Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 25(3): e202300776, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38088522

ABSTRACT

Bisacridinyl-bisarginyl porphyrin (BABAP) is a trisintercalating derivative of a tricationic porphyrin, formerly designed and synthesized in order to selectively target and photosensitize the ten-base pair palindromic sequence d(CGGGCGCCCG)2 . We resorted to the previously derived (Far et al., 2004) lowest energy-minimized (EM) structure of the BABAP complex with this sequence as a starting point. We performed polarizable molecular dynamics (MD) on this complex. It showed, over a 150 ns duration, the persistent binding of the Arg side-chain on each BABAP arm to the two G bases upstream from the central porphyrin intercalation site. We subsequently performed progressive shortenings of the connector chain linking the Arg-Gly backbone to the acridine, from n=6 methylenes to 4, followed by removal of the Gly backbone and further connector shortenings, from n=4 to n=1. These resulted into progressive deformations ('kinks') of the DNA backbone. In its most accented kinked structure, the DNA backbone was found to have a close overlap with that of DNA bound to Cre recombinase, with, at the level of one acridine intercalation site, negative roll and positive tilt values consistent with those experimentally found for this DNA at its own kinked dinucleotide sequence. Thus, in addition to their photosensitizing properties, some BABAP derivatives could induce sequence-selective, controlled DNA deformations, which are targets for cleavage by endonucleases or for repair enzymes.


Subject(s)
Molecular Dynamics Simulation , Porphyrins , Porphyrins/chemistry , DNA/chemistry , Oligopeptides , Acridines
2.
Life (Basel) ; 12(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35629349

ABSTRACT

Ken Breslauer began studies on the thermodynamics of small cationic molecules binding in the DNA minor groove over 30 years ago, and the studies reported here are an extension of those ground-breaking reports. The goals of this report are to develop a detailed understanding of the binding thermodynamics of pyridine-based sequence-specific minor groove binders that have different terminal cationic groups. We apply biosensor-surface plasmon resonance and ITC methods to extend the understanding of minor groove binders in two directions: (i) by using designed, heterocyclic dicationic minor groove binders that can incorporate a G•C base pair (bp), with flanking AT base pairs, into their DNA recognition site, and bind to DNA sequences specifically; and (ii) by using a range of flanking AT sequences to better define molecular recognition of the minor groove. A G•C bp in the DNA recognition site causes a generally more negative binding enthalpy than with most previously used pure AT binding sites. The binding is enthalpy-driven at 25 °C and above. The flanking AT sequences also have a large effect on the binding energetics with the -AAAGTTT- site having the strongest affinity. As a result of these studies, we now have a much better understanding of the effects of the DNA sequence and compound structure on the molecular recognition and thermodynamics of minor groove complexes.

3.
Molecules ; 24(5)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866557

ABSTRACT

We review the preparation of new compounds with good solution and cell uptake properties that can selectively recognize mixed A·T and G·C bp sequences of DNA. Our underlying aim is to show that these new compounds provide important new biotechnology reagents as well as a new class of therapeutic candidates with better properties and development potential than other currently available agents. In this review, entirely different ways to recognize mixed sequences of DNA by modifying AT selective heterocyclic cations are described. To selectively recognize a G·C base pair an H-bond acceptor must be incorporated with AT recognizing groups as with netropsin. We have used pyridine, azabenzimidazole and thiophene-N-methylbenzimidazole GC recognition units in modules crafted with both rational design and empirical optimization. These modules can selectively and strongly recognize a single G·C base pair in an AT sequence context. In some cases, a relatively simple change in substituents can convert a heterocyclic module from AT to GC recognition selectivity. Synthesis and DNA interaction results for initial example lead modules are described for single G·C base pair recognition compounds. The review concludes with a description of the initial efforts to prepare larger compounds to recognize sequences of DNA with more than one G·C base pairs. The challenges and initial successes are described along with future directions.


Subject(s)
DNA/chemistry , Heterocyclic Compounds/chemical synthesis , Base Pairing , Base Sequence , Heterocyclic Compounds/chemistry , Nucleic Acid Conformation , Surface Plasmon Resonance
4.
Int J Mol Sci ; 19(7)2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30041439

ABSTRACT

Organometallic ruthenium(II) complexes [(η6-arene)Ru(en)Cl][PF6] (arene = benzene (1), p-cymene (2), indane (3), and biphenyl (4); en = ethylenediamine) are promising anticancer drug candidates both in vitro and in vivo. In this paper, the interactions between ruthenium(II) complexes and 15-mer single- and double-stranded oligodeoxynucleotides (ODNs) were thermodynamically investigated using high performance liquid chromatography (HPLC) and electrospray ionization mass spectroscopy (ESI-MS). All of the complexes bind preferentially to G8 on the single strand 5'-CTCTCTT7G8T9CTTCTC-3' (I), with complex 4 containing the most hydrophobic ligand as the most reactive one. To the analogs of I (changing T7 and/or T9 to A and/or C), complex 4 shows a decreasing affinity to the G8 site in the following order: -AG8T- (K: 5.74 × 104 M-1) > -CG8C- > -TG8A- > -AG8A- > -AG8C- > -TG8T- (I) ≈ -CG8A- (K: 2.81 × 104 M-1). In the complementary strand of I, the G bases in the middle region are favored for ruthenation over guanine (G) bases in the end of oligodeoxynucleotides (ODNs). These results indicate that both the flanking bases (or base sequences) and the arene ligands play important roles in determining the binding preference, and the base- and sequence-selectivity, of ruthenium complex in binding to the ODNs.


Subject(s)
Antineoplastic Agents/chemistry , DNA/metabolism , Organometallic Compounds/chemistry , Ruthenium Compounds/chemistry , Antineoplastic Agents/pharmacology , DNA/chemistry , Kinetics , Molecular Docking Simulation , Organometallic Compounds/pharmacology , Ruthenium Compounds/pharmacology , Thermodynamics
5.
Chemistry ; 24(17): 4428-4435, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29380465

ABSTRACT

A G-quadruplex (quadruplex) is a nucleic acid secondary structure adopted by guanine-rich sequences and is considered to be relevant to various pharmacological and biological contexts. Although a number of researchers have endeavored to discover and develop quadruplex-interactive molecules, poor ligand designability originating from topological similarity of the skeleton of diverse quadruplexes has remained a bottleneck for gaining specificity for individual quadruplexes. This work reports on hybrid molecules that were constructed with dual DNA-binding components, a cyclic imidazole/lysine polyamide (cIKP), and a hairpin pyrrole/imidazole polyamide (hPIP), with the aim toward specific quadruplex targeting by reading out the local duplex DNA sequence adjacent to designated quadruplexes in the genome. By means of circular dichroism (CD), fluorescence resonance energy transfer (FRET), surface plasmon resonance (SPR), and NMR techniques, we showed the dual and simultaneous recognition of the respective segment via hybrid molecules, and the synergistic and mutual effect of each binding component that was appropriately linked on higher binding affinity and modest sequence specificity. Monitoring quadruplex and duplex imino protons of the quadruplex/duplex motif titrated with hybrid molecules clearly revealed distinct features of the binding of hybrid molecules to the respective segments upon their simultaneous recognition. A series of the systematic and detailed binding assays described here showed that the concept of simultaneous recognition of quadruplex and its proximal duplex by hybrid molecules constructed with the dual DNA-binding components may provide a new strategy for ligand design, enabling targeting of a large variety of designated quadruplexes at specific genome locations.


Subject(s)
DNA/chemistry , G-Quadruplexes , Nylons/chemistry , Base Pairing , Base Sequence , Binding Sites , Guanine/chemistry , Imidazoles/chemistry , Ligands , Lysine/analogs & derivatives , Lysine/chemistry , Protons , Pyrroles/chemistry , Thermodynamics
6.
Molecules ; 22(11)2017 Oct 29.
Article in English | MEDLINE | ID: mdl-29109368

ABSTRACT

In this report, we investigate the efficiency and selectivity of a Zn2+-dependent peptide nucleic acid-based artificial ribonuclease (PNAzyme) that cleaves RNA target sequences. The target RNAs are varied to form different sizes (3 and 4 nucleotides, nt) and sequences in the bulge formed upon binding to the PNAzyme. PNAzyme-promoted cleavage of the target RNAs was observed and variation of the substrate showed a clear dependence on the sequence and size of the bulge. For targets that form 4-nt bulges, we identified systems with an improved efficacy (an estimated half-life of ca 7-8 h as compared to 11-12 h for sequences studied earlier) as well as systems with an improved site selectivity (up to over 70% cleavage at a single site as compared to 50-60% with previous targets sequences). For targets forming 3-nt bulges, the enhancement compared to previous systems was even more pronounced. Compared to a starting point of targets forming 3-nt AAA bulges (half-lives of ca 21-24 h), we could identify target sequences that were cleaved with half-lives three times lower (ca 7-8 h), i.e., at rates similar to those found for the fastest 4-nt bulge system. In addition, with the 3-nt bulge RNA target site selectivity was improved even further to reach well over 80% cleavage at a specific site.


Subject(s)
Oligonucleotides/chemistry , Peptide Nucleic Acids/chemistry , RNA/chemistry , Ribonucleases/metabolism , Nucleic Acid Conformation
7.
Biochim Biophys Acta Gene Regul Mech ; 1860(5): 617-629, 2017 May.
Article in English | MEDLINE | ID: mdl-27750031

ABSTRACT

BACKGROUND: Sequence specific polyamide HxIP 1, targeted to the inverted CCAAT Box 2 (ICB2) on the topoisomerase IIα (topo IIα) promoter can inhibit NF-Y binding, re-induce gene expression and increase sensitivity to etoposide. To enhance biological activity, diamino-containing derivatives (HxI*P 2 and HxIP* 3) were synthesised incorporating an alkyl amino group at the N1-heterocyclic position of the imidazole/pyrrole. METHODS: DNase I footprinting was used to evaluate DNA binding of the diamino Hx-polyamides, and their ability to disrupt the NF-Y:ICB2 interaction assessed using EMSAs. Topo IIα mRNA (RT-PCR) and protein (Immunoblotting) levels were measured following 18h polyamide treatment of confluent A549 cells. γH2AX was used as a marker for etoposide-induced DNA damage after pre-treatment with HxIP* 3 and cell viability was measured using Cell-Titer Glo®. RESULTS: Introduction of the N1-alkyl amino group reduced selectivity for the target sequence 5'-TACGAT-3' on the topo IIα promoter, but increased DNA binding affinity. Confocal microscopy revealed both fluorescent diamino polyamides localised in the nucleus, yet HxI*P 2 was unable to disrupt the NF-Y:ICB2 interaction and showed no effect against the downregulation of topo IIα. In contrast, inhibition of NF-Y binding by HxIP* 3 stimulated dose-dependent (0.1-2µM) re-induction of topo IIα and potentiated cytotoxicity of topo II poisons by enhancing DNA damage. CONCLUSIONS: Polyamide functionalisation at the N1-position offers a design strategy to improve drug-like properties. Dicationic HxIP* 3 increased topo IIα expression and chemosensitivity to topo II-targeting agents. GENERAL SIGNIFICANCE: Pharmacological modulation of topo IIα expression has the potential to enhance cellular sensitivity to clinically-used anticancer therapeutics. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.


Subject(s)
Antigens, Neoplasm/biosynthesis , CCAAT-Binding Factor/metabolism , DNA Damage , DNA Topoisomerases, Type II/biosynthesis , DNA-Binding Proteins/biosynthesis , Gene Expression Regulation, Enzymologic/drug effects , Nylons/pharmacology , Promoter Regions, Genetic , A549 Cells , Animals , Antigens, Neoplasm/genetics , CCAAT-Binding Factor/genetics , DNA Topoisomerases, Type II/genetics , DNA-Binding Proteins/genetics , Etoposide/adverse effects , Etoposide/pharmacology , Gene Expression Regulation, Enzymologic/genetics , Mice , NIH 3T3 Cells , Nylons/chemistry
8.
Angew Chem Int Ed Engl ; 55(23): 6676-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27060490

ABSTRACT

DNA phase transitions are often induced by the addition of condensation agents or by dry concentration. Herein, we show that the non-equilibrium setting of a moderate heat flow across a water-filled chamber separates and gelates DNA strands with single-base resolution. A dilute mix of DNA with two slightly different gel-forming sequences separates into sequence-pure hydrogels under constant physiological solvent conditions. A single base change in a 36 mer DNA inhibits gelation. Only sequences with the ability to form longer strands are concentrated, further elongated, and finally gelated by length-dependent thermal trapping. No condensation agents, such as multivalent ions, were added. Equilibrium aggregates from dry concentration did not show any sequence separation. RNA is expected to behave identically owing to its equal thermophoretic properties. The highly sequence-specific phase transition points towards new possibilities for non-equilibrium origins of life.

SELECTION OF CITATIONS
SEARCH DETAIL