Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39065730

ABSTRACT

A series of 61 thiazolidine-2,4-diones bearing a styryl group at position 5 was synthesized in 2-5 steps and their structure was proved by elemental and spectral analyses. The compounds obtained were evaluated in vitro against the promastigote stage of the kinetoplastid parasite Leishmania infantum and the human HepG2 cell line, to determine selectivity indices and to compare their activities with those of antileishmanial reference drugs. The study of structure-activity relationships indicated the potential of some derivatives bearing a nitro group on the phenyl ring, especially when located at the meta position. Thus, among the tested series, compound 14c appeared as a hit compound with good antileishmanial activity (EC50 = 7 µM) and low cytotoxicity against both the hepatic HepG2 and macrophage THP-1 human cell lines (CC50 = 101 and 121 µM, respectively), leading to good selectivity indices (respectively, 14 and 17), in comparison with the reference antileishmanial drug compound miltefosine (EC50 = 3.3 µM, CC50 = 85 and 30 µM, SI = 26 and 9). Regarding its mechanism of action, among several possibilities, it was demonstrated that compound 14c is a prodrug bioactivated, predominantly by L. donovani nitroreductase 1, likely leading to the formation of cytotoxic metabolites that form covalent adducts in the parasite. Finally, compound 14c is lipophilic (measured CHI LogD7.7 = 2.85) but remains soluble in water (measured PBS solubility at pH7.4 = 16 µM), highlighting the antileishmanial potential of the nitrostyrylthiazolidine-2,4-dione scaffold.

2.
Chem Biodivers ; : e202401095, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007423

ABSTRACT

Three series of thiazolidinedione (TZD) derivatives (5a-f, 7a-f, and 9a-f) were prepared efficiently. Afterward, the synthesized candidates' antibacterial efficacy against both gram-positive and gram-negative bacteria was assessed. Compounds 7c, 7d, and 7f had values comparable to that of ampicillin, a reference antibiotic, whereas compounds 5c, 5d, and 7e exhibited the greatest values (23.0 ± 1.0, 27.7 ± 0.6, and 20.0 ± 1.0, respectively) against gram-positive bacteria (Staphylococcus aureus). The optimal structure of the produced molecules was determined by DFT computing. To assess the binding energy and elucidate the interaction between the potential candidates and different proteins, silico-docking is employed. ADMET analysis to assess the synthesized compounds' toxicity, metabolism, excretion, distribution, and absorption.

3.
Bioorg Med Chem Lett ; 109: 129853, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38909705

ABSTRACT

Overexpression of Bcl-2 protein is a predominant hallmark of disturbed apoptotic pathway in most of the cancers. Herein, chromone-linked thiazolidinediones were designed and synthesized to target Bcl-2 for regulating anti-apoptotic proteins. The study on in vitro cancer cell lines revealed the presence of compounds 8a, 8k, 8l, and 8n, which were found to have good to moderate anti-proliferative activity (with an IC50 concentration less than 10 µM). Among them, 8l depicted the highest cytotoxicity on the A549 cell line with an IC50 of 6.1 ± 0.02 µM. Aberrantly, the compounds displayed less toxicity towards human embryonic kidney HEK cells underlining its selectivity. The DCFDA study revealed a gradual increase in the ROS generation of 8l, followed by its quantification by flow analysis. Similarly, the studies including DAPI, AO/EtBr and Annexin-V binding clearly elucidated the DNA damage, membrane integrity prospects, and insights for early and late apoptotic phases. Markedly, the Bcl-2-FITC anti-body study revealed that compound 8l reduced the expression of anti-apoptotic proteins by 79.1 % compared to the control at 9 µM concentration. In addition, the molecular docking study provided the impending scope of these hybrids, showing promising interaction with the Mcl-1 target (member of the Bcl-2 family) with comparable binding affinities.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Chromones , Drug Screening Assays, Antitumor , Thiazolidinediones , Humans , Apoptosis/drug effects , Chromones/pharmacology , Chromones/chemistry , Chromones/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiazolidinediones/pharmacology , Thiazolidinediones/chemistry , Thiazolidinediones/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , HEK293 Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Cell Line, Tumor
4.
Chem Biodivers ; 21(5): e202301260, 2024 May.
Article in English | MEDLINE | ID: mdl-38513005

ABSTRACT

Microglia are key immune cells in the brain that maintain homeostasis and defend against immune threats. Targeting the dysfunctional microglia is one of the most promising approaches to inhibit neuroinflammation. In the current study, a diverse series of molecular hybrids were designed and screened through molecular docking against two neuroinflammatory targets, namely HMGB1 (2LY4) and HMGB1 Box A (4QR9) proteins. Based on the outcomes of docking scores fifteen compounds; ten furanyl-pyrazolyl acetamides 11(a-j), and five 2,4-thiazolidinyl-furan-3-carboxamide 15(a-e) derivatives were selected for further synthesis, followed by biological evaluation. The selected compounds, 11(a-j) and 15(a-e) were successfully synthesized with moderate to good yields, and structures were confirmed by IR, NMR, and mass spectra. The in-vitro cytotoxicity was evaluated on microglial cells namely BV-2, N-9, HMO6, leukemic HAP1, and human fibroblast cells. Further western-blot analysis revealed that 11h, 11f, 11c, 11j, 15d, 15c, 15e, and 15b compounds significantly suppressed anti-inflammatory markers such as TNF-α, IL-1, IL-6, and Bcl-2. All derivatives were moderate in potency compared to reference doxorubicin and could potentially act as novel anti-neuroinflammatory agents. This study can act as a beacon for further research in the application of furan-pyrazole and furan-2,4-thiazolidinediones as lead moieties for anti-neuroinflammatory and related diseases.


Subject(s)
Acetamides , Furans , Molecular Docking Simulation , Humans , Furans/chemistry , Furans/pharmacology , Furans/chemical synthesis , Acetamides/pharmacology , Acetamides/chemistry , Acetamides/chemical synthesis , Structure-Activity Relationship , Microglia/drug effects , Microglia/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Molecular Structure , Animals , Mice , Cell Survival/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Cell Line , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry
5.
Clin Ther ; 46(4): 345-353, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462427

ABSTRACT

PURPOSE: The bad bitter taste of some medicines is a barrier to overcoming noncompliance with medication use, especially life-saving drugs given to children and the elderly. Here, we evaluated a new class of bitter blockers (thiazolidinediones, TZDs). METHODS: In this study, 2 TZDs were tested, rosiglitazone (ROSI) and a simpler form of TZD, using a high-potency sweetener as a positive control (neohesperidin dihydrochalcone, NHDC). We tested bitter-blocking effects using the bitter drugs tenofovir alafenamide fumarate (TAF), a treatment for HIV and hepatitis B infection, and praziquantel (PRAZ), a treatment for schistosomiasis, by conducting taste testing with 2 separate taste panels: a general panel (N = 97, 20-23 years, 82.5% female, all Eastern European) and a genetically informative panel (N = 158, including 68 twin pairs, 18-82 years, 76% female, 87% European ancestry). Participants rated the bitterness intensity of the solutions on a 100-point generalized visual analog scale. FINDINGS: Person-to-person differences in drug bitterness were striking; TAF and PRAZ were weakly or not bitter for some people but moderately to highly bitter for others. Participants in both taste panels rated the bitter drugs TAF and PRAZ as less bitter on average when mixed with NHDC than when sampled alone. ROSI partially suppressed the bitterness of TAF and PRAZ, but effectiveness differed between the 2 panels: bitterness was significantly reduced for PRAZ but not TAF in the general panel and for TAF but not PRAZ in the genetically informative panel. ROSI was a more effective blocker than the other TZD. IMPLICATIONS: These results suggest that TZDs are partially effective bitter blockers and the suppression efficacy differs from drug to drug, from person to person, and from panel to panel, suggesting other TZDs should be designed and tested with more drugs and on diverse populations to define which ones work best with which drugs and for whom. The discovery of bitter receptor blockers can improve compliance with medication use.


Subject(s)
Taste , Thiazolidinediones , Humans , Female , Male , Taste/drug effects , Adult , Aged , Middle Aged , Young Adult , Adolescent , Aged, 80 and over , Thiazolidinediones/therapeutic use , Tenofovir/therapeutic use , Tenofovir/analogs & derivatives , Rosiglitazone/pharmacology , Rosiglitazone/therapeutic use , Alanine
6.
Cureus ; 16(2): e53400, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38435190

ABSTRACT

Edema is an accumulation of fluid in the body's tissues that affects millions of Americans yearly. It can affect multiple body parts, for example, the brain or eyes, but often occurs in the periphery, including the feet and legs. Medications, such as dihydropyridine and thiazolidinediones (TZDs), can be the etiology of edema. Edema can develop in association with problems in the vasculature or lymphatic flow. In recent years, a better understanding of these drug-induced mechanisms has been appreciated. Specifically, dihydropyridines can increase hydrostatic pressure and cause selective pre-capillary vessel vasodilation. TZDs can cause edema through increased vascular permeability and increased hydrostatic pressure. Specifically, peroxisome proliferator-activated receptor gamma (PPARγ) stimulation increases vascular endothelial permeability, vascular endothelial growth factor (VEGF) secretion, renal sodium, and fluid retention. Other drugs that can cause edema include neuropathic pain agents, dopamine agonists, antipsychotics, nitrates, nonsteroidal anti-inflammatory (NSAIDS), steroids, angiotensin-converting enzyme (ACE) inhibitors, and insulin. There are various clinical presentations of edema. Since multiple mechanisms can induce edema, it is important to understand the basic mechanisms and pathophysiology of drug-induced edema. Edema can even become fatal. For example, angioedema can occur from ACE inhibitor therapy. In this regard, it is considered a medical emergency when there is laryngeal involvement. This review aims to thoroughly appreciate the multiple causes of drug-induced edema and the ways it can be treated or prevented.

7.
Article in English | MEDLINE | ID: mdl-38460447

ABSTRACT

Human serum albumin (HSA) is known to undergo modifications by glucose during diabetes. This process produces glycated HSA that can have altered binding to some drugs. In this study, high-performance affinity microcolumns and competition studies were used to see how glycation affects the binding by two thiazolidinedione-class drugs (i.e., pioglitazone and rosiglitazone) at specific regions of HSA. These regions included Sudlow sites I and II, the tamoxifen and digitoxin sites, and a drug-binding site located in subdomain IB. At Sudlow site II, the association equilibrium constants (or binding constants) for pioglitazone and rosiglitazone with normal HSA were 1.7 × 105 M-1 and 2.0 × 105 M-1 at pH 7.4 and 37 °C, with values that changed by up to 5.7-fold for glycated HSA. Sudlow site I of normal HSA had binding constants for pioglitazone and rosiglitazone of 3.4 × 105 M-1 and 4.6 × 105 M-1, with these values changing by up to 1.5-fold for glycated HSA. Rosiglitazone was found to also bind a second region that had a positive allosteric effect on Sudlow site I for all the tested preparations of HSA (binding affinity, 1.1-3.2 × 105 M-1; coupling constant for Sudlow site I, 1.20-1.34). Both drugs had a strong positive allosteric effect on the tamoxifen site of HSA (coupling constants, 13.7-19.9 for pioglitazone and 3.7-11.5 for rosiglitazone). Rosiglitazone also had weak interactions at a site in subdomain IB, with a binding constant of 1.4 × 103 M-1 for normal HSA and a value that was altered by up to 6.8-fold with glycated HSA. Neither of the tested drugs had any significant binding at the digitoxin site. The results were used to produce affinity maps that described binding by these thiazolidinediones with HSA and the effects of glycation on these interactions during diabetes.


Subject(s)
Diabetes Mellitus , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Hypoglycemic Agents/chemistry , Maillard Reaction , Rosiglitazone , Pioglitazone , Protein Binding , Serum Albumin/chemistry , Tamoxifen , Digitoxin , Chromatography, Affinity/methods , Binding Sites
8.
Comb Chem High Throughput Screen ; 27(11): 1676-1699, 2024.
Article in English | MEDLINE | ID: mdl-38305397

ABSTRACT

AIM: To evaluate the antidiabetic potential of ß-sitosterol from Zingiber roseum. BACKGROUND: Diabetes mellitus is a cluster of metabolic disorders, and 90% of diabetic patients are affected with Type II diabetes (DM2). For the treatment of DM2, thiazolidinedione drugs (TZDs) were proposed, but recent studies have shown that TZDs have several detrimental effects, such as weight gain, kidney enlargement (hypertrophy), fluid retention, increased risk of bone fractures, and potential harm to the liver (hepatotoxicity). That is why a new molecule is needed to treat DM2. OBJECTIVE: The current research aimed to assess the efficacy of ß-Sitosterol from methanolic extract of Zingiber roseum in managing diabetes via PPARγ modulation. METHODS: Zingiber roseum was extracted using methanol, and GC-MS was employed to analyze the extract. Through homology modeling, PPARγ structure was predicted. Molecular docking, MD simulation, free binding energies, QSAR, ADMET, and bioactivity and toxicity scores were all used during the in-depth computer-based research. RESULTS: Clinically, agonists of synthetic thiazolidinedione (TZDs) have been used therapeutically to treat DM2, but these TZDs are associated with significant risks. Hence, GC-MS identified phytochemicals to search for a new PPAR-γ agonist. Based on the in-silico investigation, ß-sitosterol was found to have a higher binding affinity (-8.9 kcal/mol) than standard drugs. MD simulations and MMGBSA analysis also demonstrated that ß-sitosterol bound to the PPAR-γ active site stably. CONCLUSION: It can be concluded that ß-sitosterol from Z. roseum attenuates Type-II diabetes by modulating PPARγ activity.


Subject(s)
Hypoglycemic Agents , Molecular Docking Simulation , PPAR gamma , Sitosterols , PPAR gamma/metabolism , Sitosterols/pharmacology , Sitosterols/chemistry , Sitosterols/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology
9.
Am J Physiol Endocrinol Metab ; 326(3): E341-E350, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38294697

ABSTRACT

Several clinical studies observed a surprising beneficial effect of obesity on enhancing immunotherapy responsiveness in patients with melanoma, highlighting an as-yet insufficiently understood relationship between metabolism and immunogenicity. Here, we demonstrate that the thiazolidinedione (TZD) rosiglitazone, a drug commonly used to treat diabetes by sequestering fatty acids in metabolically inert subcutaneous adipose tissue, improved sensitivity to anti-programmed cell death protein 1 (PD-1) treatment in YUMMER1.7 tumor-bearing mice, an initially immunotherapy-sensitive murine melanoma model. We observed a transition from high to intermediate PD-1 expression in tumor-infiltrating CD8+ T cells. Moreover, TZD inhibited PD-1 expression in mouse and human T cells treated in vitro. In addition to its direct impact on immune cells, TZD also decreased circulating insulin concentrations, while insulin induced T cell exhaustion in culture. In TZD-treated mice, we observed higher fatty acid concentrations in the tumor microenvironment, with fatty acids protecting against exhaustion in culture. Together, these data are consistent with an indirect mechanism of TZD inhibiting T cell exhaustion. Finally, we analyzed imaging data from patients with melanoma before and after anti-PD-1 treatment, confirming the beneficial effect of increased subcutaneous fat on anti-PD-1 responsiveness in patients. We also found that the expression of peroxisome proliferator-activated receptor gamma (PPARγ), the canonical activator of lipid uptake and adipogenesis activated by TZD, correlated with overall survival time. Taken together, these data identify a new adjuvant to enhance immunotherapy efficacy in YUMMER1.7 melanoma mice, and discover a new metabolism-based prognostic marker in human melanoma.NEW & NOTEWORTHY Zhang et al. demonstrate that the diabetes drug rosiglitazone improves the efficacy of immunotherapy in mouse melanoma. This effect is both direct and indirect: TZD directly reduces PD-1 expression in CD8+ T cells (i.e., reduces exhaustion), and indirectly reduces exhaustion by lowering insulin levels and increasing local fat. Finally, they demonstrate that hallmarks of TZD action (such as PPARγ expression and subcutaneous fat content) correlate with improved immunotherapy efficacy in humans with melanoma.


Subject(s)
Diabetes Mellitus , Melanoma , Thiazolidinediones , Humans , Animals , Mice , Melanoma/drug therapy , Rosiglitazone , Programmed Cell Death 1 Receptor , PPAR gamma , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Antibodies, Monoclonal , Insulin , Fatty Acids , Tumor Microenvironment
10.
Mol Divers ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38253844

ABSTRACT

Thiazolidinedione has been used successfully by medicinal chemists all over the world in the development of potent antidiabetic derivatives. The few compounds with excellent antidiabetic potency that we have identified in this review could be used as a lead for further research into additional antidiabetic mechanisms. The information provided in this review regarding the design, biological activity, structure-activity relationships, and docking studies may be useful for scientists who wish to further explore this scaffold in order to fully utilize its biological potential and develop antidiabetic agents that would overcome the limitations of currently available medications for the treatment of diabetes. This review outlines the antidiabetic potential of Thiazolidinedione-based derivatives that have been published in the year 2021- till date.

11.
J Investig Med ; 72(3): 294-304, 2024 03.
Article in English | MEDLINE | ID: mdl-38148342

ABSTRACT

Dysmetabolic states, such as type 2 diabetes (T2D), characterized by insulin resistance (IR), are associated with fatty liver, increased cardiovascular disease (CVD) risk, and decreased functional exercise capacity (FEC). Rosiglitazone (RO) improves exercise capacity and IR in T2D. However, the effects of RO on FEC and other markers of CVD risk in prediabetes are unknown. We hypothesized that insulin sensitization with RO would improve exercise capacity and markers of CVD risk in participants with impaired glucose tolerance (IGT). Exercise performance (peak oxygen consumption and oxygen uptake kinetics), IR (homeostasis model assessment of IR and quantitative insulin sensitivity check index), and surrogate cardiovascular endpoints (coronary artery calcium (CAC) volume and density and C-reactive protein (CRP)) were measured in participants with IGT after 12 and 18 months of RO or placebo (PL). RO did not significantly improve exercise capacity. Glycemic measures and IR were significantly lower in people on RO compared to PL at 18 months. CAC volume progression was not different between PL and RO groups. RO did not improve exercise capacity during an 18-month intervention despite improved IR and glycemia in people with IGT. Future studies should explore why effects on FEC with RO occur in T2D but not IGT. Understanding these questions may help in targeting therapeutic approaches in T2D and IGT.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Glucose Intolerance , Insulin Resistance , Humans , Glucose Intolerance/drug therapy , Rosiglitazone/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Exercise Tolerance , Glucose Tolerance Test , Blood Glucose/metabolism , Cardiovascular Diseases/complications
12.
J Mol Graph Model ; 127: 108695, 2024 03.
Article in English | MEDLINE | ID: mdl-38118354

ABSTRACT

Overexpression of protein tyrosine phosphatase 1B (PTP1B) is the major cause of various diseases such as diabetes, obesity, and cancer. PTP1B has been identified as a negative regulator of the insulin signaling cascade, thereby causing diabetes. Numerous anti-diabetic medications based on thiazolidinedione have been successfully developed; however, 2,4-thiazolidinedione (2,4-TZD) scaffolds have been reported as potential PTP1B inhibitors for the manifestation of type 2 diabetes mellitus involving insulin resistance. In the present study, we have employed amalgamated approach involving MD-simulation studies (100 ns) as well as Gaussian field-based 3D-QSAR to develop a pharmacophoric model of 2,4-TZD as potent PTP1B inhibitors. MD simulation studies of the most potent compound in the PTP1B (PDB Id: 2QBS) binding pocket revealed that compound 43 was stable in the binding pocket and demonstrated excellent binding efficacy within the active site pocket. MM/GBSA results revealed that compound 43, bearing C-5 arylidine substitution, strongly bound to the target as compared to rosiglitazone with ΔGMM/GBSA difference of -11.13 kcal/mol. PCA, Rg, RMSF, RMSD, and SASA were analyzed from the complex's trajectories to anticipate the simulation outcome. We have suggested a series of 2,4-TZD as possible PTP1B inhibitors based on the results of MD simulation and 3D-QSAR studies.


Subject(s)
Diabetes Mellitus, Type 2 , Thiazolidinediones , Humans , Molecular Dynamics Simulation , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Quantitative Structure-Activity Relationship , Enzyme Inhibitors/chemistry , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Protein Tyrosine Phosphatase, Non-Receptor Type 1/chemistry , Molecular Docking Simulation
13.
Obes Rev ; 25(3): e13675, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38098209

ABSTRACT

Visceral adiposity is a strong predictor of cardiometabolic risk. Thiazolidinediones (TZDs) are associated with a shift in fat redistribution from visceral adipose tissue (VAT) to subcutaneous adipose tissue (SAT). We aimed to compare the effects of TZD and other interventions on fat remodeling in adults in randomized controlled trials. Among the 1331 retrieved studies, 39 trials with 1765 participants were included in the meta-analysis. The standardized mean difference in VAT change was not significantly different between TZD and comparators across the overall studies. Intriguingly, TZD treatment resulted in significant decreases in VAT compared with placebo and sulfonylureas (p < 0.05), although recombinant human growth hormone was superior to TZD regarding VAT reduction (p < 0.05). Data from 216 participants showed TZD leading to a greater reduction in liver fat percentage than comparators (p < 0.05). Compared with the controls, TZD significantly increased SAT, total body fat, weight, waist circumference, and body mass index (p < 0.05). However, TZD pronouncedly improved glucose control, insulin resistance, adiponectin, and lipid profile (p < 0.05). TZD provides a favorable effect on fat redistribution and benefits insulin sensitivity, suggesting a potentially valuable approach in cardiometabolic risk management.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Thiazolidinediones , Adult , Humans , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Randomized Controlled Trials as Topic , Adipose Tissue , Subcutaneous Fat , Intra-Abdominal Fat
14.
Int J Mol Sci ; 24(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38139350

ABSTRACT

The number of people affected by cancer and antibiotic-resistant bacterial infections has increased, such that both diseases are already seen as current and future leading causes of death globally. To address this issue, based on a combined in silico and in vitro approach, we explored the anticancer potential of known antibacterials with a thiazolidinedione-thiosemicarbazone (TZD-TSC) core structure. A cytotoxicity assessment showed encouraging results for compounds 2-4, with IC50 values against T98G and HepG2 cells in the low micromolar range. TZD-TSC 3 proved to be most toxic to cancer cell lines, with IC50 values of 2.97 ± 0.39 µM against human hepatoma HepG2 cells and IC50 values of 28.34 ± 2.21 µM against human glioblastoma T98G cells. Additionally, compound 3 induced apoptosis and showed no specific hemolytic activity. Furthermore, treatment using 3 on cancer cell lines alters these cells' morphology and further suppresses migratory activity. Molecular docking, in turn, suggests that 3 would have the capacity to simultaneously target HDACs and PPARγ, by the activation of PPARγ and the inhibition of both HDAC4 and HDAC8. Thus, the promising preliminary results obtained with TZD-TSC 3 represent an encouraging starting point for the rational design of novel chemotherapeutics with dual antibacterial and anticancer activities.


Subject(s)
Antineoplastic Agents , Thiazolidinediones , Thiosemicarbazones , Humans , Structure-Activity Relationship , Cell Line, Tumor , Molecular Docking Simulation , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , PPAR gamma , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Thiazolidinediones/pharmacology , Anti-Bacterial Agents/pharmacology , Molecular Structure , Cell Proliferation , Histone Deacetylases/metabolism , Repressor Proteins/metabolism
15.
World J Diabetes ; 14(10): 1573-1584, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37970134

ABSTRACT

BACKGROUND: Chiglitazar is an emerging pan-agonist of all peroxisome proliferator activated receptors (PPAR)-α, δ and γ, and has therapeutic potential for type 2 diabetes (T2D). However, to date, no clinical studies or meta-analyses have compared the efficacy and safety of chiglitazar and traditional PPAR-γ agonist thiazolidinediones (TZDs). A meta-analysis concerning this topic is therefore required. AIM: To compare the efficacy and safety of chiglitazar and TZD in patients with T2D. METHODS: PubMed, Medline, Embase, the Cochrane Central Register of Controlled Trials, Reference Citation Analysis and Clinicaltrial.gov websites were searched from August 1994 to March 2022. Randomized controlled trials (RCTs) of chiglitazar or TZD vs placebo in patients with T2D were included. Indirect comparisons and sensitivity analyses were implemented to evaluate multiple efficacy and safety endpoints of interest. RESULTS: We included 93 RCTs that compared TZD with placebo and one that compared chiglitazar with placebo. For efficacy endpoints, the augmented dose of chig-litazar resulted in greater reductions in hemoglobin (Hb)A1c [weighted mean difference (WMD) = -0.15%, 95% confidence interval (CI): -0.27 to -0.04%], triglycerides (WMD = -0.17 mmol/L, 95%CI: -0.24 to -0.11 mmol/L) and alanine aminotransferase (WMD = -5.25 U/L, 95%CI: -8.50 to -1.99 U/L), and a greater increase in homeostasis model assessment-ß (HOMA-ß) (WMD = 17.75, 95%CI: 10.73-24.77) when compared with TZD treatment. For safety endpoints, the risks of hypoglycemia, edema, bone fractures, upper respiratory tract infection, urinary tract infection, and weight gain were all comparable between the augmented dose of chiglitazar and TZD. In patients with baseline HbA1c ≥ 8.5%, body mass index ≥ 30 kg/m2 or diabetes duration < 10 years, the HbA1c reduction and HOMA-ß increase were more conspicuous for the augmented dose of chiglitazar compared with TZD. CONCLUSION: Augmented dose of chiglitazar, a pan-activator of PPARs, may serve as an antidiabetic agent with preferable glycemic and lipid control, better ß-cell function preserving capacity, and does not increase the risk of safety concerns when compared with TZD.

16.
J Biomol Struct Dyn ; : 1-20, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904329

ABSTRACT

Aldose reductase is an oxo-reductase enzyme belonging to the aldo-keto reductase class. Compounds having thiazolidine-2,4-dione scaffold are reported as potential aldose reductase inhibitors for diabetic complications. The present work uses structure-guided alignment-dependent Gaussian field- and atom-based 3D-QSAR on a dataset of 84 molecules. 3D-QSAR studies on two sets of dataset alignment have been carried out to understand the favourable and unfavourable structural features influencing the affinity of these inhibitors towards the enzyme. Using common pharmacophore hypotheses, the five-point pharmacophores for aldose reductase favourable features were generated. The molecular dynamics simulations (up to 100 ns) were performed for the potent molecule from each alignment set (compounds 24 and 65) compared to reference standard tolrestat and epalrestat to study target-ligand complexes' binding energy and stability. Compound 65 was most stable with better interactions in the aldose reductase binding pocket than tolrestat. The MM-PBSA study suggests compound 65 possessed better binding energy than reference standard tolrestat, i.e. -87.437 ± 19.728 and -73.424 ± 12.502 kJ/mol, respectively. The generated 3D-QSAR models provide information about structure-activity relationships and ligand-target binding energy. Target-specific stability data from MD simulation would be helpful for rational compound design with better aldose reductase activity.Communicated by Ramaswamy H. Sarma.

17.
Ann Pharmacother ; : 10600280231205490, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37881914

ABSTRACT

BACKGROUND: Incretin therapies, comprised of the dipeptidyl peptidase-4 inhibitors (DPP-4i) and glucagon-like peptide-1 receptor agonists (GLP-1 RAs), have been increasingly utilized for the treatment of type 2 diabetes (T2DM). Previous studies have conflicting results regarding risk of pancreatitis associated with these agents-some suggest an increased risk and others find no correlation. Adverse event reporting systems indicate that incretin therapies are some of the most common drugs associated with reports of pancreatitis. OBJECTIVES: This study aimed to compare the odds of developing pancreatitis in veterans with T2DM prescribed an incretin therapy versus thiazolidinediones (TZDs: pioglitazone and rosiglitazone) within the Veterans Health Administration (VHA). METHODS: This was a retrospective cohort study analyzing veterans with T2DM first prescribed an incretin therapy or a TZD between January 1, 2011, and December 31, 2021. A diagnosis of pancreatitis within 365 days of being prescribed either therapy was counted as a positive case. Data was collected and analyzed utilizing VA's Informatics and Computing Infrastructure (VINCI) and an adjusted odds ratio was calculated. RESULTS: The TZD cohort consisted of 42 912 patients compared with the incretin cohort of 304 811 patients. The TZD cohort had a pancreatitis incidence rate of 1.94 cases per 1000 patients. The incretin cohort had a incidence rate of 2.06 cases per 1000 patients. An adjusted odds ratio found no statistical difference of pancreatitis cases between the TZD and incretin cohorts (adjusted odds ratio [AOR] = 0.94, 95% CI [0.75, 1.18]). CONCLUSION AND RELEVANCE: This retrospective cohort study of national VHA data found a relatively low incidence of pancreatitis in both cohorts, and an adjusted odds ratio found no statistical difference of pancreatitis in patients prescribed an incretin therapy compared with a control group. This data adds to growing evidence that incretin therapies do not seem to be associated with an increased risk of developing pancreatitis.

18.
Curr Diabetes Rev ; 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37867272

ABSTRACT

BACKGROUND: Thiazolidinediones, also known as glitazones, are considered as biologically active scaffold and a well-established class of anti-diabetic agents for the treatment of type 2 diabetes mellitus. Thiazolidinediones act by reducing insulin resistance through elevated peripheral glucose disposal and glucose production. These molecules activate peroxisome proliferated activated receptor (PPARγ), one of the sub-types of PPARs, and a diverse group of its hybrid have also shown numerous therapeutic activities along with antidiabetic activity. OBJECTIVE: The objective of this review was to collect and summarize the research related to the medicinal potential, structure-activity relationship and safety aspects of thiazolidinedione analogues designed and investigated in type 2 diabetes during the last two decades. METHODS: The mentioned objective was achieved by collecting and reviewing the research manuscripts, review articles, and patents from PubMed, Science Direct, Embase, google scholar and journals related to the topic from different publishers like Wiley, Springer, Elsevier, Taylor and Francis, Indian and International government patent sites etc. Results: The thiazolidinedione scaffold has been a focus of research in the design and synthesis of novel derivatives for the management of type 2 diabetes, specifically in the case of insulin resistance. The complications like fluid retention, idiosyncratic hepatotoxicity, weight gain and congestive heart failure in the case of trosiglitazone, and pioglitazone have restricted their use. The newer analogues have been synthesized by different research groups to attain better efficacy and less side effects. CONCLUSION: Thus, the potential of thiazolidinediones in terms of their chemical evolution, action on nuclear receptors, aldose reductase and free fatty acid receptor 1 is well established. The newer TZD analogues with better safety profiles and tolerability will soon be available in the market for common use without further delay.

19.
Cureus ; 15(8): e43635, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37719477

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, especially in people with obesity, dyslipidemia, type 2 diabetes mellitus (T2DM), and metabolic syndrome. Weight loss and dietary modifications are established first-line treatments for NAFLD. Currently, there is no approved drug for NAFLD; however, pioglitazone and vitamin E have shown some beneficial effects. This systematic review covers the comparative efficacies of vitamin E, pioglitazone, and vitamin E plus pioglitazone. As of December 2022, the sources for prior literature review included PubMed, PubMed Central, and Medline. We included studies assessing the efficacy of pioglitazone, vitamin E, and vitamin E plus pioglitazone in improving liver histology, liver markers, and lipid profile when compared to other interventions in patients with NAFLD/non-alcoholic steatohepatitis (NASH). Review materials include randomized control trials (RCTs), traditional reviews, systematic reviews, meta-analyses, and observational studies on human participants published within the last five years in the English language. Studies on animals, pediatric populations, and with insufficient data were excluded from the review. Two authors scanned and filtered articles independently and later performed quality checks. A third reviewer resolved any conflicts. The risk of bias was assessed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 guidelines for systematic reviews, the Cochrane Risk of Bias Tool for RCTs, and the Scale for the Assessment of Narrative Review Articles for Traditional Reviews. A total of 21 articles were shortlisted. The results showed that pioglitazone and vitamin E are effective in reducing steatosis, inflammation, and ballooning, reducing liver markers, but there seem to be conflicting data on fibrosis resolution. Pioglitazone decreases triglycerides and increases high-density lipoproteins. One study has suggested that pioglitazone has superior efficacy to vitamin E in fibrosis reduction and vitamin E plus pioglitazone has superior efficacy than pioglitazone alone for NASH resolution. However, these conclusions require further validation through extensive analysis and additional research. In conclusion, diabetic patients with NAFLD can be given pioglitazone, and non-diabetic patients with NAFLD can be given vitamin E.

20.
Cancers (Basel) ; 15(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686552

ABSTRACT

BACKGROUND: Thiazolidinedione (TZD) exerts anti-proliferative effects on multiple myeloma (MM) cells. However, there has not been any human study investigating the risk of MM associated with TZD use. METHODS: We used Taiwan's National Health Insurance database to identify 423,949 patients who had been newly diagnosed with diabetes mellitus between 1999 and 2005. After excluding ineligible patients, 86,999 pairs of patients with and without the use of TZD (rosiglitazone or pioglitazone) that had been matched based on propensity score were selected for a follow-up for MM until 31 December 2011. The hazard ratios for MM were estimated using Cox regression and weighted using a propensity score. RESULTS: After a median follow-up of 4.6 years and 4.7 years in ever users and never users of TZD, 32 and 47 cases were diagnosed with MM, respectively. A 35% lower risk (though not statistically significant) was observed among ever users (hazard ratio 0.652, 95% confidence interval: 0.416-1.023, p = 0.0625). When ever users were divided by the median (15 months) cumulative duration of TZD therapy, the hazard ratios (95% confidence interval) for the lower and upper medians were 0.706 (0.394-1.264) and 0.603 (0.346-1.051), respectively. When treated as a continuous variable, the hazard ratio for every 1-month increment of the cumulative duration was 0.980 (95% confidence interval: 0.963-0.997, p = 0.0185). In the age subgroup analysis, a significantly lower risk could be seen in the older age subgroup of ≥65 years (hazard ratio 0.550, 95% confidence interval: 0.305-0.992, p = 0.0468). Additional analyses suggested that there were no interactions between TZD and some medications and between TZD and some clinical diagnoses, and that the use of TZD as a preventive drug for MM might not be cost-effective because a number-needed-to-treat of 5800 was too large. Survival analyses suggested that ever users had a significantly lower risk of death when all patients were analyzed (hazard ratio: 0.84, 95% confidence interval: 0.81-0.87, p < 0.0001 via a log-rank test) or when patients who developed MM were analyzed (hazard ratio: 0.40, 95% confidence interval: 0.19-0.86, p = 0.0153 via a log-rank test). CONCLUSIONS: In Taiwanese patients with type 2 diabetes mellitus, TZD use is associated with a borderline lower risk of MM, which is more remarkable in patients aged ≥65 years. Because of the low incidence of MM, the use of TZD for the prevention of MM may not be cost-effective. Patients who have been treated with TZD may have a survival advantage. Future research is required to confirm the findings.

SELECTION OF CITATIONS
SEARCH DETAIL