular Matrix , Retinal Degeneration , Humans , Extracellular Matrix Proteins , Retina
11.
Adv Sci (Weinh) ; 10(25): e2302747, 2023 09.
Article in English | MEDLINE | ID: mdl-37379237

ABSTRACT

Retinal degeneration, characterized by the progressive loss of retinal neurons, is the leading cause of incurable visual impairment. Retinal progenitor cells (RPCs)-based transplantation can facilitate sight restoration, but the clinical efficacy of this process is compromised by the imprecise neurogenic differentiation of RPCs and undermining function of transplanted cells surrounded by severely oxidative retinal lesions. Here, it is shown that ultrathin niobium carbide (Nb2 C) MXene enables performance enhancement of RPCs for retinal regeneration. Nb2 C MXene with moderate photothermal effect markedly improves retinal neuronal differentiation of RPCs by activating intracellular signaling, in addition to the highly effective RPC protection by scavenging free radicals concurrently, which has been solidly evidenced by the comprehensive biomedical assessments and theoretical calculations. A dramatically increased neuronal differentiation is observed upon subretinal transplantation of MXene-assisted RPCs into the typical retinal degeneration 10 (rd10) mice, thereby contributing to the efficient restoration of retinal architecture and visual function. The dual-intrinsic function of MXene synergistically aids RPC transplantation, which represents an intriguing paradigm in vision-restoration research filed, and will broaden the multifunctionality horizon of nanomedicine.


Subject(s)
Retinal Degeneration , Mice , Animals , Retinal Degeneration/therapy , Retina , Stem Cells , Cell Transplantation
12.
Cell Transplant ; 32: 9636897231165117, 2023.
Article in English | MEDLINE | ID: mdl-37039377

ABSTRACT

Retinal cells are irreparably damaged by diseases such as age-related macular degeneration (AMD). A promising method to restore partial or whole vision is through cell-based transplantation to the damaged location. However, cell transplantation using conventional vitreous surgery is an invasive procedure that may induce infections and has a high failure rate of cell engraftment. In this study, we describe the fabrication of a biodegradable composite nanosheet used as a substrate to support retinal pigment epithelial (RPE-J) cells, which can be grafted to the sub-retinal space using a minimally invasive approach. The nanosheet was fabricated using polycaprolactone (PCL) and collagen in 80:20 weight ratio, and had size of 200 µm in diameter and 300 nm in thickness. These PCL/collagen nanosheets showed excellent biocompatibility and mechanical strength in vitro. Using a custom designed 27-gauge glass needle, we successfully transplanted an RPE-J cell loaded nanosheet into the sub-retinal space of a rat model with damaged photoreceptors. The cell loaded nanosheet did not trigger immunological reaction within 2 weeks of implantation and restored the retinal environment. Thus, this composite PCL/collagen nanosheet holds great promise for organized cell transplantation, and the treatment of retinal diseases.


Subject(s)
Macular Degeneration , Retinal Pigment Epithelium , Rats , Animals , Retina , Collagen , Macular Degeneration/surgery , Cell Transplantation
13.
Elife ; 122023 04 03.
Article in English | MEDLINE | ID: mdl-37010266

ABSTRACT

Myocardial fibrosis is the characteristic pathology of diabetes-induced cardiomyopathy. Therefore, an in-depth study of cardiac heterogeneity and cell-to-cell interactions can help elucidate the pathogenesis of diabetic myocardial fibrosis and identify treatment targets for the treatment of this disease. In this study, we investigated intercellular communication drivers of myocardial fibrosis in mouse heart with high-fat-diet/streptozotocin-induced diabetes at single-cell resolution. Intercellular and protein-protein interaction networks of fibroblasts and macrophages, endothelial cells, as well as fibroblasts and epicardial cells revealed critical changes in ligand-receptor interactions such as Pdgf(s)-Pdgfra and Efemp1-Egfr, which promote the development of a profibrotic microenvironment during the progression of and confirmed that the specific inhibition of the Pdgfra axis could significantly improve diabetic myocardial fibrosis. We also identified phenotypically distinct Hrchi and Postnhi fibroblast subpopulations associated with pathological extracellular matrix remodeling, of which the Hrchi fibroblasts were found to be the most profibrogenic under diabetic conditions. Finally, we validated the role of the Itgb1 hub gene-mediated intercellular communication drivers of diabetic myocardial fibrosis in Hrchi fibroblasts, and confirmed the results through AAV9-mediated Itgb1 knockdown in the heart of diabetic mice. In summary, cardiac cell mapping provides novel insights into intercellular communication drivers involved in pathological extracellular matrix remodeling during diabetic myocardial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Myocardium/pathology , Diabetes Mellitus, Experimental/complications , Endothelial Cells/pathology , Single-Cell Gene Expression Analysis , Cell Communication , Fibrosis , Fibroblasts/pathology
14.
Differentiation ; 132: 51-58, 2023.
Article in English | MEDLINE | ID: mdl-37069005

ABSTRACT

Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.


Subject(s)
Epigenesis, Genetic , Retina , Cell Differentiation/genetics , Stem Cells , Neurons
15.
Regen Ther ; 22: 59-67, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36712956

ABSTRACT

In recent decades, many researchers have attempted to restore vision via transplantation of retina/retinal cells in eyes with retinal degeneration. The advent of induced pluripotent stem cells (iPSC) and retinal organoid induction technologies has boosted research on retinal regeneration therapy. Although the recognition of functional integration of graft photoreceptor cells in the host retina from 2006 has been disputed a decade later by the newly evidenced phenomenon denoted as "material transfer," several reports support possible reconstruction of the host-graft network in the retinas of both end-stage degeneration and in progressing degeneration cases. Based on proof of concept (POC) studies in animal models, a clinical study was conducted in Kobe, Japan in 2020 and showed the feasibility of cell-based therapy using iPSC retinal organoid technology. Although the graft potency of human embryonic stem (ES)/iPS cell-derived retinal organoid/retinal cells has been suggested by previous studies, much is still unknown regarding host capability, that is, how long-standing human degenerating retinas are capable of rewiring with transplanted cells. This review summarizes past POC studies on photoreceptor replacement therapy and introduces some new challenges to maximize the possible efficacy in future human clinical studies of regenerative therapy.

16.
Gels ; 9(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36661824

ABSTRACT

Engineering matrices for cell therapy requires design criteria that include the ability of these materials to support, protect and enhance cellular behavior in vivo. The chemical and mechanical formulation of the biomaterials can influence not only target cell phenotype but also cellular differentiation. In this study, we have demonstrated the effect of a gelatin (Gtn)-hyaluronic acid (HA) hydrogel on human retinal progenitor cells (hRPCs) and show that by altering the mechanical properties of the materials, cellular behavior is altered as well. We have created an interpenetrating network polymer capable of encapsulating hRPCs. By manipulating the stiffness of the hydrogel, the differentiation potential of the hRPCs was controlled. Interpenetrating network 75 (IPN 75; 75% HA) allowed higher expression of rod photoreceptor markers, whereas cone photoreceptor marker expression was found to be higher in IPN 50. In vivo testing of these living matrices performed in Long-Evans rats showed higher levels of rod photoreceptor marker expression when IPN 75 was injected versus IPN 50. These biomaterials mimic biological cues that are required to simulate the dynamic complexity of natural retinal ECM. These hydrogels can be used as a vehicle for cell delivery in vivo as well as for expansion and differentiation in an in vitro 3D system in a highly reproducible manner.

17.
Stem Cell Res ; 66: 103006, 2023 02.
Article in English | MEDLINE | ID: mdl-36563542

ABSTRACT

Müller glia are non-neuronal support cells that play a vital role in the homeostasis of the eye. Their radial-oriented processes span the width of the retina and respond to injury through a cellular response that can be detrimental or protective depending on the context. In some species, protective responses include the expression of stem cell-like genes which help to fuel new neuron formation and even restoration of vision. In many lower vertebrates including fish and amphibians, this response is well documented, however, in mammals it is severely limited. The remarkable plasticity of cellular reprogramming in lower vertebrates has inspired studies in mammals for repairing the retina and restoring sight, and recent studies suggest that mammals are also capable of regeneration, albeit to a lesser degree. Endogenous regeneration, whereby new retinal neurons are created from existing support cells, offers an exciting alternative approach to existing tissue transplant, gene therapy, and neural prosthetic approaches being explored in parallel. This review will highlight the role of Müller glia during retinal injury and repair. In the end, prospects for advancing retinal regeneration research will be considered.


Subject(s)
Cellular Reprogramming , Neuroglia , Animals , Neuroglia/metabolism , Retina/metabolism , Ependymoglial Cells/metabolism , Neurons , Cell Proliferation/physiology , Mammals
18.
Cells ; 11(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36497013

ABSTRACT

The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.


Subject(s)
Retinal Neurons , Stem Cells , Animals , Cell Differentiation , Cell Proliferation , Stem Cells/metabolism , Retinal Neurons/metabolism , Retina/metabolism , Mammals
19.
Front Pharmacol ; 13: 919667, 2022.
Article in English | MEDLINE | ID: mdl-35873559

ABSTRACT

Dysregulation of retinal metabolism is emerging as one of the major reasons for many inherited retinal diseases (IRDs), a leading cause of blindness worldwide. Thus, the identification of a common regulator that can preserve or revert the metabolic ecosystem to homeostasis is a key step in developing a treatment for different forms of IRDs. Riboflavin (RF) and its derivatives (flavins), flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are essential cofactors for a wide range of cellular metabolic processes; hence, they are particularly critical in highly metabolically active tissues such as the retina. Patients with RF deficiency (ariboflavinosis) often display poor photosensitivity resulting in impaired low-light vision. We have identified a novel retina-specific RF binding protein called retbindin (Rtbdn), which plays a key role in retaining flavin levels in the neural retina. This role is mediated by its specific localization at the interface between the neural retina and retinal pigment epithelium (RPE), which is essential for metabolite and nutrient exchange. As a consequence of this vital function, Rtbdn's role in flavin utilization and metabolism in retinal degeneration is discussed. The principal findings are that Rtbdn helps maintain high levels of retinal flavins, and its ablation leads to an early-onset retinal metabolic dysregulation, followed by progressive degeneration of rod and cone photoreceptors. Lack of Rtbdn reduces flavin levels, forcing the neural retina to repurpose glucose to reduce the production of free radicals during ATP production. This leads to metabolic breakdown followed by retinal degeneration. Assessment of the role of Rtbdn in several preclinical retinal disease models revealed upregulation of its levels by several folds prior to and during the degenerative process. Ablation of Rtbdn in these models accelerated the rate of retinal degeneration. In agreement with these in vivo studies, we have also demonstrated that Rtbdn protects immortalized cone photoreceptor cells (661W cells) from light damage in vitro. This indicates that Rtbdn plays a neuroprotective role during retinal degeneration. Herein, we discussed the specific function of Rtbdn and its neuroprotective role in retinal metabolic homeostasis and its role in maintaining retinal health.

20.
Front Cell Dev Biol ; 10: 813538, 2022.
Article in English | MEDLINE | ID: mdl-35252183

ABSTRACT

Transplantation of stem cell-derived retinal pigment epithelium (RPE) cells is a promising potential therapy for currently incurable retinal degenerative diseases like advanced dry age-related macular degeneration. In this study, we designed a set of clinically applicable devices for subretinal implantation of RPE grafts, towards the overarching goal of establishing enabling technologies for cell-based therapeutic approaches to regenerate RPE cells. This RPE transplant kit includes a custom-designed trephine for the production of RPE transplants, a carrier for storage and transportation, and a surgical device for subretinal delivery of RPE transplants. Cell viability assay confirmed biocompatibility of the transplant carrier and high preservation of RPE transplants upon storage and transportation. The transplant surgical device combines foldable technology that minimizes incision size, controlled delivery speed, no fluid reflux, curved translucent tip, usability of loading and in vivo reloading, and ergonomic handle. Furthermore, the complementary design of the transplant carrier and the delivery device resulted in proper grasping, loading, and orientation of the RPE transplants into the delivery device. Proof-of-concept transplantation studies in a porcine model demonstrated no damage or structural change in RPE transplants during surgical manipulation and subretinal deployment. Post-operative assessment confirmed that RPE transplants were delivered precisely, with no damage to the host retina or choroid, and no significant structural change to the RPE transplants. Our novel surgical kit provides a comprehensive set of tools encompassing RPE graft manufacturing to surgical implantation rendering key enabling technologies for pre-clinical and clinical phases of stem cell-derived RPE regenerative therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...