Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204979

ABSTRACT

In the era of ubiquitous computing, the challenges imposed by the increasing demand for real-time data processing, security, and energy efficiency call for innovative solutions. The emergence of fog computing has provided a promising paradigm to address these challenges by bringing computational resources closer to data sources. Despite its advantages, the fog computing characteristics pose challenges in heterogeneous environments in terms of resource allocation and management, provisioning, security, and connectivity, among others. This paper introduces COGNIFOG, a novel cognitive fog framework currently under development, which was designed to leverage intelligent, decentralized decision-making processes, machine learning algorithms, and distributed computing principles to enable the autonomous operation, adaptability, and scalability across the IoT-edge-cloud continuum. By integrating cognitive capabilities, COGNIFOG is expected to increase the efficiency and reliability of next-generation computing environments, potentially providing a seamless bridge between the physical and digital worlds. Preliminary experimental results with a limited set of connectivity-related COGNIFOG building blocks show promising improvements in network resource utilization in a real-world-based IoT scenario. Overall, this work paves the way for further developments on the framework, which are aimed at making it more intelligent, resilient, and aligned with the ever-evolving demands of next-generation computing environments.

2.
IEEE Internet Things J ; 11(3): 3779-3791, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38283301

ABSTRACT

Current Internet of Things (IoT) devices provide a diverse range of functionalities, ranging from measurement and dissemination of sensory data observation, to computation services for real-time data stream processing. In extreme situations such as emergencies, a significant benefit of IoT devices is that they can help gain a more complete situational understanding of the environment. However, this requires the ability to utilize IoT resources while taking into account location, battery life, and other constraints of the underlying edge and IoT devices. A dynamic approach is proposed for orchestration and management of distributed workflow applications using services available in cloud data centers, deployed on servers, or IoT devices at the network edge. Our proposed approach is specifically designed for knowledge-driven business process workflows that are adaptive, interactive, evolvable and emergent. A comprehensive empirical evaluation shows that the proposed approach is effective and resilient to situational changes.

3.
Sensors (Basel) ; 23(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112349

ABSTRACT

Edge computing is a viable approach to improve service delivery and performance parameters by extending the cloud with resources placed closer to a given service environment. Numerous research papers in the literature have already identified the key benefits of this architectural approach. However, most results are based on simulations performed in closed network environments. This paper aims to analyze the existing implementations of processing environments containing edge resources, taking into account the targeted quality of service (QoS) parameters and the utilized orchestration platforms. Based on this analysis, the most popular edge orchestration platforms are evaluated in terms of their workflow that allows the inclusion of remote devices in the processing environment and their ability to adapt the logic of the scheduling algorithms to improve the targeted QoS attributes. The experimental results compare the performance of the platforms and show the current state of their readiness for edge computing in real network and execution environments. These findings suggest that Kubernetes and its distributions have the potential to provide effective scheduling across the resources on the network's edge. However, some challenges still have to be addressed to completely adapt these tools for such a dynamic and distributed execution environment as edge computing implies.

4.
Sensors (Basel) ; 22(15)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-35957450

ABSTRACT

Fog computing is an extension of cloud computing that provides computing services closer to user end-devices at the network edge. One of the challenging topics in fog networks is the placement of tasks on fog nodes to obtain the best performance and resource usage. The process of mapping tasks for resource-constrained devices is known as the service or fog application placement problem (SPP, FAPP). The highly dynamic fog infrastructures with mobile user end-devices and constantly changing fog nodes resources (e.g., battery life, security level) require distributed/decentralized service placement (orchestration) algorithms to ensure better resilience, scalability, and optimal real-time performance. However, recently proposed service placement algorithms rarely support user end-device mobility, constantly changing the resource availability of fog nodes and the ability to recover from fog node failures at the same time. In this article, we propose a distributed agent-based orchestrator model capable of flexible service provisioning in a dynamic fog computing environment by considering the constraints on the central processing unit (CPU), memory, battery level, and security level of fog nodes. Distributing the decision-making to multiple orchestrator fog nodes instead of relying on the mapping of a single central entity helps to spread the load and increase scalability and, most importantly, resilience. The prototype system based on the proposed orchestrator model was implemented and tested with real hardware. The results show that the proposed model is efficient in terms of response latency and computational overhead, which are minimal compared to the placement algorithm itself. The research confirms that the proposed orchestrator approach is suitable for various fog network applications when scalability, mobility, and fault tolerance must be guaranteed.


Subject(s)
Algorithms , Cloud Computing , Delivery of Health Care
5.
Sensors (Basel) ; 22(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35062426

ABSTRACT

Fog computing emerged as a concept that responds to the requirements of upcoming solutions requiring optimizations primarily in the context of the following QoS parameters: latency, throughput, reliability, security, and network traffic reduction. The rapid development of local computing devices and container-based virtualization enabled the application of fog computing within the IoT environment. However, it is necessary to utilize algorithm-based service scheduling that considers the targeted QoS parameters to optimize the service performance and reach the potential of the fog computing concept. In this paper, we first describe our categorization of IoT services that affects the execution of our scheduling algorithm. Secondly, we propose our scheduling algorithm that considers the context of processing devices, user context, and service context to determine the optimal schedule for the execution of service components across the distributed fog-to-cloud environment. The conducted simulations confirmed the performance of the proposed algorithm and showcased its major contribution-dynamic scheduling, i.e., the responsiveness to the volatile QoS parameters due to changeable network conditions. Thus, we successfully demonstrated that our dynamic scheduling algorithm enhances the efficiency of service performance based on the targeted QoS criteria of the specific service scenario.


Subject(s)
Internet of Things , Algorithms , Cloud Computing , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL