Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.659
Filter
1.
Epigenetics ; 19(1): 2376948, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38991122

ABSTRACT

Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (Dio3) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated Dio3 total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic Dio3 expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the Dlk1-Dio3 imprinted domain, including increased methylation in Meg3 and altered foetal brain expression of other genes of the Dlk1-Dio3 imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone in utero. Our results provide a novel paradigm of epigenetic self-memory by which Dio3 gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of Dio3 expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Iodide Peroxidase , Thyroid Hormones , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Animals , Female , Mice , Male , Thyroid Hormones/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Genomic Imprinting , Pregnancy , Mice, Knockout , Animals, Newborn
2.
Sci Rep ; 14(1): 15169, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956266

ABSTRACT

Thyroid hormones modulate the cardiovascular system. However, the effects of subclinical thyroid dysfunction and euthyroidism on cardiac function remain unclear. We investigated the association between left ventricular (LV) diastolic dysfunction and subclinical thyroid dysfunction or thyroid hormones within the reference range. This cross-sectional study included 26,289 participants (22,197 euthyroid, 3,671 with subclinical hypothyroidism, and 421 with subclinical thyrotoxicosis) who underwent regular health check-ups in the Republic of Korea. Individuals with thyroid stimulating hormone (TSH) levels > 4.2 µIU/mL and normal free thyroxine (FT4, 0.78-1.85 ng/dL) and triiodothyronine (T3, 76-190 ng/dL) levels were defined as having subclinical hypothyroidism. Individuals with serum TSH levels < 0.4 µIU/mL and normal FT4 and T3 levels were defined as having subclinical thyrotoxicosis. The cardiac structure and function were evaluated using echocardiography. LV diastolic dysfunction with normal ejection fraction (EF) was defined as follows: EF of > 50% and (a) E/e' ratio > 15, or (b) E/e' ratio of 8-15 and left atrial volume index ≥ 34 mL/m2. Subclinical hypothyroidism was significantly associated with cardiac indices regarding LV diastolic dysfunction. The odds of having LV diastolic dysfunction was also increased in participants with subclinical hypothyroidism (adjusted odds ratio [AOR] 1.36, 95% confidence interval [CI], 1.01-1.89) compared to euthyroid participants. Subclinical thyrotoxicosis was not associated with LV diastolic dysfunction. Among the thyroid hormones, only serum T3 was significantly and inversely associated with LV diastolic dysfunction even within the normal range. Subclinical hypothyroidism was significantly associated with LV diastolic dysfunction, whereas subclinical thyrotoxicosis was not. Serum T3 is a relatively important contributor to LV diastolic dysfunction compared to TSH or FT4.


Subject(s)
Hypothyroidism , Thyroid Hormones , Thyrotropin , Ventricular Dysfunction, Left , Humans , Ventricular Dysfunction, Left/blood , Ventricular Dysfunction, Left/physiopathology , Female , Male , Middle Aged , Thyrotropin/blood , Cross-Sectional Studies , Hypothyroidism/blood , Hypothyroidism/physiopathology , Hypothyroidism/complications , Adult , Thyroid Hormones/blood , Triiodothyronine/blood , Echocardiography , Aged , Thyrotoxicosis/blood , Thyrotoxicosis/complications , Thyrotoxicosis/physiopathology , Thyroxine/blood , Diastole , Republic of Korea/epidemiology
3.
Ann Med Surg (Lond) ; 86(7): 4130-4138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989228

ABSTRACT

Introduction: Non-alcoholic fatty liver disease (NAFLD), spanning from non-alcoholic steatohepatitis (NASH) to liver fibrosis, poses a global health challenge amid rising obesity and metabolic syndrome rates. Effective pharmacological treatments for NASH and liver fibrosis are limited. Objective: This study systematically reviews and meta-analyzes the safety and efficacy of resmetirom, a selective thyroid hormone receptor-ß agonist, in NASH and liver fibrosis treatment. By analyzing data from clinical trials, we aim to offer evidence-based recommendations for resmetirom's use in managing these conditions and identify avenues for future research. Methods: Electronic databases (PubMed, Scopus, Science Direct, Google Scholar, ClinicalTrials.gov, and Cochrane CENTRAL) were systematically searched, supplemented by manual screening of relevant sources. Only English-language randomized controlled trials were included. Data extraction, risk of bias assessment, pooled analyses, and meta-regression were performed. Results: Three randomized controlled trials involving 2231 participants were analyzed. Resmetirom demonstrated significant reductions in hepatic fat fraction [standardized mean difference (SMD) -4.61, 95% CI -6.77 to -2.44, P < 0.0001], NASH resolution without worsening fibrosis [risk ratio (RR) 2.51, 95% CI 1.74-3.64, P = 0.00001), and liver fibrosis improvement (RR 2.31, 95% CI 1.20-4.44, P = 0.01). Secondary outcomes showed significant improvements in lipid profiles, liver enzymes, and NASH biomarkers with resmetirom treatment. Meta-regression revealed associations between covariates and primary outcomes. Conclusion: Resmetirom exhibits promising efficacy in reducing hepatic fat, improving NASH resolution, and ameliorating liver fibrosis with a favorable safety profile. Further research is warranted to validate findings and optimize therapeutic strategies for NASH and liver fibrosis management.

4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000471

ABSTRACT

Thyroid Hormones (THs) play a central role in the development, cell growth, differentiation, and metabolic homeostasis of neurosensory systems, including the retina. The coordinated activity of various components of TH signaling, such as TH receptors (THRs) and the TH processing enzymes deiodinases 2 and 3 (DIO2, DIO3), is required for proper retinal maturation and function of the adult photoreceptors, Müller glial cells, and pigmented epithelial cells. Alterations of TH homeostasis, as observed both in frank or subclinical thyroid disorders, have been associated with sight-threatening diseases leading to irreversible vision loss i.e., diabetic retinopathy (DR), and age-related macular degeneration (AMD). Although observational studies do not allow causal inference, emerging data from preclinical models suggest a possible correlation between TH signaling imbalance and the development of retina disease. In this review, we analyze the most important features of TH signaling relevant to retinal development and function and its possible implication in DR and AMD etiology. A better understanding of TH pathways in these pathological settings might help identify novel targets and therapeutic strategies for the prevention and management of retinal disease.


Subject(s)
Diabetic Retinopathy , Macular Degeneration , Retina , Signal Transduction , Thyroid Hormones , Humans , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/etiology , Diabetic Retinopathy/pathology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Thyroid Hormones/metabolism , Retina/metabolism , Retina/pathology , Animals
5.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000540

ABSTRACT

Thyroid hormone (TH) plays an essential role in cell proliferation, differentiation, and metabolism. Experimental and clinical studies have shown a potential association between TH signaling and retinal degeneration. The suppression of TH signaling protects cone photoreceptors in mouse models of retinal degeneration, whereas excessive TH signaling induces cone degeneration, manifested as reduced light response and a loss of cones. This work investigates the genes/transcriptomic alterations that might be involved in TH-induced cone degeneration in mice using single-cell RNA sequencing (scRNAseq) analysis. One-month-old C57BL/6 mice received triiodothyronine (T3, 20 µg/mL in drinking water) for 4 weeks as a model of hyperthyroidism/excessive TH signaling. At the end of the experiments, retinal cells were dissociated, and cell viability was analyzed before being subjected to scRNAseq. The resulting data were analyzed using the Seurat package and visualized using the Loupe browser. Among 155,866 single cells, we identified 14 cell clusters, representing various retinal cell types, with rod and cone clusters comprising 76% and 4.1% of the total cell population, respectively. Cone cluster transcriptomes demonstrated the most alterations after the T3 treatment, with 450 differentially expressed genes (DEGs), accounting for 38.5% of the total DEGs. Statistically significant changes in the expression of genes in the cone cluster revealed that phototransduction and oxidative phosphorylation were impaired after the T3 treatment, along with mitochondrial dysfunction. A pathway analysis also showed the activation of the sensory neuronal/photoreceptor stress pathways after the T3 treatment. Specifically, the eukaryotic initiation factor-2 signaling pathway and the cAMP response element-binding protein signaling pathway were upregulated. Thus, excessive TH signaling substantially affects cones at the transcriptomic level. The findings from this work provide an insight into how excessive TH signaling induces cone degeneration.


Subject(s)
Light Signal Transduction , Mitochondria , Retinal Cone Photoreceptor Cells , Signal Transduction , Animals , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/drug effects , Mice , Mitochondria/metabolism , Thyroid Hormones/metabolism , Mice, Inbred C57BL , Gene Expression Profiling , Transcriptome , Energy Metabolism , Triiodothyronine/pharmacology , Retinal Degeneration/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/pathology
6.
Expert Opin Pharmacother ; : 1-15, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954663

ABSTRACT

INTRODUCTION: Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED: The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor ß-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION: Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.

7.
Immun Inflamm Dis ; 12(7): e1282, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38967365

ABSTRACT

OBJECTIVE: This study aimed to investigate the expressions of glycemic parameters, lipid profile, and thyroid hormone in type 2 diabetes mellitus (T2DM) patients and their correlation. METHODS: Eighty-four patients with T2DM in our hospital were included as the observation group. The T2DM patients were divided into mild group, moderate group, and severe group according to the fasting plasma glucose (FPG) level. Another 84 healthy subjects in the same period of health examination in our hospital were included as the control group. The levels of glycemic parameters, (HbA1c and FPG), lipid profile (TC, TG, LDL-C, and HDL-C) and thyroid hormone (FT3, TSH, and FT4) were measured by automatic biochemical analyzer. The correlation between glycemic parameters, lipid profile, and thyroid hormone was analyzed by Pearson correlation analysis. RESULTS: The FPG, TC, TG, LDL-C, HbA1c, and TSH levels were significantly elevated, while the HDL-C and FT3 levels were significantly declined in the observation group versus to control group (p < .05). The levels of HbA1c, FPG, TC, LDL-C, and TSH were significantly increased, while the levels of HDL-C and FT3 were decreased in moderate and severe groups, when compared to mild group (p < .05). The levels of HbA1c, FPG, TC, LDL-C and TSH were higher, while the level of FT3 was lower in severe group than those in moderate group (p < .05). Pearson Correlation analysis showed that FT3 level in T2DM patients was positively correlated with FPG, HbAlc, TC, TG, and LDL-C levels (p < .05), but negatively correlated with HDL-C level (p < .05). TSH level was negatively correlated with FPG, HbAlc, TC, TG, and LDL-C levels (p < .05), while positively correlated with HDL-C level. CONCLUSION: The thyroid hormone levels were of clinical significance in evaluating glycolipid metabolism and severity of T2DM. Clinical detection of glycolipid metabolism and thyroid hormone levels in T2DM patients is of great significance for diagnosis, evaluation, and targeted treatment of the disease.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Lipids , Thyroid Hormones , Humans , Diabetes Mellitus, Type 2/blood , Male , Female , Middle Aged , Thyroid Hormones/blood , Lipids/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Glycated Hemoglobin/analysis , Glycated Hemoglobin/metabolism , Aged , Adult
8.
Article in English | MEDLINE | ID: mdl-38970545

ABSTRACT

BACKGROUND: The past decade has witnessed a surge of articles describing the neurocognitive sequelae and associated structural and functional brain abnormalities of patients with overt (OH) and subclinical hypothyroidism (SCH). Findings show effects primarily within the frontal lobes with usually worse outcomes for OH than SCH. Several recent studies have also indicated hypothyroid patients may have smaller hippocampi, a key structure for memory. CONTEXT: The current JCEM paper by T. Zhang and colleagues applies two novel approaches for analyzing hippocampal structure and function. One uses an automated processing tool that segments the hippocampus into distinct subregions and the other, performs connectivity analysis to assess the relationships between specific hippocampal subregions and cortical areas. Relatively large samples of OH and SCH patients and healthy controls received a test of global cognitive functioning and structural and functional MRIs. Results showed hypothyroid groups scored significantly below controls on the memory scale and also had smaller hippocampal volumes in selective subregions. Effects were stronger for SCH than OH groups, who also showed different patterns of interconnectivity between hippocampal subregions and specific frontal-lobe areas. INTERPRETATION: To make sense of these findings, I explored the rodent and human literatures on thyroid hormone's role in hippocampal functioning and on hippocampal subfields and their purported functions and interconnections. Because current results suggest SCH may represent a distinct clinical entity with unique brain manifestations, I hypothesized two explanations for these findings, one involving transporter defects in the brain barriers and the other, differential neurodegeneration of the blood-brain-barrier vascular unit.

9.
Biol Trace Elem Res ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907121

ABSTRACT

Selenium (Se) is physiologically essential for thyroid function. However, epidemiological studies on the association between Se status and thyroid function are limited and the results are inconsistent. Therefore, we explored this association in an elderly Chinese population sample. Participants in the cross-sectional study were people aged 65 years or older who provided fingernail and whole blood samples. Hyperthyroidism and hypothyroidism were defined by serum thyroid hormones concentrations, including thyroid stimulating hormone (TSH), total triiodothyronine (TT3), total thyroxine (TT4), free thyroxine (FT3), and free thyrotropin (FT4). Significant positive association was observed between whole blood and fingernail Se concentrations (r = 0.672, P < 0.001). Compared with the lowest Se quartile (Q1), the other fingernail Se quartile groups had lower TSH, higher FT3 and FT4 levels, and Q2 had higher TT3 levels after adjusting for covariates; the other whole blood Se quartile groups had lower TSH levels, Q2 had higher FT3, FT4 and TT3 levels, Q3 had higher FT3 levels, and Q4 had higher FT4 levels after adjusting for covariates. Compared with Q1, the adjusted odds ratios (OR) and 95% confidence intervals (95%CIs) of hypothyroidism for Q4 of whole blood Se was 0.141 (0.029,0.675), and the adjusted OR (95%CIs) of hyperthyroidism for Q2 and Q3 of fingernail Se were 4.121 (1.233,13.733) and 3.614 (1.095,11.926). Higher Se levels were significantly associated with lower TSH levels and higher levels of TT3, FT3 and FT4. Meanwhile, higher Se levels were associated with lower risk of hypothyroidism and higher risk of hyperthyroidism.

10.
Chemosphere ; 362: 142593, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38866335

ABSTRACT

Diisononyl phthalate (DiNP) has been used to replace bis(2-ethylhexyl) phthalate (DEHP) and is frequently found in the environment and humans. DiNP is reported for its anti-androgenic activity; however, little is known about its effects on thyroid function and neurodevelopment. In the present study, the thyroid disruption and neurobehavioral alteration potential of DiNP and its major metabolites were assessed in a rat pituitary carcinoma cell line (GH3) and embryo-larval zebrafish (Danio rerio). In GH3 cells, exposure to DiNP and its metabolites not only increased proliferation but also induced transcriptional changes in several target genes, which were different from those observed with DEHP exposure. In larval fish, a 5-day exposure to DiNP caused significant increases in thyroid hormone levels, following a similar pattern to that reported for DEHP exposure. Following exposure to DiNP, the activity of the larval fish decreased, and neurodevelopment-related genes, such as c-fos, elavl3, and mbp, were down-regulated. These changes are generally similar to those observed for DEHP. Up-regulation of gap43 and down-regulation of elavl3 gene, which are important for both thyroid hormone production and neurodevelopment, respectively, support the potential for both thyroid and behavioral disruption of DiNP. Overall, these results emphasize the need to consider the adverse thyroid and neurodevelopmental effects in developing regulations for DEHP-replacing phthalates.

11.
Birth Defects Res ; 116(6): e2368, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873958

ABSTRACT

BACKGROUND: Nanoplastics can be considered a novel contaminant for the environment because of their extensive applications in modern society, which represents a possible threat to humans. Nevertheless, the negative effect of polystyrene nanoplastics (PS-NPs) on male reproduction, fertility, and progeny outcomes is not well known. Thus, the aim of the present work was to calculate the median lethal dose (LD50) and investigate the consequences of exposure to PS-NPs (25 nm) on male reproductive toxicity. METHODS: This investigation first determined the LD50 of PS-NPs in male Wistar rats, and then in a formal study, 24 rats were distributed into three groups (n = 8): the control group; the low-dose group (3 mg/kg bw); and the high-dose group (10 mg/kg bw) of PS-NPs administered orally for 60 days. On the 50th day of administration, the fertility test was conducted. RESULTS: The LD50 was determined to be 2500 mg/kg. PS-NP administration induced significant alternations, mainly indicating mortality in the high-dose group, a significant elevation in body weight gain, declined sperm quality parameters, altered reproductive hormonal levels, thyroid endocrine disruption, an alternation of the normal histo-architecture and the histo-morphometric analysis of the testes, and impaired male fertility. CONCLUSION: Altogether, the current findings provide novel perspectives on PS-NP general toxicity with specific reference to male reproductive toxicity.


Subject(s)
Polystyrenes , Rats, Wistar , Reproduction , Testis , Animals , Male , Testis/drug effects , Testis/metabolism , Polystyrenes/toxicity , Rats , Reproduction/drug effects , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Administration, Oral , Fertility/drug effects , Nanoparticles/toxicity , Microplastics/toxicity , Lethal Dose 50 , Hormones/metabolism , Spermatozoa/drug effects
12.
Environ Res ; : 119505, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945509

ABSTRACT

Tail resorption during amphibian metamorphosis is one of the most dramatic processes that is obligatorily dependent on thyroid hormone (TH). Heavy metals could result in thyroid gland damages and disturb TH homeostasis. Lead (Pb) and copper (Cu) often co-exist in natural aquatic ecosystems. However, there is still little information on how tail resorption responds to alone or combined exposure to Pb and Cu. Our study investigated the effects of Pb and Cu alone or combined exposure on the morphological parameters of the tail, histological changes of thyroid gland and tail, and gene expression programs involved in cell death of the tail in Bufo gargarizans tadpoles at the climax of metamorphosis. Results demonstrated that Pb, Cu and Pb-Cu mixture exposure resulted in a significantly longer tail compared with control. Damages to notochord, muscle, skin and spinal cord of the tail were found in Pb and Cu exposure groups. The colloid area, the height of follicular cells and number of phagocytic vesicles of thyroid gland in Pb-Cu mixture exposure groups were significantly reduced. In addition, the expression levels of TH, apoptosis, autophagy, degradation of cellular components and oxidative stress-related genes in the tail were significantly altered following Pb and Cu exposure. The present work revealed the relationship between environmental pollutants and tail resorption, providing scientific basis for amphibian protection.

13.
Endocrinology ; 165(7)2024 May 27.
Article in English | MEDLINE | ID: mdl-38836615

ABSTRACT

About half of the world population carries at least one allele of the Ala92-DIO2, which slows down the activity of the type 2 deiodinase (D2), the enzyme that activates T4 to T3. Carrying the Ala92-DIO2 allele has been associated with increased body mass index and insulin resistance, but this has not been reproduced in all populations. To test if the genetic background affects the impact of this polymorphism, here we studied the genetically distant C57Bl/6J (B6) and FVB/N (FVB) mice carrying the Ala92-Dio2 allele as compared to control mice carrying the Thr92-Dio2 allele. Whereas B6-Ala92-Dio2 and B6-Thr92-Dio2 mice-fed chow or high-fat diet-behaved metabolically similar in studies using indirect calorimetry, glucose- and insulin tolerance tests, and measuring white adipose tissue (WAT) weight and liver steatosis, major differences were observed between FVB-Ala92-Dio2 and FVB-Thr92-Dio2 mice: carrying the Ala92-Dio2 allele (on a chow diet) resulted in hypercholesterolemia, smaller WAT pads, hepatomegaly, steatosis, and transcriptome changes in the interscapular brown adipose tissue (iBAT) typical of ER stress and apoptosis. Acclimatization at thermoneutrality (30 °C) eliminated most of the metabolic phenotype, indicating that impaired adaptive (BAT) thermogenesis can be involved. In conclusion, the metabolic impact of carrying the Ala92-Dio2 allele depends greatly on the genetic background of the mouse, varying from no phenotype in B6 mice to a major phenotype in FVB mice. These results will help the planning of future clinical trials studying the Thr92Ala-DIO2 polymorphism and may explain why some clinical studies performed in different populations across the globe have obtained inconsistent results.


Subject(s)
Iodide Peroxidase , Iodothyronine Deiodinase Type II , Mice, Inbred C57BL , Animals , Male , Iodide Peroxidase/genetics , Mice , Diet, High-Fat , Genetic Background , Adipose Tissue, White/metabolism , Adipose Tissue, Brown/metabolism , Polymorphism, Genetic , Insulin Resistance/genetics , Fatty Liver/genetics
14.
Biomedicines ; 12(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38927574

ABSTRACT

Flame retardants have been shown to cause widespread physiological effects, in particular on endocrine organs such as the thyroid. This review aims to provide an overview of the literature on the association between flame retardants and thyroid function within humans. A search in the National Library of Medicine and National Institutes of Health PubMed database through January 2024 yielded 61 studies that met the inclusion criteria. The most frequently analyzed flame retardants across all thyroid hormones were polybrominated diphenyl ethers (PBDEs), in particular BDE-47 and BDE-99. Ten studies demonstrated exclusively positive associations between flame retardants and thyroid stimulating hormone (TSH). Six studies demonstrated exclusively negative associations between flame retardants and TSH. Twelve studies demonstrated exclusively positive associations for total triiodothyronine (tT3) and total thyroxine (tT4). Five and eight studies demonstrated exclusively negative associations between flame retardants and these same thyroid hormones, respectively. The effect of flame retardants on thyroid hormones is heterogeneous; however, the long-term impact warrants further investigation. Vulnerable populations, including indigenous people, individuals working at e-waste sites, firefighters, and individuals within certain age groups, such as children and elderly, are especially critical to be informed of risk of exposure.

15.
J Biol Chem ; : 107477, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38879014

ABSTRACT

Thyroid hormone (TH) is a critical regulator of cellular function and cell fate. The circulating TH level is relatively stable while tissue TH action fluctuates according to cell-type specific mechanisms. Here we focused on identifying mechanisms that regulate TH action through the type 2 deiodinase (D2) in glial cells. Dio2 mRNA has an unusually long 3' untranslated region (3'UTR) where we identified multiple putative MSI1 binding sites for Musashi-1 (MSI1), a highly conserved RNA-binding cell cycle regulator. Binding to these sites was confirmed through electrophoretic mobility shift assay. In H4 glioma cells, shRNA-mediated MSI1 knockdown increased endogenous D2 activity, whereas MSI1 overexpression in HEK293T cells decreased D2 expression. This latter effect could be prevented by the deletion of a 3.6 kb region of the 3'UTR of Dio2 mRNA containing MSI1 binding sites. MSI1-immunoreactivity was observed in two mouse Dio2-expressing cell types, i.e. cortical astrocytes and hypothalamic tanycytes, establishing the anatomical basis for a potential in vivo interaction of Dio2 mRNA and MSl1. Indeed, increased D2 expression was observed in the cortex of mice lacking MSI1 protein. Furthermore, MSI1 knockdown-induced D2 expression slowed down cell proliferation by 56% in primary cultures of mouse cortical astrocytes, establishing the functionality of the MSI1-D2-T3 pathway. In summary, Dio2 mRNA is a target of MSI1 and the MSI1-D2-T3 pathway is a novel regulatory mechanism of astrocyte proliferation with the potential to regulate the pathogenesis of human glioblastoma.

16.
Endocr Res ; : 1-4, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884586

ABSTRACT

BACKGROUND: The existence of a functional relationship between a certain thyroid hormone analogue and cancer cell radioresistance has been shown by Leith and coworkers. The hormone analogue with relevance to malignant cells' radioresistance is tetraiodothyroacetic acid (tetrac). Tetrac is the deaminated derivative of L-thyroxine (T4), the principal product of the thyroid gland. Preclinical studies demonstrated that tetrac and chemically modified tetrac (CMT), e.g. a fluorobenzyl-conjugated tetrac analogue, restores radiosensitivity in certain radioresistant tumor cells. Due to their molecular, physico-chemical, and biological properties, actions of CMT analogues are believed to be initiated at the thyroid hormone analogue receptor site on plasma membrane integrin αvß3. OBJECTIVE: To explore possible molecular mechanisms of the potentially therapeutically beneficial effect of CMT on cancer cells' sensitivity to radiation, we analyzed actions of CMT analogues on expression of selected sets of genes that have been previously implicated in radioresistance of malignant cells. DISCUSSION AND CONCLUSIONS: In the current study, we report that genome-wide gene expression profiling analysis of human glioblastoma (GBM) and acute myelocytic leukemia (AML) cell lines exposed in vitro to noncytotoxic doses of CMT has identified decreased expression of discrete trios of genes each of which was previously linked to cancer cells' radioresistance. Following the CMT treatment in AML cells, expression of PARP9, PARP15 and STAT3 genes was significantly reduced, while in GBM cells, expression of PRKDC, EGFR and CCNDI was significantly decreased by the drug. Notably, a broader spectrum of genes implicated in cancer cells' radioresistance was observed in primary patient-derived GBM cells after the CMT treatment. Extensive additional experimental and clinical studies are indicated, including analyses of individual patient tumor genomics and of an array of different tumor types to define the sub-sets of tumors manifesting radioresistance in which tetrac-based agents may be expected to enhance therapeutic effects of radiation.

17.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38842921

ABSTRACT

Characteristic symptoms of hyperthyroidism include weight loss, heart palpitation, and sweating. Thyroid hormones (TH) can stimulate thermogenesis through central and peripheral mechanisms. Previous studies have shown an association between dysfunction of cardiotrophin-like cytokine factor 1 (CLCF1) and cold-induced sweating syndrome, with recent research also indicating a link between CLCF1 and brown adipose tissue thermogenesis. However, it remains unclear whether CLCF1 and TH have synergistic or antagonistic effects on thermogenesis. This study aims to investigate the influence of thyroid hormone on circulating CLCF1 levels in humans and explore the potential possibilities of thyroid hormone in regulating energy metabolism by modulating Clcf1 in mice. By recruiting hyperthyroid patients and healthy subjects, we observed significantly lower serum CLCF1 levels in hyperthyroid patients compared to healthy subjects, with serum CLCF1 levels independently associated with hyperthyroidism after adjusting for potential confounders. Tissue analysis from mice treated with T3 revealed a decrease in CLCF1 expression in BAT and iWAT of C57BL/6 mice. These findings suggest that TH may play a role in regulating CLCF1 expression in adipose tissue.


Subject(s)
Hyperthyroidism , Mice, Inbred C57BL , Triiodothyronine , Hyperthyroidism/blood , Animals , Male , Triiodothyronine/blood , Humans , Mice , Adult , Female , Middle Aged , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/drug effects , Cytokines/blood , Cytokines/metabolism , Thermogenesis/drug effects , Case-Control Studies
18.
Thyroid ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38877800

ABSTRACT

Background: Resistance to thyroid hormone beta (RTHß) is a rare disease resulting from mutations in the THRB gene, characterized by reduced T3 action in tissues with high thyroid hormone receptor ß expression. Thyroid hormones regulate body composition and metabolism in general, and increased or decreased hormone levels are associated with insulin resistance. This study evaluated the presence of cardiometabolic risk factors and insulin sensitivity in patients with RTHß. Methods: In all, 16 patients, 8 adults (52.3 ± 16.3 years of age) and 8 children (10.9 ± 3.9 years of age), were compared to 28 control individuals matched for age, sex, and body mass index (BMI). Anthropometry evaluation and blood samples were collected for glycemia, lipids, insulin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), leptin, adiponectin, ultrasensitive C-reactive protein (CRPus), free thyroxine, total triiodothyronine, thyrotropin, and anti-thyroid peroxidase measurements. Body composition was assessed using dual-emission X-ray absorptiometry and bioimpedance. Insulin sensitivity was evaluated in adult patients and controls using the hyperinsulinemic-euglycemic clamp (HEC), whereas homeostasis model assessment of insulin resistance (HOMA-IR) was calculated in all individuals studied. Results: Patients and controls presented similar weight, BMI, abdominal perimeter, and total fat body mass. Patients with RTHß demonstrated higher total cholesterol (TC), p = 0.04, and low-density lipoprotein cholesterol (LDL-C), p = 0.03, but no alteration was observed in other parameters associated with metabolic risk, such as leptin, TNF-α, and CRPus. Two adult patients met the criteria for metabolic syndrome. There was no evidence of insulin resistance assessed by HEC or HOMA-IR. Elevated IL-6 levels were observed in patients with RTHß. Conclusion: Using HEC as the gold standard method, no evidence of reduced insulin sensitivity in skeletal muscle was documented in RTHß adult patients; however, higher levels of TC and LDL-C were observed in these patients, which suggest the need for active monitoring of this abnormality to minimize cardiometabolic risk. In addition, we demonstrated, for the first time, that the increase in IL-6 levels in patients with RTHß is probably secondary to metabolic causes as they have normal levels of TNF-α and CRPus, which may contribute to an increase in cardiovascular risk. A larger number of patients must be studied to confirm these results.

19.
Clin Endocrinol (Oxf) ; 101(2): 180-190, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856700

ABSTRACT

OBJECTIVES: The use of levothyroxine (LT4) treatment aiming to improve fertility in euthyroid women with positive thyroid peroxidase antibodies (TPOAb) is not supported by the available evidence. The aim of the study was to document the use of LT4 by European thyroid specialists in such patients. DESIGN: The data presented derive from Treatment of Hypothyroidism in Europe by Specialists, an International Survey (THESIS), a questionnaire conducted between 2019 and 2021 to document the management of hypothyroidism by European thyroid specialists. Here, we report the aggregate results on the use of LT4 in infertile, euthyroid women with positive TPOAb. RESULTS: A total of 2316/5406 (42.8%) respondents stated that LT4 may be indicated in TPOAb positive euthyroid women with infertility. The proportion of those replying positively to this question varied widely across different countries (median 39.4, range 22.9%-83.7%). In multivariate analyses males (OR: 0.8; CI: 0.7-0.9) and respondents >60 years (OR: 0.7; 0.6-0.8) were the least inclined to consider LT4 for this indication. Conversely, respondents managing many thyroid patients ("weekly" [OR: 1.4; CI: 1.0-1.9], "daily" [OR: 1.8; CI: 1.3-2.4]) and practicing in Eastern Europe (OR: 1.5; CI: 1.3-1.9) were most likely to consider LT4. CONCLUSIONS: A remarkably high number of respondents surveyed between 2019 and 2021, would consider LT4 treatment in TPOAb positive euthyroid women with infertility. This view varied widely across countries and correlated with sex, age and workload, potentially influencing patient management. These results raise concerns about potential risks of overtreatment.


Subject(s)
Autoantibodies , Hypothyroidism , Infertility, Female , Thyroxine , Humans , Thyroxine/therapeutic use , Female , Hypothyroidism/drug therapy , Hypothyroidism/blood , Europe , Adult , Autoantibodies/blood , Infertility, Female/drug therapy , Middle Aged , Male , Surveys and Questionnaires , Iodide Peroxidase/immunology
20.
J Pathol ; 263(4-5): 466-481, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924548

ABSTRACT

The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Acinar Cells , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Ubiquitin-Protein Ligases , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/enzymology , Humans , Acinar Cells/pathology , Acinar Cells/metabolism , Acinar Cells/enzymology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/enzymology , Metaplasia/pathology , Metaplasia/metabolism , Cell Plasticity , Carcinogenesis/genetics , Carcinogenesis/metabolism , Mice , Cell Line, Tumor , Cell Proliferation , Mice, Knockout , Gene Expression Regulation, Neoplastic , Precancerous Conditions/pathology , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/enzymology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/metabolism , Carrier Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...