Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Int J Biol Macromol ; 277(Pt 1): 133938, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39029815

ABSTRACT

Arrowroot starch (AS)-based films potential is influenced by its low-cost processing and high transparency packaging material but low tensile strength; hence, AS was blended with kappa-carrageenan (KC) to improve mechanical properties of AS-based films and enhance its potential use in food packaging or coating applications. AS-KC-based films were characterized based on structural, physicomechanical, thermal, pasting properties, and coating application in sweet cherry. The films demonstrated high tensile strength from 3.2 to 29.4 MPa and low elongation properties from 160.3 % to 1.9 %. Moreover, AS/KC films exhibited peak viscosities of 18.7 to 34.8 RVU, and thermal analysis depicted lower weight losses (59-45 %) compared to AS-based films (62 %). In addition, sweet cherry samples coated with AS/KC films and stored at 20 °C for 15 days depicted lower weight losses (26.6 %) compared to non-coated samples (>41 %), which indicated the potential use of the film's coating application in extending the shelf life and quality of fresh fruits.

2.
BMC Plant Biol ; 24(1): 574, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890583

ABSTRACT

BACKGROUND: Fruit cracking impacts the quality of sweet cherry, significantly affecting its marketability due to increased susceptibility to injury, aesthetic flaws, and susceptibility to pathogens. The effect of 1% biofilm (Parka™) application regimes on fruit cracking and other quality parameters in the '0900 Ziraat' cherry cultivar was investigated in this study. Fruit sprayed with water were served as control (U1). Fruit treated only once with biofilm three, two and one week before the commercial harvest were considered as U2, U3 and U4, respectively. Fruit treated with biofilm three, two, and one week before harvest were considered as U5; three and two week before harvest as U6; two and one week before harvest as U7; and fruit treated three and one week before harvest as U8. RESULTS: In both measurement periods, the lower cracking index was obtained in biofilm-treated sweet cherry fruit. However, the firmness of biofilm-treated fruit was higher than that of the control fruit. The lowest respiration rate was observed in U7, while the highest weight was recorded in U4 and U5 than the control. The biofilm application decreased fruit coloration. The biofilm application also increased the soluble solids content of the fruit. The U2, U3 and U4 applications at harvest showed higher titratable acidity than the control. In both measurement periods, the vitamin C content of the U2, U5, U6, U7 and U8 applications was found to be higher than that of the control. The total monomeric anthocyanin of the U3 and U8 applications was higher than that of the control. Furthermore, the antioxidant activity of the U2, U3 and U5 in the DPPH, and the U7 and U8 in FRAP were measured higher thanthat of the control. CONCLUSIONS: The application of biofilms has the potential to mitigate fruit cracking, prolong postharvest life of sweet cherries, and enhance fruit firmness.


Subject(s)
Biofilms , Fruit , Prunus avium , Fruit/microbiology , Fruit/physiology , Biofilms/drug effects , Prunus avium/physiology , Prunus avium/drug effects , Ascorbic Acid/metabolism
3.
BMC Plant Biol ; 24(1): 536, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862890

ABSTRACT

BACKGROUND: The heavy metal-associated isoprenylated plant protein (HIPP) is an important regulatory element in response to abiotic stresses, especially playing a key role in low-temperature response. RESULTS: This study investigated the potential function of PavHIPP16 up-regulated in sweet cherry under cold stress by heterologous overexpression in tobacco. The results showed that the overexpression (OE) lines' growth state was better than wild type (WT), and the germination rate, root length, and fresh weight of OE lines were significantly higher than those of WT. In addition, the relative conductivity and malondialdehyde (MDA) content of the OE of tobacco under low-temperature treatment were substantially lower than those of WT. In contrast, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT) activities, hydrogen peroxide (H2O2), proline, soluble protein, and soluble sugar contents were significantly higher than those of WT. Yeast two-hybrid assay (Y2H) and luciferase complementation assay verified the interactions between PavbHLH106 and PavHIPP16, suggesting that these two proteins co-regulated the cold tolerance mechanism in plants. The research results indicated that the transgenic lines could perform better under low-temperature stress by increasing the antioxidant enzyme activity and osmoregulatory substance content of the transgenic plants. CONCLUSIONS: This study provides genetic resources for analyzing the biological functions of PavHIPPs, which is important for elucidating the mechanisms of cold resistance in sweet cherry.


Subject(s)
Nicotiana , Plant Proteins , Plants, Genetically Modified , Prunus avium , Nicotiana/genetics , Nicotiana/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Prunus avium/genetics , Prunus avium/physiology , Prunus avium/metabolism , Cold-Shock Response/genetics , Cold Temperature , Gene Expression Regulation, Plant
4.
Physiol Mol Biol Plants ; 30(4): 633-645, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737320

ABSTRACT

ALDH (Aldehyde dehydrogenase), as an enzyme that encodes the dehydroxidization of aldehydes into corresponding carboxylic acids, played an important role inregulating gene expression in response to many kinds of biotic and abiotic stress, including saline-alkali stress. Saline-alkali stress was a common stress that seriously affected plant growth and productivity. Saline-alkali soil contained the characteristics of high salinity and high pH value, which could cause comprehensive damage such as osmotic stress, ion toxicity, high pH, and HCO3-/CO32- stress. In our study, 18 PaALDH genes were identified in sweet cherry genome, and their gene structures, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Quantitative real-time PCR confirmed that PaALDH17 exhibited the highest expression compared to other members under saline-alkali stress. Subsequently, it was isolated from Prunus avium, and transgenic A. thaliana was successfully obtained. Compared with wild type, transgenic PaALDH17 plants grew better under saline-alkali stress and showed higher chlorophyll content, Superoxide dismutase (SOD), Peroxidase (POD) and Catalase (CAT) enzyme activities, which indicated that they had strong resistance to stress. These results indicated that PaALDH17 improved the resistance of sweet cherries to saline-alkali stress, which in turn improved quality and yields. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01444-7.

5.
Physiol Mol Biol Plants ; 30(4): 559-570, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38737325

ABSTRACT

Sweet cherry (Prunus avium L.) is one of the most economically important fruits in the world. However, severe fruit abscission has brought significant challenges to the cherry industry. To better understand the molecular regulation mechanisms underlying excessive fruit abscission in sweet cherry, the fruit abscission characteristics, the anatomical characteristics of the abscission zone (AZ), as well as a homeodomain-Leucine Zipper gene family member PavHB16 function were analyzed. The results showed that the sweet cherry exhibited two fruit abscission peak stages, with the "Brooks" cultivar demonstrating the highest fruit-dropping rate (97.14%). During these two fruit abscission peak stages, both the retention pedicel and the abscising pedicel formed AZs. but the AZ in the abscising pedicel was more pronounced. In addition, a transcription factor, PavHB16, was identified from sweet cherry. The evolutionary analysis showed that there was high homology between PavHB16 and AtHB12 in Arabidopsis. Moreover, the PavHB16 protein was localized in the nucleus. Overexpression of PavHB16 in Arabidopsis accelerated petal shedding. In the PavHB16-overexpressed lines, the AZ cells in the pedicel became smaller and denser, and the expression of genes involved in cell wall remodeling, such as cellulase 3 gene (AtCEL3), polygalacturonase 1 (AtPG1), and expandin 24(AtEXPA24) were upregulated. The results suggest that PavHB16 may promote the expression of genes related to cell wall remodeling, ultimately facilitating fruit abscission. In summary, this study cloned the sweet cherry PavHB16 gene and confirmed its function in regulating sweet cherry fruit abscission, which provided new data for further study on the fruit abscission mechanism. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01443-8.

6.
Front Plant Sci ; 15: 1355977, 2024.
Article in English | MEDLINE | ID: mdl-38708389

ABSTRACT

Introduction: The self-incompatibility system in sweet cherry (Prunus avium L.) prevents fertilization with own or genetically related pollen, and is genetically determined by the multi-allelic S-locus. Therefore, determining S-alleles is crucial for plant breeding and fruit production, as it enables the selection of compatible combinations of S-genotypes for successful pollination. Methods: In this study, S-alleles were identified in a total of 260 genotypes from the Caucasian region, the species' center of origin. S-allele genotyping was conducted using PCR fragment length analysis with the standard marker PaConsI-F/R2 and reference genotypes, complemented by sequence analysis through amplicon deep sequencing. Results and discussion: The genotypes collected from Azerbaijan and Turkey exhibit a high allelic richness at the S-locus, particularly compared to modern sweet cherry cultivars worldwide. Nine previously undescribed S-alleles were identified and designated as S45, S46, S47, S48, S49, S50, S51, S52 and S53. Given the expected high diversity for other traits, this plant material represents a valuable resource for further breeding research and introgression of new traits in future breeding programs. Furthermore, our results underscore that fragment length alone may not be sufficient for unambiguous assignment of S-alleles due to minimal length differences between different alleles. To address this issue, an S-allele reference ladder was developed using the rich diversity for precise assignment of the S-alleles. This tool can be applied in future experiments as a robust and cost-effective method for accurate S-genotyping across different runs and laboratories. Additionally, several selected S-genotypes were planted in a trial field and will be maintained as an S-allele reference collection.

7.
Heliyon ; 10(10): e31508, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813185

ABSTRACT

Asia has a rich history of cultivating sweet cherries, a practice that has been carried out since ancient times. However, the effective management of Alternaria disease in sweet cherry crops has presented a formidable challenge, resulting in notable decreases in yield. Various attempts have been made to employ both chemical and biological treatments; however, their effectiveness has been restricted. In order to tackle this problem, an investigation was carried out, with the primary objective of isolating and identifying Alternaria isolates that are accountable for the occurrence of sweet cherry soft spot rot. Out of the twelve isolates examined, the CHM-4 isolate was found to be the most pathogenic. Its identification was achieved through the use of the ITS genomic region (ITS1 and ITS4), and the BLAST results revealed a 95 % similarity with Alternaria alternata (MG744381.1). The objective of the research was to explore the potential of silver nanoparticles (SNPs) synthesized by phytosynthesis as a novel antifungal agent to combat sweet cherry soft spot pathogenicity. The biosynthesis of SNPs was carried out using sweet cherry fruits kernel exudate, which served as an environmentally friendly source. The exudates exhibited the ability to produce nanoparticles with an average size of 24.97 nm. Analysis conducted using a transmission electron microscope (TEM) revealed the multifaceted structure of these nanoparticles. Furthermore, when tested at concentrations of 5, 10, 20, and 40 µg/ml, these biosynthetic nanoparticles demonstrated the capability to inhibit the growth of Alternaria fungi and effectively destroy fungal hyphae. It is advisable to utilize diverse components of sweet cherry for the synthesis of various nanoparticles owing to their compatibility with the surrounding environment.

8.
Int J Biol Macromol ; 272(Pt 1): 132532, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806082

ABSTRACT

The study involved preparing and applying edible nano-emulsion coatings containing hydroxypropyl methylcellulose (HPMC), beeswax (BW), and essential oils (thyme, cinnamon, clove, and peppermint) onto sweet cherries. The application was conducted at 4 °C, and the coated cherries were stored for 36 days. This research examines synthesized nano-emulsions physicochemical properties and antibacterial and antifungal activities (C1, C2, and C3). Additionally, it evaluates the quality parameters of control and coated sweet cherry samples. The features of the three edible coatings were assessed, and the findings from the zeta sizer, zeta potential, FTIR, and SEM analyses were deemed satisfactory. It was observed that the application of nano-emulsion coating C1 yielded positive results in maintaining quality attributes such as total suspended solids (TSS), total solids (TS), color, weight loss, respiration rate, firmness, total phenolic contents, and sensory evaluations. Nano-emulsion coating C1 demonstrated efficacy as an antibacterial and antifungal agent against foodborne pathogens E. coli and A. niger, respectively. The current research results are promising and applicable in food industries. The implications suggest that composite nano-emulsion, specifically nano-emulsion edible coatings, can be extensively and effectively used to preserve the quality and shelf life of fruits and vegetables. Furthermore, the environmental waste from conventional food packaging will be minimized using edible packaging applications.


Subject(s)
Hypromellose Derivatives , Oils, Volatile , Waxes , Waxes/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hypromellose Derivatives/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Preservation/methods , Food Storage , Emulsions , Cymbopogon/chemistry , Edible Films , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Escherichia coli/drug effects , Fruit/chemistry
9.
EFSA J ; 22(3): e8647, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38476321

ABSTRACT

The European Commission requested the EFSA Panel on Plant Health to prepare and deliver risk assessments for commodities listed in Commission Implementing Regulation (EU) 2018/2019 as 'High-risk plants, plant products and other objects'. This Scientific Opinion covers plant health risks posed by defoliated 1- or 2-year old bare root plants for planting (grafted or not) of 12 Prunus species (Prunus armeniaca, P. avium, P. canescens, P. cerasifera, P. cerasus, P. davidiana, P. domestica, P. dulcis, P. fontanesiana, P. persica, P. salicina, P. tomentosa) imported from Moldova, taking into account the available scientific information, including the technical information provided by the applicant country. The evaluation identified three EU-quarantine pests, Erwinia amylovora (protected zone quarantine pest), Xiphinema rivesi non-EU populations and Xanthomonas arboricola pv. pruni (protected zone quarantine pest), which were selected for further evaluation, based on defined criteria, including their presence in the applicant country. It should be noted that there is uncertainty regarding whether all relevant pests have been identified due to a limited number of scientific publications and pest surveys in Moldova. For the three selected pests, the risk mitigation measures proposed in the technical dossier from Moldova were evaluated taking into account the possible limiting factors. For these pests, an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on it, including uncertainties associated with the assessment. The degree of pest freedom varies among the pests evaluated, with Erwinia amylovora being the pest most frequently expected on the imported plants. The Expert Knowledge Elicitation indicated, with 95% certainty, that between 9823 and 10,000 bundles (comprising 10-20 plants per bundle) out of 10,000 bundles would be free from E. amylovora.

10.
Plant Biotechnol J ; 22(6): 1622-1635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38415985

ABSTRACT

Fruit firmness is an important trait in sweet cherry breeding because it directly positively influences fruit transportability, storage and shelf life. However, the underlying genes responsible and the molecular mechanisms that control fruit firmness remain unknown. In this study, we identified a candidate gene, PavSCPL, encoding a serine carboxypeptidase-like protein with natural allelic variation, that controls fruit firmness in sweet cherry using map-based cloning and functionally characterized PavSCPL during sweet cherry fruit softening. Genetic analysis revealed that fruit firmness in the 'Rainier' × 'Summit' F1 population was controlled by a single dominant gene. Bulked segregant analysis combined with fine mapping narrowed the candidate gene to a 473-kb region (7418778-7 891 914 bp) on chromosome 6 which included 72 genes. The candidate gene PavSCPL, and a null allele harbouring a 5244-bp insertion in the second exon that completely inactivated PavSCPL expression and resulted in the extra-hard-flesh phenotype, were identified by RNA-sequencing analysis and gene cloning. Quantitative RT-PCR analysis revealed that the PavSCPL expression level was increased with fruit softening. Virus-induced gene silencing of PavSCPL enhanced fruit firmness and suppressed the activities of certain pectin-degrading enzymes in the fruit. In addition, we developed functional molecular markers for PavSCPL and the Pavscpl5.2-k allele that co-segregated with the fruit firmness trait. Overall, this research identified a crucial functional gene for fruit firmness. The results provide insights into the genetic control and molecular mechanism of the fruit firmness trait and present useful molecular markers for molecular-assisted breeding for fruit firmness in sweet cherry.


Subject(s)
Carboxypeptidases , Fruit , Plant Proteins , Prunus avium , Fruit/genetics , Prunus avium/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Carboxypeptidases/genetics , Carboxypeptidases/metabolism , Phenotype , Gene Expression Regulation, Plant , Chromosome Mapping , Alleles , Genes, Plant/genetics
11.
Biochem J ; 481(4): 279-293, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38314636

ABSTRACT

Tocopherols are lipophilic antioxidants known as vitamin E and synthesized from the condensation of two metabolic pathways leading to the formation of homogentisate and phytyl diphosphate. While homogentisate is derived from tyrosine metabolism, phytyl diphosphate may be formed from geranylgeranyl diphosphate or phytol recycling from chlorophyll degradation. Here, we hypothesized that abscisic acid (ABA) could induce tocopherol biosynthesis in sweet cherries by modifying the expression of genes involved in vitamin E biosynthesis, including those from the phytol recycling pathway. Hence, the expression of key tocopherol biosynthesis genes was determined together with vitamin E and chlorophyll contents during the natural development of sweet cherries on the tree. Moreover, the effects of exogenously applied ABA on the expression of key tocopherol biosynthesis genes were also investigated during on-tree fruit development, and tocopherols and chlorophylls contents were analyzed. Results showed that the expression of tocopherol biosynthesis genes, including VTE5, VTE6, HPPD and HPT showed contrasting patterns of variation, but in all cases, increased by 2- and 3-fold over time during fruit de-greening. This was not the case for GGDR and VTE4, the first showing constitutive expression during fruit development and the second with marked down-regulation at ripening onset. Furthermore, exogenous ABA stimulated the production of both α- and γ-tocopherols by 60% and 30%, respectively, promoted chlorophyll degradation and significantly enhanced VTE5 and VTE6 expression, and also that of HPPD and VTE4, altogether increasing total tocopherol accumulation. In conclusion, ABA increases promote the transcription of phytol recycling enzymes, which may contribute to vitamin E biosynthesis during fruit development in stone fruits like sweet cherries.


Subject(s)
Diphosphates , Prunus avium , Vitamin E , Vitamin E/metabolism , Fruit , Prunus avium/metabolism , Abscisic Acid/metabolism , Tocopherols/metabolism , Chlorophyll/metabolism , Phytol/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
12.
BMC Genomics ; 25(1): 3, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38166656

ABSTRACT

BACKGROUND: TCP proteins are plant specific transcription factors that play important roles in plant growth and development. Despite the known significance of these transcription factors in general plant development, their specific role in fruit growth remains largely uncharted. Therefore, this study explores the potential role of TCP transcription factors in the growth and development of sweet cherry fruits. RESULTS: Thirteen members of the PavTCP family were identified within the sweet cherry plant, with two, PavTCP1 and PavTCP4, found to contain potential target sites for Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. Analyses of cis-acting elements and Arabidopsis homology prediction analyses that the PavTCP family comprises many light-responsive elements. Homologs of PavTCP1 and PavTCP3 in Arabidopsis TCP proteins were found to be crucial to light responses. Shading experiments showed distinct correlation patterns between PavTCP1, 2, and 3 and total anthocyanins, soluble sugars, and soluble solids in sweet cherry fruits. These observations suggest that these genes may contribute significantly to sweet cherry light responses. In particular, PavTCP1 could play a key role, potentially mediated through Pav-miR159, Pav-miR139a, and Pav-miR139b-3p. CONCLUSION: This study is the first to unveil the potential function of TCP transcription factors in the light responses of sweet cherry fruits, paving the way for future investigations into the role of this transcription factor family in plant fruit development.


Subject(s)
Arabidopsis , Prunus avium , Prunus avium/genetics , Fruit , Arabidopsis/genetics , Arabidopsis/metabolism , Anthocyanins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
13.
Int J Biol Macromol ; 254(Pt 1): 127419, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37848115

ABSTRACT

In this study, chitosan coatings with different degrees of deacetylation (DD, 88.1 % and 95.2 %) were electrostatically sprayed on sweet cherries to evaluate their impacts on postharvest characteristics and internal metabolism. The results showed that chitosan coating could effectively delay the change of weight, color, firmness, and maintain the content of total phenols, flavonoids and titratable acids, and inhibit the activities of ß-galactosidase and polyphenol oxidase during cold storage. The storage qualities and physiological activities of sweet cherry were significantly correlated with the contents of sorbitol, 4-hydroxycinnamic acid, hydrogenated hydroxycinnamic acid, tyrosine, proline, glutamine, phenylalanine, and other metabolites. Chitosan coating may modulate fruit quality by inhibiting the energy metabolism, accelerating the accumulation of carbohydrates, and promoting the metabolism of phenylalanine and flavonoid. Especially, chitosan coating with 88.1 % DD had better wettability on sweet cherry's peel and displayed more obvious preservation effect through stronger metabolic regulation ability.


Subject(s)
Chitosan , Prunus avium , Food Preservation/methods , Chitosan/pharmacology , Fruit , Flavonoids/metabolism , Phenylalanine/metabolism
14.
Chemphyschem ; 25(3): e202300859, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38100718

ABSTRACT

The main objective of this study was to assess the usefulness of the sweet cherry stones for the production of carbonaceous adsorbents by means of direct physical activation method, using conventional and microwave variant of heating. The adsorbents were characterized in terms of textural parameters, acidic-basic character of the surface, electrokinetic properties and their suitability for drinking water purification. Adsorption tests were carried out against three organic compounds - Triton X-100 (surfactant), bovine serum albumin (protein) and methylene blue (synthetic dye). Depending on the variant of heating applied during activation procedure, the obtained activated biochars differed significantly in terms of the elemental composition, acidic-basic properties as well as degree of specific surface development and the type of porous structure generated. Adsorption tests have showed that the efficiency of organic pollutants removal from aqueous solutions depends significantly not only on the type of the adsorbent and adsorbate applied, but also on the temperature and pH of the system. The sample prepared by microwave-assisted direct activation proved to be very effective in terms of all tested organic pollutants adsorption. The maximum sorption capacity toward Triton X-100, bovine serum albumin and methylene blue reached the level of 86.5, 23.4 and 81.1 mg/g, respectively.


Subject(s)
Environmental Pollutants , Prunus avium , Water Purification , Adsorption , Methylene Blue/chemistry , Octoxynol , Serum Albumin, Bovine , Water Purification/methods , Kinetics , Hydrogen-Ion Concentration
15.
Plant Physiol Biochem ; 206: 108271, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141402

ABSTRACT

Flavor is an essential characteristic of fruit quality and is significant for consumers. Off-flavors have been reported in several fruits, including sweet cherry. This fruit has been reported to show an herbaceous/grassy-like flavor. The herbaceous off-flavor in sweet cherries detected in cultivar Regina has been related to the differential development of aroma compounds such as short-chain aldehydes and esters. One of the main biosynthesis pathways for these compounds is the fatty acid oxidation mediated by lipoxygenases (LOX). In order to have a better understanding of the biological basis of the differences in the volatile profile, the LOX gene expression profile was characterized during fruit development with and without herbaceous off-flavor. A genome-wide analysis of LOX in sweet cherry was carried out and compared to other species such as Arabidopsis, tomato, apple, prunus and strawberry. The structural features of 9-LOX and 13-LOX genes, encoded protein domains and their synteny were examined. Moreover, we analyzed the LOX expression at four developmental stages along ripening by RT-qPCR. Thirteen LOX gene candidates (six 9-LOX and seven 13-LOX) were identified. The 13-LOXs, PaLOX10, PaLOX11, and PaLOX12 were differentially expressed in herbaceous sweet cherries. Furthermore, their expression profile positively correlated with key volatile compounds linked to the herbaceous off-flavor. Overall, this study involves the genome-wide characterization of the LOX family in Prunus avium cv. Regina and provides information that can aid in studying LOX-related fruit deterioration in sweet cherries and associated species.


Subject(s)
Prunus avium , Prunus , Prunus avium/metabolism , Fruit/metabolism , Prunus/genetics , Transcriptome
16.
Front Nutr ; 10: 1283086, 2023.
Article in English | MEDLINE | ID: mdl-38045816

ABSTRACT

Idesia polycarpa Maxim protein was used as a substrate to prepare a novel food packaging material with bioactive functions for encapsulating and extending the postharvest shelf life of sweet cherries. The film-forming solution was prepared from a mixture of Idesia polycarpa Maxim protein, glycerol, and gelatin, and was cast to form a film at room temperature and evaluated for mechanical, optical, structural, crystallinity, thermal properties, morphology, and antioxidant activity. Idesia polycarpa Maxim protein composite film solution was applied as an edible coating on sweet cherries and evaluated for changes in physical and biochemical parameters of sweet cherries in storage at 20°C and 50% relative humidity for 9 days. The results showed that the film tensile strength increased from 0.589 to 1.981 Mpa and the elongation at break increased from 42.555% to 58.386% with the increase of Idesia polycarpa Maxim protein concentration. And in the in vitro antioxidant assay, IPPF-4.0% was found to have the best antioxidant activity, with scavenging rates of 65.11% ± 1.19%, 70.74% ± 0.12%, and 90.96% ± 0.49% for DPPH radicals, ABTS radicals, and hydroxyl radicals, respectively. Idesia polycarpa Maxim protein coating applied to sweet cherries and after storage at 20°C and 50% relative humidity for 9 days, it was found that the Idesia polycarpa Maxim protein coating significantly reduced the weight loss (54.82% and 34.91% in the Control and Coating-2.5% groups, respectively) and the loss of ascorbic acid content (16.47% and 37.14% in the Control and Coating-2.5% groups, respectively) of the sweet cherries, which can effectively extend the aging of sweet cherry fruits and prolong their shelf life. The developed protein film of Idesia polycarpa Maxim with antioxidant activity can be used as a new food packaging material in the food industry.

17.
Front Plant Sci ; 14: 1293167, 2023.
Article in English | MEDLINE | ID: mdl-38078103

ABSTRACT

Abiotic stresses, such as high salinity, pose a significant threat to plant growth and development, reducing crop yield and quality. Calcineurin B-like (CBL) proteins serve as crucial calcium sensors in plant responses to diverse environmental stresses. However, the CBL family in sweet cherry has not been identified at the genome-wide level, and the regulatory role of CBL proteins in cherry plants' salt response is unclear. Here, we identified 10 CBL family genes (PavCBLs) from the Prunus avium genome and cloned seven of them. We comprehensively analyzed PavCBL genes for collinearity, phylogenetic relationships, gene structure, and conserved motifs. Expression analysis revealed significant induction of transcription under abiotic stress, with PavCBL4 displaying the most substantial expression change. Additionally, we identified PavCBL4 as a PavSOS2 (Salt Overly Sensitive 2)-interacting protein through Y2H and Split-LUC assays. Subcellular localization analysis indicated that PavCBL4 is present in both the cytoplasm and nucleus. Functional assessment of PavCBL4 in the PavCBL4-overexpressing transgenic 'Gisela 6' plants showed its positive role in enhancing salt tolerance in cherry plants. Measurements of Na+ content and antioxidant enzyme activity under salt stress indicated that PavCBL4 functions positively by inhibiting Na+ accumulation and promoting ROS scavenging in response to salt stress. These findings lay the groundwork for a deeper understanding of the molecular mechanisms underlying PavCBL-mediated salt tolerance in sweet cherry.

18.
Plant Dis ; 2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38105449

ABSTRACT

Sweet cherry (Prunus avium L.) has become an important economic fruit in China, mainly produced in Shandong Province. In recent years, the planting area of Aba Prefecture in Sichuan Province has increased. In June 2022, sweet cherry brown leaf spot was found in a cherry plantation (100ha) in Wenchuan County (30°54'50.21″N, 103°24'49.10″E), with an incidence of 50 - 70%. The symptoms appeared as brown circular spots on the leaf, gradually expanding until multiple lesions coalesced to form large irregular brown spots; eventually entire leaves were killed. To isolate the causal pathogens, 10 diseased trees were randomly selected from an orchard, one diseased leaf was taken from each tree, and samples (4×4 mm2) were cut from the border between diseased and healthy tissues of 10 diseased leaves, surface sterilized with 75% ethanol for 30 sec, washed three times with sterilized water, dried on sterilized filter paper and placed on potato dextrose agar (PDA). After 5d at 25℃, five morphologically similar colonies were obtained, colony appears yellow fluffy and released a large amount of red-orangepigment. Microscopy revealed circular to ovoid, verrucose, and multicellular conidia measuring 20×25 µm diameter (n = 30) were produced on the mycelia. The morphological characteristics were consistent with the description of Epicoccum nigrum (Lima et al 2011). To further identify the strains, the internal transcribed spacer (ITS), ß-tubulin, and RNA polymerase second largest subunit (RPB2) gene regions were amplified with ITS1/ITS4 , Bt2a/Bt2b, and 5f2/7cr (White et al. 1990; Glass and Donaldson 1995; Sung et al. 2007), respectively. BLAST analysis revealed that the ITS, ß-tubulin, and RPB2 sequences were 99.2%, 100% and 99.6% homologous, with those of E. nigrum (KU204750.1, OL782123.1, and MW602294.1), respectively. The sequences of the five isolates were identical; and those of representative strain TY3 were deposited in GenBank (ITS, OP410968; ß-tubulin, OR502448; RPB2, OP484927). Maximum likelihood phylogenetic analyses were performed for the combined data set with ITS , ß-tubulin and RPB2 using MEGA6 under the Tamura-Nei model (Tamura et al. 1993). Isolate TY3 clustered with E. nigrum type strain CBS 505.85. The pathogenicity of TY3 was tested on 10 sweet cherry trees aged 3 years (there were about 50 leaves per plant). Five plants were sprayed with 50 mL of spore suspension (1×105 spores/mL), while the controls (Five plants) were sprayed with 50 mL of sterile water. All plants were in closed plastic bags to maintain high humidity, placed in a greenhouse, and incubated at 25℃with a 12-h photoperiod. Twelve days after inoculation, 35% of the inoculated leaves showed lesions; that were consistent with those observed in the field, and the control group was asymptomatic. To confirm Koch´s postulates, two isolates were taken from the margins of leaf lesions and both were confirmed to be E. nigrum based on morphological observations and molecular identification using ITS ß-tubulin, and RPB2 sequences. This is the first report of brown leaf spot caused by E. nigrum on P. avium in China. This discovery needs to be considered in developing and implementing disease management programs in sweet cherry production.

19.
BMC Plant Biol ; 23(1): 652, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110865

ABSTRACT

BACKGROUND: The basic helix-loop-helix (bHLH) gene family is one of plants' largest transcription factor families. It plays an important role in regulating plant growth and abiotic stress response. RESULTS: In this study, we determined that the PavbHLH28 gene participated in cold resistance. The PavbHLH28 gene was located in the nucleus and could be induced by low temperature. Under the treatment of ABA, PEG, and GA3, the transcript level of PavbHLH28 was affected. At low temperature, overexpression of the PavbHLH28 gene enhanced the cold resistance of plants with higher proline content, lower electrolyte leakage (EL) and malondialdehyde (MDA) content. Compared with the WT plants, the transgenic plants accumulated fewer reactive oxygen species (ROS), and the activity and expression levels of antioxidant enzymes were significantly increased. The expression of proline synthesis enzyme genes was up-regulated, and the transcripts levels of degradation genes were significantly down-regulated. The transcripts abundance of the cold stressed-related genes in the C-repeat binding factor (CBF) pathway was not significantly different between WT plants and transgenic plants after cold stress. Moreover, the PavbHLH28 could directly bind to the POD2 gene promoter and promote its gene expression. CONCLUSIONS: Overall, PavbHLH28 enhanced the cold resistance of transgenic plants through a CBF-independent pathway, which may be partly related to ROS scavenging.


Subject(s)
Arabidopsis , Prunus avium , Arabidopsis/metabolism , Cold-Shock Response/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Prunus avium/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Stress, Physiological/genetics , Plants, Genetically Modified/metabolism , Proline/metabolism , Gene Expression Regulation, Plant
20.
Plants (Basel) ; 12(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38140492

ABSTRACT

Sweet cherry (Prunus avium L.) is widely planted in northern China due to its high economic value, and its cultivation has gradually spread south to warm regions. However, fruit rot, observed on the young fruits, poses a considerable threat to the development of sweet cherry. To determine the causal agent, morphological observation, molecular identification, and pathogenicity tests were performed on isolates obtained from diseased fruits. As a result, Sclerotinia sclerotiorum was identified as the pathogen. Pathogenicity tests on different sweet cherry cultivars indicated that 'Summit' was highly sensitive to S. sclerotiorum, whereas 'Hongmi' showed significant resistance. Besides sweet cherry, S. sclerotiorum could also infect other vegetable crops we tested, such as cowpea, soybean, tomato, and chili. Fungicide sensitivity and efficacy assays showed that both fludioxonil and pyraclostrobin can effectively inhibit the mycelial growth of S. sclerotiorum and decrease disease incidences on the young fruits of sweet cherry. Furthermore, genome sequencing resulted in a 37.8 Mb assembly of S. sclerotiorum strain ScSs1, showing abundant SNPs, InDels, and SVs with the genome of S. sclerotiorum reference strain 1980 UF-70. The above results provide an important basis for controlling the fruit rot of sweet cherry caused by S. sclerotiorum in China.

SELECTION OF CITATIONS
SEARCH DETAIL