Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
1.
Nanotoxicology ; : 1-27, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101876

ABSTRACT

Nano-sized titanium dioxide particles (TiO2 NPs) are a high-production volume nanomaterial widely used in the paints, cosmetics, food and photovoltaics industry. However, the potential carcinogenic effects of TiO2 NPs in the lung are still unclear despite the vast number of in vitro and in vivo studies investigating TiO2 NPs. Here, we systematically reviewed the existing in vitro and in vivo mechanistic evidence of TiO2 NP lung carcinogenicity using the ten key characteristics of carcinogens for identifying and classifying carcinogens. A total of 346 studies qualified for the quality and reliability assessment, of which 206 were considered good quality. Using a weight-of-evidence approach, these studies provided mainly moderate to high confidence for the biological endpoints regarding genotoxicity, oxidative stress and chronic inflammation. A limited number of studies investigated other endpoints important to carcinogenesis, relating to proliferation and transformation, epigenetic alterations and receptor-mediated effects. In summary, TiO2 NPs might possess the ability to induce chronic inflammation and oxidative stress, but it was challenging to compare the findings in the studies due to the wide variety of TiO2 NPs differing in their physicochemical characteristics, formulation, exposure scenarios/test systems, and experimental protocols. Given the limited number of high-quality and high-reliability studies identified within this review, there is a lack of good enough mechanistic evidence for TiO2 NP lung carcinogenicity. Future toxicology/carcinogenicity research must consider including positive controls, endotoxin testing (where necessary), statistical power analysis, and relevant biological endpoints, to improve the study quality and provide reliable data for evaluating TiO2 NP-induced lung carcinogenicity.

2.
Cell Biol Toxicol ; 40(1): 67, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110362

ABSTRACT

BACKGROUND: Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS: Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS: Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS: Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.


Subject(s)
Blood Platelets , Platelet Activation , Platelet Aggregation , Thrombosis , Titanium , Titanium/toxicity , Animals , Humans , Platelet Aggregation/drug effects , Blood Platelets/drug effects , Blood Platelets/metabolism , Male , Thrombosis/chemically induced , Mice , Platelet Activation/drug effects , Adult , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Blood Coagulation/drug effects , Mice, Inbred C57BL , P-Selectin/metabolism , Calcium/metabolism , Calcium/blood , Nanoparticles/toxicity , Metal Nanoparticles/toxicity
3.
Toxicol In Vitro ; : 105918, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142447

ABSTRACT

This study aims to adapt an experimental model based on Franz diffusion cells and porcine skin explants to characterize the diffusion of TiO2 NPs and to compare the efficacy of different cleansing products, soapy water and a calixarene cleansing nanoemulsion compared with pure water, as a function of the time of treatment. While TiO2 NPs tend to form agglomerates in aqueous solutions, a diffusion through healthy skin was confirmed as particles were detected in the receptor fluid of Franz cells using sp-ICP-MS. In the absence of treatment, SIMS images showed the accumulation of TiO2 agglomerates in the stratum corneum, the epidermis, the dermis, and around hair follicles. Decontamination assays showed that the two products tested were comparably effective in limiting Ti penetration, whatever the treatment time. However, only calixarene nanoemulsion was statistically more efficient than water in retaining TiO2 in the donor compartment (>89%), limiting retention inside the skin (<1%) and preventing NP diffusion through the skin (<0.13%) when treatments were initiated 30 min after skin exposure. When decontamination was delayed from 30 min to 6 h, the amount of Ti diffusing and retained in the skin increased. This study demonstrates that TiO2 NPs may diffuse through healthy skin after exposure. Thus, effective decontamination using cleansing products should be carried out as soon as possible.

4.
ACS Appl Bio Mater ; 7(7): 4580-4592, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38958462

ABSTRACT

Nanomaterial-mediated antibacterial photodynamic therapy (aPDT) emerges as a promising treatment against antibiotic-resistant bacterial biofilms. Specifically, titanium dioxide nanoparticles (TiO2 NPs) are being investigated as photosensitizers in aPDT to address biofilm related diseases. To enhance their photocatalytic performance in the visible spectral range for biomedical applications, various strategies have been adopted, including reduction of TiO2 NPs. However, despite improvements in visible-light photoactivity, reduced TiO2 NPs have yet to reach their expected performance primarily due to the instability of oxygen vacancies and their tendency to reoxidize easily. To address this, we present a two-step approach to fabricate highly visible-light active and stable TiO2 NP photocatalysts, involving nitrogen doping followed by a magnesium-assisted reductive annealing process. X-ray photoelectron spectroscopy analysis of the synthesized reduced nitrogen-doped TiO2 NPs (H:Mg-N-TiO2 NPs) reveals that the presence of nitrogen stabilizes oxygen vacancies and reduced Ti species, leading to increased production of reactive oxygen species under visible-light excitation. The improved aPDT efficiency translates to a 3-fold enhancement in the antibiofilm activity of nitrogen-doped compared to undoped reduced TiO2 NPs against both Gram-positive (Streptococcus mutans) and Gram-negative (Porphyromonas gingivalis, Fusobacterium nucleatum) oral pathogens. These results underscore the potential of H:Mg-N-TiO2 NPs in aPDT for combating bacterial biofilms effectively.


Subject(s)
Anti-Bacterial Agents , Biofilms , Materials Testing , Nitrogen , Particle Size , Titanium , Titanium/chemistry , Titanium/pharmacology , Biofilms/drug effects , Nitrogen/chemistry , Nitrogen/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Catalysis , Nanoparticles/chemistry , Microbial Sensitivity Tests , Light , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Photochemical Processes
5.
Future Sci OA ; 10(1): FSO979, 2024.
Article in English | MEDLINE | ID: mdl-38827789

ABSTRACT

Aim: To clarify the alternation of gene expression responsible for resistance of Adriamycin (ADR) in rats, in addition to investigation of a novel promising drug-delivery system using titanium dioxide nanoparticles loaded with ADR (TiO2-ADR). Method: Breast cancer was induced in female Sprague-Dawley rats, followed by treatment with ADR (5 mg/kg) or TiO2-ADR (2 mg/kg) for 1 month. Results: Significant improvements in both zinc and calcium levels were observed with TiO2-ADR treatment. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant reduction and overexpression of the C-myc in breast cancer-induced rats. TiO2-ADR demonstrated a notable ability to upregulate these genes. Conclusion: TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.


The current study aimed to investigate a novel and promising drug-delivery system to overcome the resistance problem by loading Adriamycin (ADR) into titanium dioxide nanoparticles (TiO2). The study also aimed to clarify the changes in gene expression responsible for the development of ADR resistance, in a rat model. First, animals were divided into four groups of ten each. Breast cancer was induced in female Sprague-Dawley rats by administering two doses of DMBA (50 and 25 mg/kg), followed by treatment with ADR at a dose of 5 mg/kg for 1 month, or TiO2-ADR at a dose of 2 mg/kg for 1 month. Biochemical and molecular analyses were conducted. Zinc and calcium levels were found to significantly decrease after cancer induction. Treatment with ADR alone or in combination with TiO2 showed a significant improvement in both mineral levels, with the TiO2-ADR group showing superior results. Gene expression of ATP-binding cassette transporter membrane proteins (ABCA1 & ABCG1), P53 and Jak-2 showed a significant decrease after DMBA-induced breast cancer. However, both the ADR- and TiO2-ADR-treated groups showed a notable increase in gene expression, with the TiO2-ADR group showing the highest increase. On the other hand, there was a significant overexpression of the C-myc gene after DMBA-induced breast cancer. However, both ADR and TiO2-ADR treatments resulted in a notable decrease in C-myc gene expression. Based on the data, TiO2-ADR could be a promising drug-delivery system for breast cancer therapy.

6.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892068

ABSTRACT

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.


Subject(s)
Ceramides , Metal Nanoparticles , Rats, Wistar , Titanium , Zinc Oxide , Animals , Zinc Oxide/toxicity , Titanium/toxicity , Titanium/adverse effects , Rats , Ceramides/metabolism , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Male , Administration, Oral , Lysosomal-Associated Membrane Protein 2/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology
7.
Front Plant Sci ; 15: 1391751, 2024.
Article in English | MEDLINE | ID: mdl-38863538

ABSTRACT

Polystyrene nanoplastics and titanium dioxide nanoparticles are widely spread in all environments, often coexisting within identical frameworks. Both these contaminants can induce negative effects on cell and plant physiology, giving concerns on their possible interaction which could increase each other's harmful effects on plants. Despite the urgency of this issue, there is very little literature addressing it. To evaluate the potential risk of this co-contamination, lentil seeds were treated for five days with polystyrene nanoplastics and titanium dioxide nanoparticles (anatase crystalline form), alone and in co-presence. Cytological analyses, and histochemical and biochemical evaluation of oxidative stress were carried out on isolated shoots and roots. TEM analysis seemed to indicate the absence of physical/chemical interactions between the two nanomaterials. Seedlings under cotreatment showed the greatest cytotoxic and genotoxic effects and high levels of oxidative stress markers associated with growth inhibition. Even if biochemical data did not evidence significant differences between materials treated with polystyrene nanoplastics alone or in co-presence with titanium dioxide nanoparticles, histochemical analysis highlighted a different pattern of oxidative markers, suggesting a synergistic effect by the two nanomaterials. In accordance, the fluorescence signal linked to nanoplastics in root and shoot was higher under cotreatment, perhaps due to the well-known ability of titanium dioxide nanoparticles to induce root tissue damage, in this way facilitating the uptake and translocation of polystyrene nanoplastics into the plant body. In the antioxidant machinery, peroxidase activity showed a significant increase in treated roots, in particular under cotreatment, probably more associated with stress-induced lignin synthesis than with hydrogen peroxide detoxification. Present results clearly indicate the worsening by metal nanoparticles of the negative effects of nanoplastics on plants, underlining the importance of research considering the impact of cotreatments with different nanomaterials, which may better reflect the complex environmental conditions.

8.
J Toxicol Environ Health A ; 87(17): 687-700, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38836411

ABSTRACT

The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.


Subject(s)
Benzophenones , Embryo, Nonmammalian , Sunscreening Agents , Titanium , Water Pollutants, Chemical , Zebrafish , Animals , Titanium/toxicity , Titanium/chemistry , Benzophenones/toxicity , Sunscreening Agents/toxicity , Sunscreening Agents/chemistry , Embryo, Nonmammalian/drug effects , Water Pollutants, Chemical/toxicity , Nanoparticles/toxicity , Metal Nanoparticles/toxicity , Ecotoxicology , Larva/drug effects
9.
J Hazard Mater ; 474: 134850, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850947

ABSTRACT

Titanium dioxide nanoparticles (nTiO2) have been considered a possible carcinogen to humans, but most existing studies have overlooked the role of human enzymes in assessing the genotoxicity of nTiO2. Here, a toxicogenomics-based in vitro genotoxicity assay using a GFP-fused yeast reporter library was employed to elucidate the genotoxic potential and mechanisms of nTiO2. Moreover, two new GFP-fused yeast reporter libraries containing either human CYP1A1 or CYP1A2 genes were constructed by transformation to investigate the potential modulation of nTiO2 genotoxicity in the presence of human CYP enzymes. This study found a lack of appreciable nTiO2 genotoxicity as indicated by the yeast reporter library in the absence of CYP expression but a significantly elevated indication of genotoxicity in either CYP1A1- or CYP1A2-expressing yeast. The intracellular reactive oxygen species (ROS) measurement indicated significantly higher ROS in yeast expressing either enzyme. The detected mitochondrial DNA damage suggested mitochondria as one of the target sites for oxidative damage by nTiO2 in the presence of either one of the CYP enzymes. The results thus indicated that the genotoxicity of nTiO2 was enhanced by human CYP1A1 or CYP1A2 enzyme and was associated with elevated oxidative stress, which suggested that the similar mechanisms could occur in human cells.


Subject(s)
Cytochrome P-450 CYP1A1 , DNA Damage , Mutagenicity Tests , Reactive Oxygen Species , Saccharomyces cerevisiae , Titanium , Humans , Titanium/toxicity , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Mutagens/toxicity , Oxidative Stress/drug effects , Genes, Reporter , Nanoparticles/toxicity , Metal Nanoparticles/toxicity , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism
10.
J Hazard Mater ; 474: 134851, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852253

ABSTRACT

Nanoparticle (NP) pollution has negative impacts and is a major global environmental problem. However, the molecular response of alfalfa (Medicago sativa L.) to titanium dioxide nanoparticles (TiO2 NPs) is limited. Herein, the dual effects of TiO2 NPs (0-1000 mg L-1) on carbon (C) and nitrogen (N) metabolisms in alfalfa were investigated. The results showed that 500 mg L-1 TiO2 NPs (Ti-500) had the highest phytotoxicity in the C/N metabolizing enzymes; and it significantly increased total soluble sugar, starch, sucrose, and sucrose-phosphate synthase. Furthermore, obvious photosynthesis responses were found in alfalfa exposed to Ti-500. By contrast, 100 mg L-1 TiO2 NPs (Ti-100) enhanced N metabolizing enzymes. RNA-seq analyses showed 4265 and 2121 differentially expressed genes (DEGs) in Ti-100 and Ti-500, respectively. A total of 904 and 844 differentially expressed proteins (DEPs) were identified in Ti-100 and Ti-500, respectively. Through the physiological, transcriptional, and proteomic analyses, the DEGs and DEPs related to C/N metabolism, photosynthesis, chlorophyll synthesis, starch and sucrose metabolism, and C fixation in photosynthetic organisms were observed. Overall, TiO2 NPs at low doses improve photosynthesis and C/N regulation, but high doses can cause toxicity. It is valuable for the safe application of NPs in agriculture.


Subject(s)
Carbon , Medicago sativa , Nitrogen , Photosynthesis , Titanium , Transcriptome , Medicago sativa/drug effects , Medicago sativa/genetics , Medicago sativa/metabolism , Titanium/toxicity , Nitrogen/metabolism , Carbon/metabolism , Transcriptome/drug effects , Photosynthesis/drug effects , Proteomics , Plant Proteins/genetics , Plant Proteins/metabolism , Metal Nanoparticles/toxicity , Gene Expression Regulation, Plant/drug effects , Nanoparticles/toxicity
11.
Chemosphere ; 361: 142549, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851501

ABSTRACT

Titanium dioxide nanoparticles (TiO2-NP) present in wastewater effluent are discharged into freshwater and saltwater (i.e., marine) systems. TiO2-NP can be solar-driven photoactivated by ultraviolet (UV)-light producing reactive oxygen species including hydroxyl radicals (·OH). ·OH are non-selective and react with a broad range of species in water. In other studies, photoactivation of TiO2-NP has been correlated with oxidative stress and ecotoxicological impacts on plant and animal biota. This study examined the photoactivation of TiO2-NP in freshwater and saltwater systems, and contrasted the oxidation potential in both systems using methylene blue (MB) as a reaction probe. Maximum MB loss (51.9%, n = 4; 95% confidence interval 49.4-54.5) was measured in salt-free, deionized water where ·OH scavenging was negligible; minimum MB loss (1%) was measured in saltwater due to significant ·OH scavenging, indicating the inverse correlation between MB loss and radical scavenging. A kinetic analysis of scavenging by seawater constituents indicated Cl- had the greatest impact due to high concentration and high reaction rate constant. Significant loss of MB occurred in the presence of Br- relative to other less aggressive scavengers present in seawater (i.e., HCO3-, HSO4-). This result is consistent with the formation of Bromate, a strong oxidant that subsequently reacts with MB. In freshwater samples collected from different water bodies in Oklahoma (n = 12), the average MB loss was 13.4%. Greater MB loss in freshwater systems relative to marine systems was due to lower ·OH scavenging by various water quality parameters. Overall, TiO2-NP photoactivation in freshwater systems has the potential to cause greater oxidative stress and ecotoxicological impacts than in marine systems where ·OH scavenging is a dominant reaction.


Subject(s)
Free Radical Scavengers , Fresh Water , Oxidation-Reduction , Seawater , Titanium , Water Pollutants, Chemical , Titanium/chemistry , Titanium/toxicity , Fresh Water/chemistry , Seawater/chemistry , Free Radical Scavengers/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Hydroxyl Radical/chemistry , Nanoparticles/chemistry , Nanoparticles/toxicity , Ultraviolet Rays , Wastewater/chemistry , Methylene Blue/chemistry
12.
Toxics ; 12(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38787146

ABSTRACT

The escalating utilization of titanium dioxide nanoparticles (TiO2 NPs) in everyday products has sparked concerns regarding their potential hazards to pregnant females and their offspring. To address these concerns and shed light on their undetermined adverse effects and mechanisms, we established a pregnant rat model to investigate the impacts of TiO2 NPs on both maternal and offspring health and to explore the underlying mechanisms of those impacts. Pregnant rats were orally administered TiO2 NPs at a dose of 5 mg/kg body weight per day from GD5 to GD18 during pregnancy. Maternal body weight, organ weight, and birth outcomes were monitored and recorded. Maternal pathological changes were examined by HE staining and TEM observation. Maternal blood pressure was assessed using a non-invasive blood analyzer, and the urinary protein level was determined using spot urine samples. Our findings revealed that TiO2 NPs triggered various pathological alterations in maternal liver, kidney, and spleen, and induced maternal preeclampsia-like syndrome, as well as leading to growth restriction in the offspring. Further examination unveiled that TiO2 NPs hindered trophoblastic cell invasion into the endometrium via the promotion of autophagy. Consistent hypertension and proteinuria resulted from the destroyed the kidney GBM. In total, an exposure to TiO2 NPs during pregnancy might increase the risk of human preeclampsia through increased maternal arterial pressure and urinary albumin levels, as well as causing fetal growth restriction in the offspring.

13.
Environ Toxicol Pharmacol ; 108: 104466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759847

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in consumer products, raising concerns about their impact on human health. This study investigates the effects of TiO2 NPs on male germ cells while focusing on cell proliferation inhibition and underlying mechanisms. This was done by utilizing mouse GC-1 spermatogonia cells, an immortalized spermatogonia cell line. TiO2 NPs induced a concentration-dependent proliferation inhibition with increased reactive oxygen species (ROS) generation. Notably, TiO2 NPs induced autophagy and decreased ERK phosphorylation. Treatment with the ROS inhibitor N-Acetyl-l-cysteine (NAC) alleviated TiO2 NPs-induced autophagy, restored ERK phosphorylation, and promoted cell proliferation. These findings call attention to the reproductive risks posed by TiO2 NPs while also highlighting NAC as a possible protective agent against reproductive toxins.


Subject(s)
Acetylcysteine , Autophagy , Cell Proliferation , Metal Nanoparticles , Reactive Oxygen Species , Titanium , Titanium/toxicity , Male , Autophagy/drug effects , Animals , Acetylcysteine/pharmacology , Mice , Reactive Oxygen Species/metabolism , Cell Line , Cell Proliferation/drug effects , Metal Nanoparticles/toxicity , Spermatogonia/drug effects , Nanoparticles/toxicity
14.
Sci Rep ; 14(1): 8045, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580674

ABSTRACT

Silver and titanium-silver nanoparticles have unique properties that make the textile industry progress through the high quality of textiles. Preparation of AgNPs and TiO2-Ag core-shell nanoparticles in different concentrations (0.01% and 0.1% OWF) and applying it to cotton fabrics (Giza 88 and Giza 94) by using succinic acid 5%/SHP as a cross-linking agent. Ultra-violet visible spectroscopy (UV-Vis), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX) are tools for AgNPs and TiO2-AgNPs characterization and the treated cotton. The resulting AgNPs and TiO2-AgNPs were added to cotton fabrics at different concentrations. The antimicrobial activities, UV protection, self-cleaning, and the treated fabrics' mechanical characteristics were investigated. Silver nanoparticles and titanium dioxide-silver nanoparticles core-shell were prepared to be used in the treatment of cotton fabrics to improve their UV protection properties, self-cleaning, elongation and strength, as well as the antimicrobial activities to use the produced textiles for medical and laboratory uses and to increase protection for medical workers taking into account the spread of infection. The results demonstrated that a suitable distribution of prepared AgNPs supported the spherical form. Additionally, AgNPs and TiO2-AgNPs have both achieved stability, with values of (- 20.8 mV and - 30 mV, respectively). The synthesized nanoparticles spread and penetrated textiles' surfaces with efficiency. The findings demonstrated the superior UV protection value (UPF 50+) and self-cleaning capabilities of AgNPs and TiO2-AgNPs. In the treatment with 0.01% AgNPs and TiO2-AgNPs, the tensile strength dropped, but the mechanical characteristics were enhanced by raising the concentration to 0.1%. The results of this investigation demonstrated that the cotton fabric treated with TiO2-AgNPs exhibited superior general characteristics when compared to the sample treated only with AgNPs.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Humans , Silver/chemistry , Cotton Fiber , Succinic Acid , Metal Nanoparticles/chemistry , Textiles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
15.
Environ Sci Pollut Res Int ; 31(21): 31467-31478, 2024 May.
Article in English | MEDLINE | ID: mdl-38635093

ABSTRACT

Titanium dioxide nanoparticle (TiO2-NP) exposure has raised significant concern due to their potential toxicity and adverse ecological impacts. Despite their ubiquitous presence in various environmental compartments, the long-term consequences of TiO2-NPs remain poorly understood. In this study, we combined data of in vivo toxicity and modeling to investigate the potential negative impacts of TiO2-NP exposure. We employed the nematode Caenorhabditis elegans, an environmental organism, to conduct a full life cycle TiO2-NP toxicity assays. Moreover, to assess the potential impact of TiO2-NP toxicity on population dynamics, we applied a stage-constructed matrix population model (MPM). Results showed that TiO2-NPs caused significant reductions in reproduction, survival, and growth of parental C. elegans (P0) at the examined concentrations. Moreover, these toxic effects were even more pronounced in the subsequent generation (F1) when exposed to TiO2-NPs. Furthermore, parental TiO2-NP exposure resulted in significant toxicity in non-exposed C. elegans progeny (TiO2-NPs free), adversely affecting their reproduction, survival, and growth. MPM analysis revealed decreased transition probabilities of surviving (Pi), growth (Gi), and fertility (Fi) in scenarios with TiO2-NP exposure. Additionally, the population growth rate (λmax) was found to be less than 1 in both P0 and F1, indicating a declining population trend after successive generations. Sensitivity analysis pinpointed L1 larvae as the most vulnerable stage, significantly contributing to the observed population decline in both P0 and F1 generations under TiO2-NP exposure. Our findings provide insight into the potential risk of an environmental organism like nematode by life cycle exposure to TiO2-NPs.


Subject(s)
Caenorhabditis elegans , Titanium , Animals , Titanium/toxicity , Caenorhabditis elegans/drug effects , Reproduction/drug effects , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Life Cycle Stages/drug effects
16.
Sci Rep ; 14(1): 7715, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565575

ABSTRACT

Titanium dioxide nanoparticles (TiO2-NPs) have found wide applications in medical and industrial fields. However, the toxic effect of various tissues is still under study. In this study, we evaluated the toxic effect of TiO2-NP on stomach, liver, and kidney tissues and the amelioration effect of clove oil nanoemulsion (CLV-NE) against DNA damage, oxidative stress, pathological changes, and the apoptotic effect of TiO2-NPs. Four groups of male mice were subjected to oral treatment for five consecutive days including, the control group, the group treated with TiO2-NPs (50 mg/kg), the group treated with (CLV-NE) (5% of the MTD), and the group treated with TiO2-NPs plus CLV-NE. The results revealed that the treatment with TiO2-NPs significantly caused DNA damage in the liver, stomach, and kidney tissues due to increased ROS as indicated by the reduction of the antioxidant activity of SOD and Gpx and increased MDA level. Further, abnormal histological signs and apoptotic effect confirmed by the significant elevation of p53 expression were reported after TiO2-NPs administration. The present data reported a significant improvement in the previous parameters after treatment with CLV-NE. These results showed the collaborative effect of the oils and the extra role of nanoemulsion in enhancing antioxidant effectiveness that enhances its disperse-ability and further promotes its controlled release. One could conclude that CLV-NE is safe and can be used as a powerful antioxidative agent to assess the toxic effects of the acute use of TiO2-NPs.


Subject(s)
Metal Nanoparticles , Nanoparticles , Mice , Male , Animals , Clove Oil/toxicity , Nanoparticles/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Titanium/toxicity , DNA Damage
17.
Nanotoxicology ; 18(2): 122-133, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38436290

ABSTRACT

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are found in diverse products for human use. E171 is used as whitening agent in food and cosmetics, and ZnO NPs in food packaging. Their potential multi-organ toxicity has raised concerns on their safety. Since mitochondrial dysfunction is a key aspect of cardio-pathologies, here, we evaluate the effect of chronic exposure to E171 and ZnO NPs in rats on cardiac mitochondria. Changes in cardiac electrophysiology and body weight were measured. E171 reduced body weight more than 10% after 5 weeks. Both E171 and ZnO NPs increased systolic blood pressure (SBP) from 110-120 to 120-140 mmHg after 45 days of treatment. Both NPs altered the mitochondrial permeability transition pore (mPTP), reducing calcium requirement for permeability by 60% and 93% in E171- and ZnO NPs-exposed rats, respectively. Treatments also affected conformational state of adenine nucleotide translocase (ANT). E171 reduced the binding of EMA to Cys 159 in 30% and ZnO NPs in 57%. Mitochondrial aconitase activity was reduced by roughly 50% with both NPs, indicating oxidative stress. Transmission electron microscopy (TEM) revealed changes in mitochondrial morphology including sarcomere discontinuity, edema, and hypertrophy in rats exposed to both NPs. In conclusion, chronic oral exposure to NPs induces functional and morphological damage in cardiac mitochondria, with ZnO NPs being more toxic than E171, possibly due to their dissociation in free Zn2+ ion form. Therefore, chronic intake of these food additives could increase risk of cardiovascular disease.


Subject(s)
Mitochondria, Heart , Titanium , Zinc Oxide , Animals , Titanium/toxicity , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Male , Rats , Administration, Oral , Permeability/drug effects , Mitochondrial Permeability Transition Pore/metabolism , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Nanoparticles/chemistry , Rats, Sprague-Dawley , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Blood Pressure/drug effects
18.
Front Pediatr ; 12: 1337865, 2024.
Article in English | MEDLINE | ID: mdl-38487474

ABSTRACT

Nanoparticles (NPs) possess unique properties that make their use valuable in all industries. Titanium dioxide (TiO2) NPs are extensively used as a white pigment in food (labeled under the European number E171) and personal care products, which creates a significant potential for chronic consumer exposure. Concerns about the potential toxic effects of TiO2 NPs have arisen, particularly in vulnerable populations, including pregnant women and infants. Recently, human materno-fetal transfer of E171 was demonstrated, and simultaneously, we reported that chronic prenatal exposure to reference P25 TiO2 NPs was found to alter the developing respiratory neural networks. In this study, using whole body plethysmography from postnatal day (P) 0 to P7, we assessed the respiratory function of newborn mice born to mothers fed with E171 during pregnancy. We also evaluated the potential alterations to respiratory centers by using brainstem-spinal cord electrophysiological recordings from P0 to P6. Our study reveals that E171-prenatally exposed animals displayed an abnormally elevated breathing rate from P3 onwards. From P5 to P6, the respiratory-related burst frequency generated by the isolated brainstem-spinal cord preparations was significantly higher in E171-exposed animals than in non-exposed animals. These findings demonstrate prenatal toxicity of E171 to the developing respiratory function and may contribute to policy-making regarding the use of TiO2 NPs.

19.
Sci Total Environ ; 921: 171133, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38395162

ABSTRACT

The bioavailability and toxicity of organic pollutants in aquatic organisms can be largely affected by the co-existed nanoparticles. However, the impacts of such combined exposure on the visual system remain largely unknown. Here, we systematically investigated the visual toxicity in zebrafish larvae after single or joint exposure to titanium dioxide nanoparticles (n-TiO2) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) at environmentally relevant levels. Molecular dynamics simulations revealed the enhanced transmembrane capability of the complex than the individual, which accounted for the increased bioavailability of both TBPH and n-TiO2 when combined exposure to zebrafish. Transcriptome analysis showed that co-exposure to n-TiO2 and TBPH interfered with molecular pathways related to eye lens structure and sensory perception of zebrafish. Particularly, n-TiO2 or TBPH significantly suppressed the expression of ßB1-crystallin and rhodopsin in zebrafish retina and lens, which was further enhanced after co-exposure. Moreover, we detected disorganized retinal histology, stunted lens development and significant visual behavioral changes of zebrafish under co-exposure condition. The overall results suggest that combined exposure to water borne n-TiO2 and TBPH increased their bioavailability, resulted in severer damage to optic nerve development and ultimately abnormal visual behavior patterns, highlighting the higher potential health risks of co-exposure to aquatic vertebrates.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Animals , Zebrafish/physiology , Larva/metabolism , Nanoparticles/toxicity , Titanium/toxicity , Titanium/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
20.
Environ Sci Pollut Res Int ; 31(9): 13706-13721, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265580

ABSTRACT

The model plant Arabidopsis thaliana was exposed to combined stress factors, i.e., titanium dioxide nanoparticles (TiNPs) and high light. The concentrations of TiNPs used for irrigation were 250, 500, and 1000 µg/mL. This study shows that TiNPs alter the morphology and nanomechanical properties of chloroplasts in A. thaliana, which leads to a decrease in membrane elasticity. We found that TiNPs contributed to a delay in the thermal response of A. thaliana under dynamic light conditions, as revealed by non-invasive thermal imaging. The thermal time constants of TiNP-treated plants under excessive light are determined, showing a shortening in comparison to control plants. The results indicate that TiNPs may contribute to an alleviation of temperature stress experienced by plants under exposure to high light. In this research, we observed a decline in photosystem II photochemical efficiency accompanied by an increase in energy dissipation upon exposure to TiNPs. Interestingly, concentrations exceeding 250 µg/mL TiNPs appeared to mitigate the effects of high light, as shown by reduced differences in the values of specific OJIP parameters (FV/FM, ABS/RC, DI0/RC, and Pi_Abs) before and after light exposure.


Subject(s)
Arabidopsis , Nanoparticles , Arabidopsis/metabolism , Chloroplasts , Titanium/metabolism , Photosystem II Protein Complex/metabolism , Light , Photosynthesis/physiology , Chlorophyll/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL