Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.986
Filter
1.
Muscle Nerve ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360659

ABSTRACT

INTRODUCTION/AIMS: Persons with spinal muscular atrophy (pwSMA) report progressive muscle weakness but also reduced endurance when performing repetitive tasks in daily life, referred to as "performance fatigability" (PF). Data regarding the effects of the new disease-modifying drugs on PF are scarce. Thus, our main objective was to examine PF in adult ambulatory pwSMA treated long-term with nusinersen. METHODS: Six-minute walk test (6MWT) data from 14 adult pwSMA treated with nusinersen for up to 70 months were retrospectively analyzed to determine PF. Performance fatigability was defined as the percentage change in the distance covered between the last and first minute of the 6MWT. In addition, relationships between PF and other clinical features were assessed. RESULTS: Performance fatigability was found in 12/14 pwSMA (85.7%) prior to treatment. The mean distance walked in the sixth minute (71.1 m) was shorter than the distance covered in the first minute (81.8 m), corresponding to a mean PF of 13.1% (95% confidence interval (CI): 6.5-19.6, p = .0007). During treatment with nusinersen, there was a mean reduction in PF of 5.6% (95% CI: -10.0 to -1.3, p = .0148). We found no relationship between PF and fatigue as measured by the Fatigue Severity Scale. DISCUSSION: This study demonstrates the presence of PF as an independent component of motor impairment and as a potential therapeutic target in our cohort of adult ambulatory pwSMA. Furthermore, the observations in our cohort suggest that nusinersen may have a beneficial effect on PF.

2.
Muscle Nerve ; 2024 Oct 06.
Article in English | MEDLINE | ID: mdl-39370660

ABSTRACT

INTRODUCTION/AIMS: While prompt identification and treatment of infants with spinal muscular atrophy (SMA) can ameliorate outcomes, variability persists. This study assessed management and outcomes of early-treated infants with SMA. METHODS: We analyzed retrospective data at 12 centers on infants with SMA treated at age ≤6 weeks from August 2018 to December 2023. RESULTS: Sixty-six patients, 35 with two SMN2 copies and 31 with ≥3 SMN2 copies, were included. Twenty-five (38%, 22 with two SMN2 copies), had SMA findings before initial treatment which was onasemnogene abeparvovec in 47 (71%) and nusinersen in 19 (29%). Thirty-two received sequential or combination treatments, including 16 adding nusinersen or risdiplam due to SMA findings following onasemnogene abeparvovec. All sat independently. Compared to children with ≥3 SMN2 copies, those with two SMN2 copies were less likely to walk (23/34 [68%] vs. 31/31 [100%], p < .001) and less likely to walk on time (9/34 [26%] vs. 29/31 [94%], p < .001); one non-ambulatory child was <18 months old and was excluded from this analysis. No patients required permanent ventilation or exclusively enteral nutrition; six required nocturnal non-invasive ventilation and four utilized supplemental enteral nutrition, all with two SMN2 copies. DISCUSSION: Early treatment of infants with SMA can improve outcomes as indicated by our cohort, all of whom sat independently and are without permanent ventilation. However, our study demonstrates ongoing disability in most children with two SMN2 copies despite early monotherapy and emphasizes the need for additional research, including earlier monotherapy, initial combination therapy, prenatal treatment, and non-SMN modifying treatments.

3.
Br J Clin Pharmacol ; 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39378908

ABSTRACT

Spinal muscular atrophy (SMA) is a rare inherited autosomal recessive progressive disease of a varying phenotype, with varying clinical symptoms, and as a result the patients suffering from it require multiple types of care. It was deemed useful to conduct a systematic literature review on the pharmacoeconomic evaluations of all currently registered disease-modifying therapies in order to inform policy and highlight research gaps. Pharmacoeconomic analyses written in English and published after 2016 were considered for inclusion. PubMed/Medline, Global Health and Embase were systematically and separately searched between 16 October and 23 October 2023. Hand-searching was also conducted on PubMed based on reference lists of published literature. After the exclusion criteria were applied, 14 studies were included. BMJ checklist was used for quality assessment and the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist was used to assess the quality of reporting of all included studies. Data extraction was performed manually. Regarding evidence synthesis, data were heterogeneous and are thus presented based on comparison. This study confirms the need for pharmacoeconomic analyses (cost-effectiveness or cost-utility) also in cases when the cost of treatment is very high and the incremental cost-effectiveness ratio values exceed the usual, acceptable values for standard therapy. Specific willingness to pay thresholds for orphan medicines are of the utmost importance, to allow patients with SMA to have access to safe and effective treatments. With such economic evaluations, it is possible to compare the value of medications with the same indication, but it should be emphasized that in the interpretation of data and in making decisions about the use of medicines, the impact of new knowledge should be considered.

4.
Eur J Neurol ; : e16517, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392101

ABSTRACT

BACKGROUND AND PURPOSE: Spinal muscular atrophy (SMA) is a genetic disorder caused by SMN1 gene mutations. Although studies on available disease-modifying treatments have reported their efficacy and safety, long-term natural history data are lacking for comparison. The aim of this prospective study was to report 4-year changes on the Hammersmith Functional Motor Scale Expanded (HFMSE) in type II and III SMA in relation to several variables such as age, functional status and SMN2 copy number. METHODS: The study involves retrospective analysis of prospectively collected data from international datasets (Belgium, Italy, Spain, USA, UK). HFMSE longitudinal changes were analyzed using linear mixed effect models, examining annualized HFMSE change and its association with variables such as age at baseline, sex, motor function, SMN2 copy number. RESULTS: In SMA type II (n = 226), the 4-year mean change was -2.20 points. The largest mean changes were observed in sitters aged 5-14 years and the lowest in those who lost the ability to sit unsupported. In SMA type III (n = 162), the 4-year mean change was -2.75 points. The largest mean changes were in those aged 7-15 years, whilst the lowest were in those below 7 and in the SMA type IIIa subgroup over 15. Age and score at baseline were predictive of 4-year changes. CONCLUSIONS: Our findings provide natural history reference data for comparison with long-term follow-up of clinical trials or real-world data, highlighting the need to define patterns of changes in smaller SMA subgroups instead of reporting mean changes across an entire SMA cohort.

5.
BMC Pediatr ; 24(1): 651, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394064

ABSTRACT

BACKGROUND: Children with spinal muscular atrophy (SMA) are at risk of low bone mineral density (BMD) and bone fragility. This study aims to assess lumbar spine BMD measured by quantitative computed tomography (QCT) and investigate influencing factors of low BMD in children with SMA without disease-modifying treatment. METHODS: Demographic data, laboratory parameters, QCT data, and data on spinal radiographs were collected. A linear regression model was carried out to explore the correlations between BMD and its related factors. RESULTS: Sixty-six patients with SMA who had complete records between July 2017 and July 2023 were analyzed, with SMA with a mean age of 5.4 years (range, 2.4-9.7 years), including type 1 in 14, type 2 in 37, and type 3 in 15. 28.8% of patients (19/66) were diagnosed with low BMD (Z-scores ≤ - 2), and the mean BMD Z-scores on QCT was - 1.5 ± 1.0. In our model, BMD Z-scores was associated with age (ß=-0.153, p = 0.001). SMA phenotype and serum bone metabolism markers, such as serum phosphorus (P), alkaline phosphatase (ALP) and 25-Hydroxyvitamin D (25-OH-D) levels did not independently predict low BMD. ROC analysis showed that the age ≥ 6.3 years predicts a Z-scores ≤ -2.0 with a sensitivity of 68.4% and a specificity of 68.1%. CONCLUSIONS: Low BMD were highly prevalent in children with SMA without disease-modifying treatment in our centre. Regular monitoring of BMD is necessary for all types of SMA children, especially those aged ≥ 6.3 years.


Subject(s)
Bone Density , Muscular Atrophy, Spinal , Humans , Male , Female , Child , Cross-Sectional Studies , Child, Preschool , Muscular Atrophy, Spinal/physiopathology , Lumbar Vertebrae/diagnostic imaging , Tomography, X-Ray Computed , Retrospective Studies , Biomarkers/blood
7.
Orphanet J Rare Dis ; 19(1): 344, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272200

ABSTRACT

BACKGROUND: Spinal muscular atrophy type 1 (SMA1) is the most severe and early form of SMA, a genetic disease with motor neuron degeneration. Onasemnogene abeparvovec gene transfer therapy (GT) has changed the natural history of SMA1, but real-world data are scarce. METHODS: A French national expert committee identified 95 newly diagnosed treatment-naive SMA1 patients between June 2019 and June 2022. We prospectively report on children treated with GT as the first and only therapy who had more than one-year of follow-up. RESULTS: Forty-six SMA1 patients received GT. Twelve patients received other treatments. Patients with respiratory insufficiency were oriented toward palliative care after discussion with families. Twenty-nine of the treated patients with more than 12 months of follow-up were included in the follow-up analysis. Among them, 17 had 24 months of follow-up. The mean age at treatment was 7.5 (2.1-12.5) months. Twenty-two patients had two SMN2 copies, and seven had three copies. One infant died in the month following GT due to severe thrombotic microangiopathy, and another died due to respiratory distress. Among the 17 patients with 24 months of follow-up, 90% required spinal bracing (15/17), three patients required nocturnal noninvasive ventilation, and two needed gastrostomy. Concerning motor milestones at the 24-month follow-up, all patients held their head, 15/17 sat for 30 s unassisted, and 12/17 stood with aid. Motor scores (CHOPINTEND and HINE-2) and thoracic circumference significantly improved in all patients. CONCLUSIONS: Our study shows favorable motor outcomes and preserved respiratory and feeding functions in treatment-naive SMA1 infants treated by GT as the first and only therapy before respiratory and bulbar dysfunctions occurred. Nevertheless, almost all patients developed spinal deformities.


Subject(s)
Spinal Muscular Atrophies of Childhood , Humans , Spinal Muscular Atrophies of Childhood/drug therapy , Spinal Muscular Atrophies of Childhood/therapy , Female , Male , Infant , Biological Products/therapeutic use , France , Cohort Studies , Genetic Therapy , Treatment Outcome , Prospective Studies , Recombinant Fusion Proteins
8.
Neurol Ther ; 13(5): 1483-1504, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39222296

ABSTRACT

INTRODUCTION: Nusinersen clinical trials have limited data on adolescents and adults with 5q-associated spinal muscular atrophy (SMA). We conducted a systematic literature review (SLR) and meta-analysis to assess effectiveness of nusinersen in adolescents and adults with SMA in clinical practice. METHODS: Our search included papers published 12/23/2016 through 07/01/2022 with ≥ 5 individuals ≥ 13 years of age and with ≥ 6 months' data on ≥ 1 selected motor function outcomes [Hammersmith Functional Motor Scale-Expanded (HFMSE), Revised Upper Limb Module (RULM), and Six-Minute Walk Test (6MWT)]. For meta-analysis, effect sizes were pooled using random-effects models. To understand treatment effects by disease severity, subgroup meta-analysis by SMA type and ambulatory status was conducted. RESULTS: Fourteen publications including 539 patients followed up to 24 months met inclusion criteria for the SLR. Patients were age 13-72 years and most (99%) had SMA Type II or III. Modest improvement or stability in motor function was consistently observed at the group level. Significant mean increases from baseline were observed in HFMSE [2.3 points (95% CI 1.3-3.3)] with 32.1% (21.7-44.6) of patients demonstrating a clinically meaningful increase (≥ 3 points) at 18 months. Significant increases in RULM were consistently found, with a mean increase of 1.1 points (0.7-1.4) and 38.3% (30.3-47.1) showing a clinically meaningful improvement (≥ 2 points) at 14 months. Among ambulatory patients, there was a significant increase in mean 6MWT distance of 25.0 m (8.9-41.2) with 50.9% (33.4-68.2) demonstrating a clinically meaningful improvement (≥ 30 m) at 14 months. The increases in HFMSE were greater for less severely affected patients, whereas more severely affected patients showed greater improvement in RULM. CONCLUSIONS: Findings provide consolidated evidence that nusinersen is effective in improving or stabilizing motor function in many adolescents and adults with a broad spectrum of SMA.


Motor neurons are specialized cells in the brain and spinal cord that control the function of muscles. People with spinal muscular atrophy (SMA) do not make enough survival motor neuron (SMN) protein, which motor neurons need to function. As a result, people with SMA experience decreased muscle function that gets worse over time. Nusinersen is a drug that increases the amount of SMN protein made in the brain and spinal cord. However, most clinical trials of nusinersen have been in infants and children with SMA. Less is known about the effects of nusinersen in teenagers and adults with SMA who may have less severe but still progressive forms of the disease. In this manuscript, we first conducted a thorough review and analysis of research published by investigators who treated teenagers and adults with nusinersen for up to 24 months. We then used an additional analysis, called a meta-analysis, that allowed us to combine the information from several articles, so that we could better understand whether nusinersen helped these patients. We looked at 3 tests that investigators used to see how nusinersen affected patients' motor function. The Hammersmith Functional Motor Scale­Expanded (HFMSE) assesses upper and lower limb motor function; the Revised Upper Limb Module (RULM) evaluates upper limb function; and the Six-Minute Walk Test (6MWT) measures the maximum distance a person can walk in 6 minutes. Our study showed that nusinersen can improve motor function or prevent motor function from getting worse in many teenagers and adults with SMA.

9.
Cell Mol Life Sci ; 81(1): 393, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254732

ABSTRACT

AIM: The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen infusion (T302). METHODS: In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spectrometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen (SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302. The Random Forest (RF) machine learning algorithm and pathway enrichment analysis were applied for analysis. RESULTS: The RF algorithm, applied to the protein expression profile of naïve patients, revealed several proteins that could classify the different types of SMA according to their differential abundance at T0. Analysis of changes in proteomic profiles identified a total of 147 differentially expressed proteins after nusinersen treatment in SMA1, 135 in SMA2, and 289 in SMA3. Overall, nusinersen-induced changes on proteomic profile were consistent with i) common effects observed in allSMA types (i.e. regulation of axonogenesis), and ii) disease severity-specific changes, namely regulation of glucose metabolism in SMA1, of coagulation processes in SMA2, and of complement cascade in SMA3. CONCLUSIONS: This untargeted LC-MS proteomic profiling in the CSF of SMA patients revealed differences in protein expression in naïve patients and showed nusinersen-related modulation in several biological processes after 10 months of treatment. Further confirmatory studies are needed to validate these results in larger number of patients and over abroader timeframe.


Subject(s)
Machine Learning , Muscular Atrophy, Spinal , Oligonucleotides , Proteomics , Humans , Proteomics/methods , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/cerebrospinal fluid , Muscular Atrophy, Spinal/metabolism , Oligonucleotides/therapeutic use , Male , Female , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Retrospective Studies , Infant , Longitudinal Studies , Child, Preschool , Chromatography, Liquid/methods , Child
10.
Orphanet J Rare Dis ; 19(1): 321, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227985

ABSTRACT

BACKGROUND: The motor neuron survival protein performs numerous cellular functions; hence, spinal muscular atrophy (SMA) is considered to be a multi-organ disease with possible sensory system damage. The controversy surrounding the presence of sensory disturbances, prompted us to conduct standard electrophysiological studies and assess the sensory thresholds for different modalities in adults with SMA types 2 and 3. The study group consisted of 44 adult SMA patients (types 2 and 3). All patients underwent neurological examination using the Hammersmith Functional Motor Scale - Expanded (HFMSE). Standard sensory electrophysiological studies in the ulnar nerve and the estimation of vibratory, temperature, and warm- and cold-induced pain thresholds with temperature dispersion assessment were performed using quantitative sensory testing (QST). RESULTS: The most repeatable result was the high amplitude of the sensory nerve action potentials (SNAP) in SMA patients compared to controls. This was higher in type 2 patients compared to type 3a and 3b patients and patients with low HFSME scores. Patients with SMA, especially type 3b presented a longer sensory latency and slower conduction velocity than did controls. Cold pain threshold was higher and warm dispersion larger in SMA. The vibratory limit was higher in patients with high HFSME scores. CONCLUSIONS: A high SNAP amplitude suggests sensory fibre hyperactivity, which may be based on overactivation of metabolic pathways as an adaptive mechanism in response to SMN protein deficiency with additionally coexisting small C- and A-delta fibre damage. SMA patients seem to have a concomitant, mild demyelinating process present at the early SMA stage.


Subject(s)
Muscular Atrophy, Spinal , Humans , Female , Male , Adult , Middle Aged , Young Adult , Muscular Atrophy, Spinal/physiopathology , Adolescent , Spinal Muscular Atrophies of Childhood/physiopathology
11.
Eur J Paediatr Neurol ; 53: 18-24, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39260228

ABSTRACT

OBJECTIVE: We describe outcomes following onasemnogene abeparvovec monotherapy for patients with ≥four survival motor neuron 2 (SMN2) gene copies in RESTORE, a noninterventional spinal muscular atrophy patient registry. METHODS: We evaluated baseline characteristics, motor milestone achievement, post-treatment motor function, use of ventilatory/nutritional support, and adverse events as of December 22, 2022. RESULTS: At data cutoff, 19 patients in RESTORE had ≥four SMN2 copies and were treated with onasemnogene abeparvovec monotherapy (n=12 [63.2%] four copies; n=7 [36.8%] >four copies). All patients were identified by newborn screening and were reported as asymptomatic at diagnosis. Median age at onasemnogene abeparvovec administration was 3.0 months. Median time from treatment to last recorded visit was 15.4 months, with a range of post-treatment follow-up of 0.03-39.4 months. All 12 children who were assessed for motor development achieved new milestones, including standing alone (n=2) and walking alone (n=5). Five children reported one or more treatment-emergent adverse events (one Grade 3 or greater). No deaths or use of ventilatory/nutritional support were reported. CONCLUSIONS: Real-world findings from the RESTORE registry indicate that patients with ≥four SMN2 gene copies treated with onasemnogene abeparvovec monotherapy demonstrated improvements in motor function. Adverse events experienced by these patients were consistent with previously reported findings.

12.
Article in English | MEDLINE | ID: mdl-39254482

ABSTRACT

Introduction: The therapeutic options for spinal muscular atrophy (SMA) are encouraging. However, there is currently no cure for amyotrophic lateral sclerosis (ALS). The clinical and economic uncertainty surrounding innovative treatments for rare neurodegenerative diseases makes it necessary to understand managed entry agreements (MEAs). The aim of this study was to review whether models of MEAs in SMA could be extrapolated to ALS. Methods: We performed a scoping review with information on MEAs on SMA in Web of Science (WOS), PubMed, Lyfegen Library, the National Institute for Health and Care Excellence (NICE), and the Canadian Agency for Drugs and Technologies in Health (CADTH). Results: We found 45 results in WOS and PubMed. After an initial survey, 10 were reviewed to assess eligibility, and three were selected. We obtained 44 results from Lyfegen Library, and three results each from NICE and CADTH. Conclusion: The main objective of MEAs is to reduce uncertainty in the financing of drugs with a high budgetary impact and clinical concerns, as is the case with drugs for SMA and ALS. While the information available on MEAs in SMA is scarce, some conceptual models are publicly available. MEAs for long-term treatments for SMA could be used for the design of MEAs in ALS because of their similarities in economic and clinical uncertainty.

13.
Front Mol Neurosci ; 17: 1393779, 2024.
Article in English | MEDLINE | ID: mdl-39246602

ABSTRACT

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations or deletions in the survival motoneuron 1 (SMN1) gene, resulting in deficiency of the SMN protein that is essential for motoneuron function. Smn depletion in mice disturbs axonal RNA transport and translation, thereby contributing to axon growth impairment, muscle denervation, and motoneuron degeneration. However, the mechanisms whereby Smn loss causes axonal defects remain unclear. RNA localization and translation in axons are controlled by RNA-binding proteins (RBP) and we recently observed that the neuronal RBP Ptbp2 modulates axon growth in motoneurons. Here, we identify Smn as an interactor of Ptbp2 in the cytosolic compartments of motoneurons. We show that the expression level of Ptbp2 is reduced in axons but not in the somata of Smn-depleted motoneurons. This is accompanied by reduced synthesis of the RBP hnRNP R in axons. Re-expression of Ptbp2 in axons compensates for the deficiency of Smn and rescues the defects in axon elongation and growth cone maturation observed in Smn-deficient motoneurons. Our data suggest that Ptbp2 and Smn are components of cytosolic mRNP particles, contributing to the precise spatial and temporal control of protein synthesis within axons and axon terminals.

14.
J Neurogenet ; : 1-10, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39321203

ABSTRACT

SMA (spinal muscular atrophy) is an autosomal recessive neuromuscular disease that causes muscle atrophy and weakness. SMA is diagnosed by a homozygous deletion in exon 7 of the SMN1 gene. However, mutations in genes located in the SMA region, such as SMN2, NAIP, SERF1, and GTF2H2, may also contribute to the severity of the disease. Within our study's scope, 58 SMA patients who applied in 2018-2021 and 40 healthy controls were analyzed. The study retrospectively included the SMN1 and SMN2 copy numbers previously determined by the MLPA method. Then, NAIP gene analyses with the multiplex PCR method and GTF2H2 gene analyses with the RFLP method were performed. There was a significant correlation (p = 0.00001) between SMN2 copy numbers and SMA subtypes. Also, the NAIP gene (p = 0.01) and the GTF2H2 gene (p = 0.0049) revealed a significant difference between healthy and SMA subjects, whereas the SMA subtypes indicated no significant differences. We detected a significant correlation between clinical subtypes and HFMSE scores in 32 pediatric SMA patients compared (p = 0.01). While pediatric patients with GTF2H2 deletions demonstrated higher motor functions, and those with NAIP deletions demonstrated lower motor functions. In this study, we examined the relationship between NAIP and GTF2H2, called SMN region modifier genes, and the clinical severity of the disease in Turkish SMA patients. Despite its small scale, this research will benefit future investigations into the pathogenesis of SMA disease.

15.
FASEB J ; 38(18): e70055, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39305126

ABSTRACT

Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by low levels of the Survival of Motoneuron (SMN) protein. SMN interacts with and regulates the actin-binding protein profilin2a, thereby influencing actin dynamics. Dysfunctional actin dynamics caused by SMN loss disrupts neurite outgrowth, axonal pathfinding, and formation of functional synapses in neurons. Whether the SMN protein directly interacts with and regulates filamentous (F-) and monomeric globular (G-) actin is still elusive. In a quantitative single cell approach, we show that SMN loss leads to dysregulated F-/G-actin fractions. Furthermore, quantitative assessment of cell morphology suggests an F-actin organizational defect. Interestingly, this is mediated by an interaction of SMN with G- and F-actin. In co-immunoprecipitation, in-vitro pulldown and co-localization assays, we elucidated that this interaction is independent of the SMN-profilin2a interaction. Therefore, we suggest two populations being relevant for functional actin dynamics in healthy neurons: SMN-profilin2a-actin and SMN-actin. Additionally, those two populations may influence each other and therefore regulate binding of SMN to actin. In SMA, we showed a dysregulated co-localization pattern of SMN-actin which could only partially rescued by SMN restoration. However, dysregulation of F-/G-actin fractions was reduced by SMN restoration. Taken together, our results suggest a novel molecular function of SMN in binding to actin independent from SMN-profilin2a interaction.


Subject(s)
Actins , Muscular Atrophy, Spinal , Profilins , Survival of Motor Neuron 1 Protein , Actins/metabolism , Profilins/metabolism , Profilins/genetics , Humans , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/genetics , Animals , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Mice , Motor Neurons/metabolism , Protein Binding
16.
Diagnostics (Basel) ; 14(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39335757

ABSTRACT

BACKGROUND: Spinal muscular atrophy type 3 (juvenile SMA, Kugelberg-Welander disease) is a genetic disease caused by changes in the survival motor neuron 1 (SMN) gene. However, there is increasing evidence of metabolic abnormalities in SMA patients, such as altered fatty acid metabolism, impaired glucose tolerance, and defects in the functioning of muscle mitochondria. Given that data in the literature are scarce regarding this subject, the purpose of this study was to estimate the prevalence of glucose and lipid metabolism disorders in adult patients with SMA type 3. METHODS: We conducted a cross-sectional study of 23 adult patients with SMA type 3 who underwent a comprehensive evaluation, including a physical examination, biochemical analysis, and an oral glucose tolerance test during 2020-2023. RESULTS: At least one lipid abnormality was observed in 60.8% of patients. All four lipid parameters were atypical in 4.3% of patients, three lipid parameters were abnormal in 21.7% of patients, and two lipid parameters were altered in 8.7% patients. A total of 91.3% of SMA3 patients met the HOMA-IR criteria for insulin resistance, with 30.43% having impaired glucose tolerance. None of the patients met the criteria for a diagnosis of overt DM2. CONCLUSIONS: The prevalence of dyslipidemia and altered glucose metabolism in our study sets apart the adult population with SMA3 from the general population, confirming a significant interplay between muscle, liver, and adipose tissue. Ensuring metabolic care for aging patients with SMA 3 is crucial, as they are vulnerable to metabolic derangements and cardiovascular risks.

17.
Yonsei Med J ; 65(10): 572-577, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39313447

ABSTRACT

PURPOSE: Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease characterized by the loss of motor neurons in the spinal cord and brainstem, leading to muscle atrophy and weakness. To understand the diagnostic process of Korean patients with SMA, we analyzed their clinical characteristics and challenges. MATERIALS AND METHODS: We conducted a retrospective study of 38 patients with SMA (9 type II and 29 type III) between January 2000 and September 2023. Clinical, laboratory, and genetic data were reviewed. RESULTS: The median ages at symptom onset and diagnosis were 3.0 years [interquartile range (IQR): 1.0-7.3 years] and 25.0 years (IQR: 10.5-37.3 years), respectively. The median diagnostic delay was 19.6 years (IQR: 6.4-31.0 years). A significantly longer delay was observed in SMA type III patients (median: 21.0 years, IQR: 11.0-31.0 years) compared to SMA type II patients (median: 3.0 years, IQR: 0.9-21.0 years) (p=0.021). No significant difference was observed in the number of clinic visits before diagnosis between patients with SMA type II (median: 2.0, IQR: 1.0-4.5) and those with type III (median: 2.0, IQR: 2.0-6.0, p=0.282). The number of clinic visits before diagnosis showed no significant association with the age at symptom onset and diagnosis (p=0.998 and 0.291, respectively). CONCLUSION: Our investigation is the first examination of the diagnostic journey of Korean patients with SMA. As treatments for SMA progress, the significance of an accurate diagnosis has increased, highlighting the importance of reviewing the diagnostic advancements made thus far.


Subject(s)
Muscular Atrophy, Spinal , Humans , Female , Retrospective Studies , Male , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Child , Adult , Child, Preschool , Republic of Korea/epidemiology , Adolescent , Infant , Young Adult , Delayed Diagnosis , Spinal Muscular Atrophies of Childhood/diagnosis , Spinal Muscular Atrophies of Childhood/genetics
18.
Int J Mol Sci ; 25(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39337533

ABSTRACT

Dysregulated RNA metabolism caused by SMN deficiency leads to motor neuron disease spinal muscular atrophy (SMA). Current therapies improve patient outcomes but achieve no definite cure, prompting renewed efforts to better understand disease mechanisms. The calcium channel blocker flunarizine improves motor function in Smn-deficient mice and can help uncover neuroprotective pathways. Murine motor neuron-like NSC34 cells were used to study the molecular cell-autonomous mechanism. Following RNA and protein extraction, RT-qPCR and immunodetection experiments were performed. The relationship between flunarizine mRNA targets and RNA-binding protein GEMIN5 was explored by RNA-immunoprecipitation. Flunarizine increases demethylase Kdm6b transcripts across cell cultures and mouse models. It causes, in NSC34 cells, a temporal expression of GEMIN5 and KDM6B. GEMIN5 binds to flunarizine-modulated mRNAs, including Kdm6b transcripts. Gemin5 depletion reduces Kdm6b mRNA and protein levels and hampers responses to flunarizine, including neurite extension in NSC34 cells. Moreover, flunarizine increases the axonal extension of motor neurons derived from SMA patient-induced pluripotent stem cells. Finally, immunofluorescence studies of spinal cord motor neurons in Smn-deficient mice reveal that flunarizine modulates the expression of KDM6B and its target, the motor neuron-specific transcription factor HB9, driving motor neuron maturation. Our study reveals GEMIN5 regulates Kdm6b expression with implications for motor neuron diseases and therapy.


Subject(s)
Flunarizine , Jumonji Domain-Containing Histone Demethylases , Motor Neurons , Muscular Atrophy, Spinal , SMN Complex Proteins , Animals , Mice , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Flunarizine/pharmacology , Motor Neurons/metabolism , Motor Neurons/drug effects , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , SMN Complex Proteins/metabolism , SMN Complex Proteins/genetics , Neuroprotection/drug effects , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Cell Line , Disease Models, Animal , RNA, Messenger/metabolism , RNA, Messenger/genetics
19.
Hum Genomics ; 18(1): 110, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39343938

ABSTRACT

Spinal muscular atrophy (SMA) is the second most common fatal genetic disease in infancy. It is caused by deletion or intragenic pathogenic variants of the causative gene SMN1, which degenerates anterior horn motor neurons and leads to progressive myasthenia and muscle atrophy. Early treatment improves motor function and prognosis in patients with SMA, but drugs are expensive and do not cure the disease. Therefore, carrier screening seems to be the most effective way to prevent SMA birth defects. In this study, we genetically analyzed 1400 samples using multiplex ligation-dependent probe amplification (MLPA) and quantitative polymerase chain reaction (qPCR), and compared the consistency of the results. We randomly selected 44 samples with consistent MLPA and qPCR results for comprehensive SMA analysis (CASMA) using a long-read sequencing (LRS)-based approach. CASMA results showed 100% consistency, visually and intuitively explained the inconsistency between exons 7 and 8 copy numbers detected by MLPA in 13 samples. A total of 16 samples showed inconsistent MLPA and qPCR results for SMN1 exon 7. CASMA was performed on all samples and the results were consistent with those of resampling for MLPA and qPCR detection. CASMA also detected an additional intragenic variant c.-39A>G in a sample with two copies of SMN1 (RT02). Finally, we detected 23 SMA carriers, with an estimated carrier rate of 1/61 in this cohort. In addition, CASMA identified the "2 + 0" carrier status of SMN1 and SMN2 in a family by analyzing the genotypes of only three samples (parents and one sibling). CASMA has great advantages over MLPA and qPCR assays, and could become a powerful technical support for large-scale screening of SMA.


Subject(s)
Exons , Muscular Atrophy, Spinal , Survival of Motor Neuron 1 Protein , Humans , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/diagnosis , Survival of Motor Neuron 1 Protein/genetics , Female , Male , Exons/genetics , Genetic Carrier Screening/methods , Multiplex Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods
20.
Orphanet J Rare Dis ; 19(1): 353, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327607

ABSTRACT

BACKGROUND: The introduction of newborn screening (NBS) for spinal muscular atrophy (SMA) has increased the early diagnosis of 5q-associated SMA in presymptomatic and symptomatic preterm infants. National and international recommendations for treating preterms and newborns < 38 weeks of gestational age are unavailable. Our retrospective multicentre study aimed to evaluate the postnatal clinical course of preterm infants with 5q-associated SMA diagnosed since the implementation of NBS in Germany in 2021 and to summarize the German experience regarding the decision-making process for available treatment regimens for preterm infants with ≤ 3 survival of motor neuron 2 (SMN2) copies. RESULTS: Twelve preterm infants with 5q-associated SMA and a mean gestational age of 34.0 weeks (range: 26.1-36.8) and birth weight of 2022 g (range: 645-3370) were reported from 8/20 German SMA NBS follow-up centers using a pseudonymized questionnaire. Confirmatory diagnosis, including SMN2 copy number, was completed on average on postnatal day 13. All patients had a biallelic deletion of exon 7 or exons 7 and 8 of the survival of motor neuron 1 (SMN1) gene, with SMN2 copy numbers of two in 10 patients and three in two patients. The neonatal course was complicated by respiratory distress due to prematurity (n = 2), sepsis (n = 2), and jaundice (n = 2). At birth, 11 preterm infants (91.6%) were presymptomatic. However, the neurological status of one patient deteriorated at five weeks of age (postconceptional age of 41.8 weeks) prior to the start of treatment. Disease-modifying treatments were initiated in all patients at a mean postconceptional age of 38.8 weeks, with the majority receiving onasemnogene abeparvovec (83.3%, including 2 patients with prior risdiplam bridge therapy). Notably, consensus among participating experts from German neuromuscular centers resulted in 83.3% of patients receiving disease-modifying treatment at term. CONCLUSIONS: Premature infants with SMA require interdisciplinary care in close collaboration with the neuromuscular center. SMA NBS facilitates early initiation of disease-modifying therapy, ideally during the presymptomatic phase, which significantly influences the prognosis of the newborn.


Subject(s)
Infant, Premature , Muscular Atrophy, Spinal , Neonatal Screening , Humans , Infant, Newborn , Neonatal Screening/methods , Male , Female , Germany , Retrospective Studies , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL