Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Brain Behav Immun ; 89: 118-132, 2020 10.
Article in English | MEDLINE | ID: mdl-32485292

ABSTRACT

Sleep loss in the rat increases blood-brain barrier permeability to circulating molecules by disrupting interendothelial tight junctions. Despite the description of the ultrastructure of cerebral microvessels and the evidence of an apparent pericyte detachment from capillary wall in sleep restricted rats the effect of sleep loss on pericytes is unknown. Here we characterized the interactions between pericytes and brain endothelial cells after sleep loss using male Wistar rats. Animals were sleep-restricted 20 h daily with 4 h sleep recovery for 10 days. At the end of the sleep restriction, brain microvessels (MVs) were isolated from cerebral cortex and hippocampus and processed for Western blot and immunocytochemistry to evaluate markers of pericyte-endothelial cell interaction (connexin 43, PDGFR-ß), tight junction proteins, and proinflammatory mediator proteins (MMP9, A2A adenosine receptor, CD73, NFκB). Sleep restriction reduced PDGFR-ß and connexin 43 expression in MVs; in addition, scanning electron microscopy micrographs showed that pericytes were detached from capillary walls, but did not undergo apoptosis (as depicted by a reduced active caspase-3 expression). Sleep restriction also decreased tight junction protein expression in MVs and increased BBB permeability to low- and high-molecular weight tracers in in vivo permeability assays. Those alterations seemed to depend on a low-grade inflammatory status as reflected by the increased expression of phosphorylated NFκB and A2A adenosine receptor in brain endothelial cells from the sleep-restricted rats. Our data show that pericyte-brain endothelial cell interaction is altered by sleep restriction; this evidence is essential to understand the role of sleep in regulating blood-brain barrier function.


Subject(s)
Blood-Brain Barrier , Pericytes , Animals , Brain , Cell Communication , Endothelial Cells , Male , Rats , Rats, Wistar , Sleep , Tight Junctions
2.
Sleep ; 43(7)2020 07 13.
Article in English | MEDLINE | ID: mdl-31894238

ABSTRACT

STUDY OBJECTIVE: Identify small molecule biomarkers of insufficient sleep using untargeted plasma metabolomics in humans undergoing experimental insufficient sleep. METHODS: We conducted a crossover laboratory study where 16 normal-weight participants (eight men; age 22 ± 5 years; body mass index < 25 kg/m2) completed three baseline days (9 hours sleep opportunity per night) followed by 5-day insufficient (5 hours sleep opportunity per night) and adequate (9 hours sleep opportunity per night) sleep conditions. Energy balanced diets were provided during baseline, with ad libitum energy intake provided during the insufficient and adequate sleep conditions. Untargeted plasma metabolomics analyses were performed using blood samples collected every 4 hours across the final 24 hours of each condition. Biomarker models were developed using logistic regression and linear support vector machine (SVM) algorithms. RESULTS: The top-performing biomarker model was developed by linear SVM modeling, consisted of 65 compounds, and discriminated insufficient versus adequate sleep with 74% overall accuracy and a Matthew's Correlation Coefficient of 0.39. The compounds in the top-performing biomarker model were associated with ATP Binding Cassette Transporters in Lipid Homeostasis, Phospholipid Metabolic Process, Plasma Lipoprotein Remodeling, and sphingolipid metabolism. CONCLUSION: We identified potential metabolomics-based biomarkers of insufficient sleep in humans. Although our current biomarkers require further development and validation using independent cohorts, they have potential to advance our understanding of the negative consequences of insufficient sleep, improve diagnosis of poor sleep health, and could eventually help identify targets for countermeasures designed to mitigate the negative health consequences of insufficient sleep.


Subject(s)
Metabolomics , Sleep Deprivation , Adolescent , Adult , Biomarkers , Energy Intake , Humans , Male , Sleep , Young Adult
3.
Sleep ; 43(2)2020 02 13.
Article in English | MEDLINE | ID: mdl-31641776

ABSTRACT

The "International Biomarkers Workshop on Wearables in Sleep and Circadian Science" was held at the 2018 SLEEP Meeting of the Associated Professional Sleep Societies. The workshop brought together experts in consumer sleep technologies and medical devices, sleep and circadian physiology, clinical translational research, and clinical practice. The goals of the workshop were: (1) characterize the term "wearable" for use in sleep and circadian science and identify relevant sleep and circadian metrics for wearables to measure; (2) assess the current use of wearables in sleep and circadian science; (3) identify current barriers for applying wearables to sleep and circadian science; and (4) identify goals and opportunities for wearables to advance sleep and circadian science. For the purposes of biomarker development in the sleep and circadian fields, the workshop included the terms "wearables," "nearables," and "ingestibles." Given the state of the current science and technology, the limited validation of wearable devices against gold standard measurements is the primary factor limiting large-scale use of wearable technologies for sleep and circadian research. As such, the workshop committee proposed a set of best practices for validation studies and guidelines regarding how to choose a wearable device for research and clinical use. To complement validation studies, the workshop committee recommends the development of a public data repository for wearable data. Finally, sleep and circadian scientists must actively engage in the development and use of wearable devices to maintain the rigor of scientific findings and public health messages based on wearable technology.


Subject(s)
Physicians , Wearable Electronic Devices , Biomarkers , Humans , Public Health , Sleep
4.
Heliyon ; 5(11): e02896, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31828230

ABSTRACT

The consequences of sleep deprivation on memory, cognition, nociception, stress, and endocrine function are related to the balance of neuropeptides, with peptidases being particularly essential. Thimet oligopeptidase (THOP1) is a metallopeptidase implicated in the metabolism of many sleep-related peptides, including angiotensin I, gonadotropin releasing hormone (GnRH), neurotensin, and opioid peptides. In the present study, we evaluated the effect of sleep deprivation and sleep recovery in male rats on THOP1 expression and specific activity in the central nervous system. In the striatum and hypothalamus, THOP1 activity decreased following sleep deprivation and a recovery period. Meanwhile, THOP1 activity and immunoexpression increased in the hippocampal dentate gyrus during the sleep recovery period. Changes in THOP1 expression after sleep deprivation and during sleep recovery can potentially alter the processing of neuropeptides. In particular, processing of opioid peptides may be related to the known increase in pain sensitivity in this model. These results suggest that THOP1 may be an important player in the effects of sleep deprivation.

5.
Neuropharmacology ; 139: 52-60, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29928886

ABSTRACT

Painful conditions and sleep disturbances are major public health problems worldwide and one directly affects the other. Sleep loss increases pain prevalence and severity; while pain disturbs sleep. However, the underlying mechanisms are largely unknown. Here we asked whether chronic sleep restriction for 6 h daily progressively increases pain sensitivity and if this increase is reversed after two days of free sleep. Also, whether the pronociceptive effect of chronic sleep restriction depends on the periaqueductal grey and on the nucleus accumbens, two key regions involved in the modulation of pain and sleep-wake cycle. We showed that sleep restriction induces a pronociceptive effect characterized by a significant decrease in the mechanical paw withdrawal threshold in rats. Such effect increases progressively from day 3 to day 12 remaining stable thereafter until day 26. Two consecutive days of free sleep were not enough to reverse the effect, not even to attenuate it. This pronociceptive effect depends on the periaqueductal grey and on the nucleus accumbens, since it was prevented by their excitotoxic lesion. Complementarily, chronic sleep restriction significantly increased c-Fos protein expression within the periaqueductal grey and the nucleus accumbens and this correlates with the intensity of the pronociceptive effect, suggesting that the greater the neural activity in this regions, the greater the effect. These findings may contribute not only to understand why painful conditions are more prevalent and severe among people who sleep poorly, but also to develop therapeutic strategies to prevent this, increasing the effectiveness of pain management in this population.


Subject(s)
Nucleus Accumbens/physiopathology , Pain Perception/physiology , Pain Threshold/physiology , Periaqueductal Gray/physiopathology , Sleep Deprivation/physiopathology , Animals , Male , N-Methylaspartate/toxicity , Nociceptive Pain/pathology , Nociceptive Pain/physiopathology , Nucleus Accumbens/pathology , Periaqueductal Gray/pathology , Proto-Oncogene Proteins c-fos/metabolism , Rats, Wistar , Sleep Deprivation/pathology , Time Factors , Touch
6.
Nutrients ; 9(3)2017 Mar 21.
Article in English | MEDLINE | ID: mdl-28335560

ABSTRACT

Serum amyloid A (SAA) was recently associated with metabolic endotoxemia, obesity and insulin resistance. Concurrently, insufficient sleep adversely affects metabolic health and is an independent predisposing factor for obesity and insulin resistance. In this study we investigated whether sleep loss modulates SAA production. The serum SAA concentration increased in C57BL/6 mice subjected to sleep restriction (SR) for 15 days or to paradoxical sleep deprivation (PSD) for 72 h. Sleep restriction also induced the upregulation of Saa1.1/Saa2.1 mRNA levels in the liver and Saa3 mRNA levels in adipose tissue. SAA levels returned to the basal range after 24 h in paradoxical sleep rebound (PSR). Metabolic endotoxemia was also a finding in SR. Increased plasma levels of SAA were also observed in healthy human volunteers subjected to two nights of total sleep deprivation (Total SD), returning to basal levels after one night of recovery. The observed increase in SAA levels may be part of the initial biochemical alterations caused by sleep deprivation, with potential to drive deleterious conditions such as metabolic endotoxemia and weight gain.


Subject(s)
Obesity/blood , Serum Amyloid A Protein/metabolism , Sleep Deprivation/blood , Adult , Animals , Biomarkers/blood , Body Weight , Comorbidity , Disease Models, Animal , Gene Expression Regulation , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serum Amyloid A Protein/genetics , Up-Regulation , Weight Gain , Young Adult
7.
Sleep ; 39(8): 1601-11, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27306266

ABSTRACT

STUDY OBJECTIVES: Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. METHODS: To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. RESULTS: ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. CONCLUSIONS: Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence.


Subject(s)
Locus Coeruleus/pathology , Neurons/metabolism , Neurons/pathology , Orexins/metabolism , Sleep Wake Disorders/physiopathology , Aging/metabolism , Animals , Cell Count , Darkness , Light , Lipofuscin/metabolism , Locus Coeruleus/radiation effects , Male , Mice , Mice, Inbred C57BL , Neurons/radiation effects , Norepinephrine/metabolism , Random Allocation , Sirtuins/metabolism , Sleep/physiology , Sleep/radiation effects , Wakefulness/physiology , Wakefulness/radiation effects
8.
Appl Physiol Nutr Metab ; 40(11): 1143-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26513007

ABSTRACT

Sleep deprivation (SD) can induce muscle atrophy. We aimed to investigate the changes underpinning SD-induced muscle atrophy and the impact of this condition on rats that were previously submitted to resistance training (RT). Adult male Wistar EPM-1 rats were randomly allocated into 1 of 5 groups: control, sham, SD (for 96 h), RT, and RT+SD. The major outcomes of this study were muscle fiber cross-sectional area (CSA), anabolic and catabolic hormone profiles, and the abundance of select proteins involved in muscle protein synthesis and degradation pathways. SD resulted in muscle atrophy; however, when SD was combined with RT, the reduction in muscle fiber CSA was attenuated. The levels of IGF-1 and testosterone were reduced in SD animals, and the RT+SD group had higher levels of these hormones than the SD group. Corticosterone was increased in the SD group compared with the control group, and this increase was minimized in the RT+SD group. The increases in corticosterone concentrations paralleled changes in the abundance of ubiquitinated proteins and the autophagic proteins LC3 and p62/SQSTM1, suggesting that corticosterone may trigger these changes. SD induced weight loss, but this loss was minimized in the RT+SD group. We conclude that SD induced muscle atrophy, probably because of the increased corticosterone and catabolic signal. High-intensity RT performed before SD was beneficial in containing muscle loss induced by SD. It also minimized the catabolic signal and increased synthetic activity, thereby minimizing the body's weight loss.


Subject(s)
Muscle Contraction , Muscle, Skeletal/metabolism , Muscular Atrophy/prevention & control , Resistance Training , Sleep Deprivation/therapy , Animals , Autophagy , Corticosterone/metabolism , Disease Models, Animal , Insulin-Like Growth Factor I/metabolism , Male , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Rats, Wistar , Signal Transduction , Sleep Deprivation/metabolism , Sleep Deprivation/pathology , Sleep Deprivation/physiopathology , Testosterone/metabolism , Ubiquitination
9.
Sleep Med ; 16(5): 559-63, 2015 May.
Article in English | MEDLINE | ID: mdl-25890781

ABSTRACT

The identification of biological markers that allow the early diagnosis, or even the prevention of age-related diseases, is an important goal that is being actively pursued in the research community. Sleep is one of the physiological processes that is most affected by aging, and there is a strong relationship between age-related sleep alterations and diseases. Changes in cellular senescence and the linked changes in telomere length might be potential markers of age-related sleep changes. In this review, we present some of the most recent evidence showing that telomere length has been associated with sleep loss and sleep disturbances in cross-sectional and case-control studies. We also present insights into the cellular senescence mechanisms relating to changes in telomere length, and we suggest that this field lacks basic and clinical research studies, especially long-term longitudinal studies, which may bring opportunities to sleep researchers to investigate this relationship in more depth.


Subject(s)
Cellular Senescence/physiology , Sleep Deprivation/physiopathology , Sleep Wake Disorders/physiopathology , Telomere Shortening , Aging/physiology , Biomarkers , Humans , Sleep/physiology , Sleep Deprivation/diagnosis , Sleep Wake Disorders/diagnosis , Telomere/physiology
10.
Front Integr Neurosci ; 7: 80, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24454281

ABSTRACT

The premise that the central nervous system is immune-privileged arose from the fact that direct contact between immune and nervous cells is hindered by the blood-brain barrier. However, the blood-brain barrier also comprises the interface between the immune and nervous systems by secreting chemo-attractant molecules and by modulating immune cell entry into the brain. The majority of published studies on the blood-brain barrier focus on endothelial cells (ECs), which are a critical component, but not the only one; other cellular components include astroglia, microglia, and pericytes. Pericytes are poorly studied in comparison with astrocytes or ECs; they are mesenchymal cells that can modify their ultrastructure and gene expression in response to changes in the central nervous system microenvironment. Pericytes have a unique synergistic relationship with brain ECs in the regulation of capillary permeability through secretion of cytokines, chemokines, nitric oxide, matrix metalloproteinases, and by means of capillary contraction. Those pericyte manifestations are related to changes in blood-brain barrier permeability by an increase in endocytosis-mediated transport and by tight junction disruption. In addition, recent reports demonstrate that pericytes control the migration of leukocytes in response to inflammatory mediators by up-regulating the expression of adhesion molecules and releasing chemo-attractants; however, under physiological conditions they appear to be immune-suppressors. Better understanding of the immune properties of pericytes and their participation in the effects of brain infections, neurodegenerative diseases, and sleep loss will be achieved by analyzing pericyte ultrastructure, capillary coverage, and protein expression. That knowledge may provide a mechanism by which pericytes participate in the maintenance of the proper function of the brain-immune interface.

11.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;44(10): 992-999, Oct. 2011.
Article in English | LILACS | ID: lil-600690

ABSTRACT

The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.


Subject(s)
Humans , Adipokines/metabolism , /etiology , Glucose Intolerance/metabolism , Insulin Resistance/physiology , Sleep Deprivation/complications , Adiponectin/metabolism , /metabolism , /metabolism , Leptin/metabolism , Sleep Deprivation/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL