Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Foods ; 13(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338578

ABSTRACT

For fresh meat consumers, eating satisfaction is of utmost importance and tenderness is one of the most important characteristics in this regard. Our study examined beef of different animal biotypes of the autochthonous breed "Asturiana de los Valles" (AV) to determine if early postmortem oxidative and proteolytic processes may influence the final tenderness of the product. This meat-specialized breed shows different biotypes depending on the frequency of a myostatin mutation "mh" that induces double-muscling or muscular hypertrophy (mh/mh, mh/+, +/+). Samples from the longissimus dorsi muscles of yearling bulls were analyzed during the first 24 h postmortem. Changes in the redox balance of muscle cells were significant in the first hours after slaughter; total antioxidant activity was higher in the mh/mh biotype and it followed the shortening of the sarcomeres, a key parameter in understanding meat tenderness. The two proteolytic systems studied (proteasome and lysosome) followed distinct patterns. Proteasome activity was higher in the (mh/+) biotype, which correlated with higher protein damage. Lysosome proteolysis was increased in the more tender biotypes (mh genotypes). Autophagic activation showed significant differences between the biotypes, with (mh/mh) showing more intense basal autophagy at the beginning of the postmortem period that decreased gradually (p < 0.001), while in the normal biotype (+/+), it was slightly delayed and then increased progressively (p < 0.001). These results suggest that this type of catalytic process and antioxidant activity could contribute to the earlier disintegration of the myofibers, particularly in the mh/mh biotypes, and influence the conversion of muscle into meat.

2.
Foods ; 12(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38137218

ABSTRACT

The commercialisation of fresh-cut artichokes with optimal quality and appearance and a maximum shelf-life is a great challenge for the artichoke market. The use of different anti-browning agents has been previously studied; however, their effect is still limited. Therefore, the objective of this study is the evaluation of the effect of L-cysteine and, in combination with a mixture of essential oils components (eugenol, thymol and carvacrol) on browning, quality and bioactive compounds of fresh-cut artichokes stored for 9 days at 2 °C. Four different treatments were applied to 'Blanca de Tudela' fresh-cut artichokes: cysteine and cysteine with 75, 150 and 300 µL of the essential oils components (EOs) mixture. After 2, 4 and 9 days of storage, physicochemical parameters (weight loss, colour, respiration rate) and functional (total phenolic content, antioxidant activity) were studied. A descriptive sensorial analysis was also carried out to evaluate sensory attributes. Results showed that the application of cysteine and 150 µL of EOs displayed the lowest browning and highest antioxidant properties, as well as the best quality and sensory parameters. The use of this post-harvest treatment on fresh-cut artichokes would result in a natural and eco-friendly solution to improve artichoke quality and shelf-life.

3.
Int J Mol Sci ; 24(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37511473

ABSTRACT

The aim of this study was to determine the effect of cultivars on the concentration of antioxidant compounds: total carotenoid content (TC) and vitamin C (VC), and their correlation with the total antioxidant activity (TAA) in 65 potato cultivars (Solanum tuberosum) from 10 countries. The TC content revealed a highly significant effect of the year (Y), cultivar (C) and flesh colour (FC). The TC ranged from 101.5 µg 100 g-1 DM (in cv. Kelly) to 715 µg 100 g-1 DM (in cv. Mayan Gold). The TC values were weakly correlated with years and higher in yellow-fleshed potatoes than in white-fleshed potatoes (319.9 vs. 175.6 µg 100 g-1 DM, respectively). The VC content ranged from 1.0 mg 100 g-1 FM (in cv. Bzura) to 14.8 mg 100 g-1 FM (in cv. Twinner). The content of VC were higher in yellow-fleshed (6.5 mg 100 g-1 FM) than in white-fleshed potatoes (5.8 mg 100 g-1 FM). The highest TAA were observed in cvs. Colleen, Basa, Triplo, Gatsby, Ditta, Twinner, Riviera, Michalina, Damaris, Belmonda, Ambo, Savinja, 12-LHI-6. For these cultivars, the FRAP values were 0.53 µmol TE 100 mg-1 DM and DPPH 0.55 µmol TE 100 mg-1 DM. The lowest TAA were observed in cvs.: Owacja, Mayan Gold, Kokra, Magnolia and Kelly. For them, the FRAP and DPPH values were slightly above 0.2 µmol TE 100 mg-1 DM. It was shown that the concentration of TC in potato tubers has an impact on TAA.


Subject(s)
Antioxidants , Solanum tuberosum , Ascorbic Acid , Carotenoids , Solanum tuberosum/chemistry , Vitamins
4.
Foods ; 11(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35681331

ABSTRACT

This study aims to determine the potential antioxidant, antihypertensive, hypoglycaemic and nootropic activity of a purified polyphenolic extract from the halophyte ice plant (Mesembryanthemum crystallinum). The ice plant extract showed good antioxidant activity measured by DPPH, ORAC, TEAC, FRAP and ferrous ion chelating activity. Moreover, the extract showed potent ACE, DPP-IV and PEP-inhibitory activity (90.5%, 98.6% and 73.1%, respectively, at a final concentration of 1 mg/mL). The extract was fractionated and the fraction with the highest content of total phenolic compounds showed the highest bioactivity, suggesting that polyphenols could be mainly responsible for the abovementioned activities. The tentative polyphenol identification by HPLC-ESI-QTOF-MS in this fraction revealed that flavones (>65%) are the major group, with apigenin (38%) predominating, followed by diosmin (17.7%) and luteolin (11.9%). They could presumably be the main elements responsible for the enzymatic inhibition activity. Additionally, 4-hydroxybenzoic acid, p-coumaric acid and a hydroxycinnamic acid derivative (2-O-(p-cumaroyl)-l-malic acid) were found in the extract. To our knowledge, this is the first time that some of these activities have been reported for halophyte extracts.

5.
Viruses ; 14(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35458453

ABSTRACT

Oxidative stress (OS) induced by SARS-CoV-2 infection may play an important role in COVID-19 complications. However, information on oxidative damage in pregnant women with COVID-19 is limited. Objective: We aimed to compare lipid and protein oxidative damage and total antioxidant capacity (TAC) between pregnant women with severe and non-severe COVID-19. Methods: We studied a consecutive prospective cohort of patients admitted to the obstetrics emergency department. All women positive for SARS-CoV-2 infection by reverse transcription-polymerase chain reaction (RT-qPCR) were included. Clinical data were collected and blood samples were obtained at hospital admission. Plasma OS markers, malondialdehyde (MDA), carbonylated proteins (CP), and TAC; angiogenic markers, fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF); and renin-angiotensin system (RAS) markers, angiotensin-converting enzyme 2 (ACE-2) and angiotensin-II (ANG-II) were measured. Correlation between OS, angiogenic, and RAS was evaluated. Results: In total, 57 pregnant women with COVID-19 were included, 17 (28.9%) of which had severe COVID-19; there were 3 (5.30%) maternal deaths. Pregnant women with severe COVID-19 had higher levels of carbonylated proteins (5782 pmol vs. 6651 pmol; p = 0.024) and total antioxidant capacity (40.1 pmol vs. 56.1 pmol; p = 0.001) than women with non-severe COVID-19. TAC was negatively correlated with ANG-II (p < 0.0001) and MDA levels (p < 0.0001) and positively with the sFlt-1/PlGF ratio (p = 0.027). Conclusions: In pregnant women, severe COVID-19 is associated with an increase in protein oxidative damage and total antioxidant capacity as a possible counterregulatory mechanism.


Subject(s)
COVID-19 , Antioxidants , Female , Humans , Placenta Growth Factor , Pregnancy , Pregnant Women , Prospective Studies , SARS-CoV-2 , Vascular Endothelial Growth Factor Receptor-1/metabolism
6.
Exp Ther Med ; 23(5): 330, 2022 May.
Article in English | MEDLINE | ID: mdl-35401809

ABSTRACT

Artificial tears or lubricants is a developing category in pharmaceutical research, due to the permanent increasing incidence of dry eye syndrome caused by the extensive use of personal computers and other gadget screens, associated with global warming and pollution. Considering the role of inflammation in dry eye syndrome, characterized by the production of free radicals, it is imperative to determine which elements are more significant in forming an artificial tear more effectively and more comfortably for the eye state and for the quality of life. Thus, the aim of the present study was to examine the evolution of the total antioxidant capacity of some frequently commercialized artificial tears via the photochemiluminescence method, using an antioxidant capacity of lipid soluble substances procedure, prior and subsequent to the exposure of these therapy agents to some physical agents. This is a preliminary research aiming to evaluate the impact of various environmental factors on these ophthalmic products, to be continued by evaluating whether the effectiveness of these products, in terms of objective examination and patient preference and adherence criteria, is impacted by the conditions of use and storage. Thus, the total antioxidant capacity of the evaluated artificial tear samples after UVC irradiation at 254 nm wavelength was studied, in order to investigate whether their status suffered any change in terms of antioxidant potential. In addition to the findings obtained in the study, some recommendations were also made.

7.
Front Bioeng Biotechnol ; 10: 800011, 2022.
Article in English | MEDLINE | ID: mdl-35237574

ABSTRACT

Currently, industrial activity causes the environmental release of nanoparticles that have multiple adverse effects on population health. There is a clear correlation between the increase in particulate air pollution and the increases in mortality and morbidity rates in both adults and children, which demonstrates the toxic effects of these particles. However, the effect of particle removal on healthy individuals is unknown. Thus, in this preliminary study, we showed, for the first time, how the filtering equipment that we used significantly reduced a large amount of nanoparticles in a minimum time and induced a reduction of oxidative damage in healthy individuals of both sexes after 25, 50 and 100 days of exposure. These effects led to increased protein synthesis and enhanced mitochondrial efficiency, thus resulting in a highly significant triggering of ATP synthesis. These results not only provide insight into the chronic effects that environmental nanoparticles have on individuals prior to the development of pathologies but also demonstrate a system capable of reversing nanoparticle toxicity and allowing cellular energy recovery.

8.
Foods ; 11(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35206034

ABSTRACT

We studied plant-based milk from soya beans as a means to release and convey the bound antioxidants in turmeric to benefit consumer health. This was compared to cow milk as a carrier because soya milk consumption as an alternative to cow milk is increasing globally. Hence, turmeric paste was added to milk to investigate the release of turmeric antioxidants when changing the matrix (cow vs. soy), the amount of turmeric paste (0%, 2%, and 6%), and the effect of heating (with and without). Proximate, physicochemical, and mineral analysis were carried out for all samples. The total phenol content (TPC) and total antioxidant activity were measured using Folin-Ciocalteu and Quencher methods. Protein ranged from 2.0% to 4.0%, and minerals ranged from 17.8 to 85.1, 0.37 to 0.53, and 0.29 to 0.30 mg/100 mL for calcium, iron, and zinc, respectively. TPC ranged from 0.01 to 0.147 GAE (g/kg) and antioxidant activity from 7.5 to 17.7 TEAC (mmol Trolox/kg sample). Overall, turmeric added nutritional and chemical value to all the samples with and without heat treatment. However, turmeric-fortified soya milk samples showed the highest protein, iron, zinc, TPC, and antioxidant activity. This study identified a cheap, additional nutrient source for developing-countries' malnourished populations by utilizing soya bean milk to produce golden milk.

9.
Plants (Basel) ; 10(7)2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34371568

ABSTRACT

The present study was carried out with the aim of (i) evaluating the effect of chitosan (CTS) on the growth of durum wheat under salinity and (ii) examining CTS-regulated mechanisms of salinity tolerance associated with the antioxidant defense system. To achieve these goals, durum wheat seedlings were treated with CTS at different molecular weight, low (L-CTS, 50-190 kDa), medium (M-CTS, 190-310 kDa) and high (H-CTS, 310-375 kDa). The results obtained show that exposure to 200 mM NaCl reduced the shoot and the root dried biomass by 38% and 59%, respectively. The growth impairment induced by salinity was strongly correlated with an increase in the superoxide anion production (5-fold), hydrogen peroxide content (2-fold) and malondialdehyde (MDA) content (4-fold). Seedlings responded to the oxidative stress triggered by salinity with an increase in the total phenolic content (TPC), total flavonoid content (TFC) and total antioxidant activity (TAA) by 67%, 51% and 32%, respectively. A salt-induced increase in the activity of the antioxidant enzymes superoxide dismutase and catalase (CAT) of 89% and 86%, respectively, was also observed. Treatment of salt-stressed seedlings with exogenous CTS significantly promoted seedling growth, with the strongest effects observed for L-CTS and M-CTS, which increased the shoot biomass of stressed seedlings by 32% and 44%, respectively, whereas the root dried biomass increased by 87% and 64%, respectively. L-CTS and M-CTS treatments also decreased the superoxide anion production (57% and 59%, respectively), the hydrogen peroxide content (35% and 38%, respectively) and the MDA content (48% and 56%, respectively) and increased the TPC (23% and 14%, respectively), the TFC (19% and 10%, respectively), the TAA (up to 10% and 7%, respectively) and the CAT activity (29% and 20%, respectively). Overall, our findings indicate that CTS exerts its protective role against the oxidative damages induced by salinity by enhancing the antioxidant defense system. L-CTS and M-CTS were the most effective in alleviating the adverse effect of NaCl, thus demonstrating that the CTS action is strictly related to its molecular weight.

10.
Antioxidants (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439572

ABSTRACT

Currently, there is increased interest in finding appropriate food-grade green extraction systems capable of extracting these bioactive compounds from dietary mushrooms for applications in various food, pharmacological, or nutraceutical formulations. Herein, we evaluated a modified Swiss water process (SWP) method using alkaline and acidic pH at low and high temperature under pressurized conditions as a suitable green food grade solvent to obtained extracts enriched with myco-nutrients (dietary phenolics, total antioxidants (TAA), vitamins, and minerals) from Chaga. Ultra-high performance liquid chromatography coupled to high resolution accurate mass tandem mass spectrometry (UHPLC-HRAMS-MS/MS) was used to assess the phenolic compounds and vitamin levels in the extracts, while inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the mineral contents. Over 20 phenolic compounds were quantitatively evaluated in the extracts and the highest total phenolic content (TPC) and total antioxidant activity (TAA) was observed at pH 11.5 at 100 °C. The most abundant phenolic compounds present in Chaga extracts included phenolic acids such as protocatechuic acid 4-glucoside (0.7-1.08 µg/mL), syringic acid (0.62-1.18 µg/mL), and myricetin (0.68-1.3 µg/mL). Vitamins are being reported for the first time in Chaga. Not only, a strong correlation was found for TPC with TAA (r-0.8, <0.0001), but also, with individual phenolics (i.e., Salicylic acid), lipophilic antioxidant activity (LAA), and total antioxidant minerals (TAM). pH 2.5 at 100 °C treatment shows superior effects in extracting the B vitamins whereas pH 2.5 at 60 and 100 °C treatments were outstanding for extraction of total fat-soluble vitamins. Vitamin E content was the highest for the fat-soluble vitamins in the Chaga extract under acidic pH (2.5) and high temp. (100 °C) and ranges between 50 to 175 µg/100 g Chaga. Antioxidant minerals ranged from 85.94 µg/g (pH7 at 100 °C) to 113.86 µg/g DW (pH2.5 at 100 °C). High temperature 100 °C and a pH of 2.5 or 9.5. The treatment of pH 11.5 at 100 °C was the most useful for recovering phenolics and antioxidants from Chaga including several phenolic compounds reported for the first time in Chaga. SWP is being proposed herein for the first time as a novel, green food-grade solvent system for the extraction of myco-nutrients from Chaga and have potential applications as a suitable approach to extract nutrients from other matrices. Chaga extracts enriched with bioactive myconutrients and antioxidants may be suitable for further use or applications in the food and nutraceutical industries.

11.
Free Radic Biol Med ; 175: 108-120, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34390781

ABSTRACT

Obesity is a chronic disease of complex etiology. Recent evidence suggests that obesity is caused by inflammation of adipose tissue leading to metabolic disorders, cardiovascular disease and cancer. This is the first study to evaluated the effects of age and gender on redox homeostasis, glutathione metabolism, and oxidative damage to plasma/serum lipids and proteins in morbidly obese patients. The study included 120 (60 men and 60 women) morbidly obese patients with class 3 obesity (BMI > 40 kg/m2), classified into three groups depending on age: 20-39 years (n = 20), 40-59 years (n = 20) and 60 years or older (n = 20). The number of patients was calculated a priori based on our previous experiment. We observed a reduction in serum activity of antioxidant enzymes (↓SOD) and plasma concentration of non-enzymatic antioxidants (↓GSH) in obese patients compared to the lean controls, which further decreased with age. Redox status (↑TAC, ↑TOS and ↓OSI) in morbidly obese men and women was shifted towards oxidation. Moreover, lipid (↑MDA and ↑LOOH) and protein (↑AOPP, ↑AGE and ↑Amadori products) damage products of oxidation and nitrosylation/nitration (↑total NO, ↑S-nitrosothiols, ↑peroxynitrite and ↑nitrotyrosine) were elevated in both genders of morbidly obese patients and were higher in the elderly. Interestingly, the concentrations of oxidative and nitrosative stress markers were generally higher in obese men compared to obese women at the same age. Summarizing, we showed that the total antioxidant/oxidant potential of obese patients is significantly increased and shifted towards oxidation. Obese patients have increased lipid and protein oxidation, glycation and nitration as compared to the lean controls. Disturbances in redox homeostasis increase with age in obese patients. Oxidative and nitrosative stress are more intense in men than in women at the same age.


Subject(s)
Obesity, Morbid , Adult , Aged , Female , Homeostasis , Humans , Male , Nitrosative Stress , Oxidation-Reduction , Oxidative Stress , Young Adult
12.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208721

ABSTRACT

Wheat bran (WB) is a byproduct from the milling industry that contains bioactive compounds beneficial to human health. The aim of this work was on the one hand, increasing extractability of antioxidant and anti-inflammatory compounds (specifically ferulic acid, FA), through enzymatic hydrolysis combined with hydrothermal treatment (HT) and high hydrostatic pressure (HHP). On the other hand, enhancing the stability of final ingredient applying spray-drying (SPD) and microencapsulation (MEC). The use of HT increased FA, total phenolics (TP), and antioxidant capacity (AC) in WB hydrolysates, regardless the HT duration. However, the HT tested (30 min, HT30) produced a loss in anti-inflammatory activity (AIA). The combination of HT (15 min, HT15) with HHP increased AIA of the WB. SPD enhanced the TP yield in WB with no significant effect of inlet temperature (up to 140 °C) on phenolic profile mainly composed of trans-FA and smaller amounts of cis-FA and apigenin diglucosides. SPD caused a temperature-dependent increase in AC (160 °C > 140 °C > 130 °C). SPD inlet temperatures affected total solids yield (from 22 to 36%), with the highest values at 140 °C. The use of HHP in combination with HT resulted in >2-fold increase in total solids yield.

13.
Sci Hortic ; 279: 109896, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33731973

ABSTRACT

There are many different types of systems used to grow food that are distinguished by ideology or the technology used. It is often difficult to directly compare yield and quality in different growth systems due to the complicated interactions between genotype, physiology and environment. Many published comparisons do not identify and acknowledge confounding factors. However, there is urgency to undertake controlled comparisons to identify the most efficient and effective food production systems, because the world faces considerable challenges to food supply with population rise, ongoing environmental degradation and the threat of climatic change. Here we compared soil with two hydroponic growth systems, drip irrigation and deep-water culture (DWC). It is often claimed that such systems differ in water use, yield and crop quality; however, such comparisons are often confounded by assessing plant and system parameters in different growth environments or where factors that are difficult to standardise between systems, such as nutrient status, are not controlled. We grew tomato (Solanum lycopersicum L.) in the three growth systems in two replicated experiments, in either a polytunnel or glasshouse. We controlled and monitored water use and nutrient levels across all systems as different fertilizer applications can influence the nutritional values of produce. Plants in the two hydroponic systems transpired less water and were more water-efficient with a lower product water use than plants grown in soil. Fruit yield was similar and total soluble solids and sugar levels were not significantly different between the three growing systems. However, levels of lycopene and ß-carotene were either similar or significantly higher in DWC compared to growth systems using soil or drip irrigation. Our results identify hydroponic systems as more water use efficient with DWC also capable of producing higher quality produce.

14.
Curr Health Sci J ; 47(4): 558-565, 2021.
Article in English | MEDLINE | ID: mdl-35444827

ABSTRACT

Total antioxidant activity status (TAS) represents the body's response to oxidative stress, important in the pathogenic assessment of oxidations. AIM: To determine TAS variations in young subjects, with non-lesional cardiac arrhythmias, with/without dyslipidemia and to assess the risk of lipid oxidation. PATIENTS AND METHODS: The research was performed on 120 young subjects (mean age 33 years), with various types of cardiac arrhythmias, on normal heart, without co-existing lesions. Subjects were divided into 3 groups (40 persons). The first 2 groups included subjects with cardiac arrhythmias. Group I also associated dyslipidemia; group II, without dyslipidemia and group III: control. Determination of TAS values was performed using ABTS (2-azino-di-3-ethylbenzthiazoline sulfonate) colorimetic method. Results were statistically processed. RESULTS: TAS values were decreased in all patients with cardiac arrhythmias, representing 52-54% of the values of healthy controls, the data being highly statistically significant. The variation of TAS decrease by types of arrhythmias was thus found in patients with arrhythmias and associated dyslipidemia and, respectively, without dyslipidemia, compared to controls. The deficit of antioxidant activity, between 48%-46% triggers electrochemical processes with implications in arrhythmogenesis and lipid oxidation. Coffee and vegetables-rich diet have antioxidant effect, reducing TAS deficiency. CONCLUSIONS: 1. TAS was decreased in all subjects with non-lesional arrhythmias. The study showed decreasing TAS level at 52-54% in patients with arrhythmias, with/without dyslipidemia, compared to controls. 2. TAS deficiency was associated with various types of dysrhythmias, ranging from 62% to 33%. 3. Decreased TAS also triggers lipid oxidation, as risk factor for early atherosclerotic lesions.

15.
Arab J Gastroenterol ; 22(1): 34-39, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32928706

ABSTRACT

BACKGROUND AND STUDY AIMS: Obstructive cholestasis increases the levels of oxidants and inflammatory mediators, leading to liver damage. Previous studies have found that Cichorium intybus possesses anti-inflammatory effects. In the present study, the effects of the hydroalcoholic extract of C. intybus leaves were assessed in a rat model of obstructive cholestasis. MATERIAL AND METHODS: Male Wistar rats were randomly divided into five groups (n = 6 rats per group): sham-operated, control [bile duct ligation (BDL) + vehicle)] and BDL + extract treatment (100, 200 and 400 mg/kg/day, i.p.) groups. Rats received treatments for 7 consecutive days. On the eighth day, prothrombin time (PT); serum albumin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase and total and direct bilirubin levels and total antioxidant and paraoxonase activities were measured using colorimetric methods. In addition, tumour necrosis factor-α and nitric oxide (NO) levels were measured using enzyme-linked immunosorbent assay. RESULTS: The hydroalcoholic extract of C. intybus significantly decreased PT and the serum levels of AST, ALT, TNF-α and NO compared with the control group (p < 0.05). On the other hand, the serum albumin levels were increased in the extract-treated groups compared with the control group (p < 0.05). CONCLUSION: The hydroalcoholic extract of C. intybus protects the liver against injury induced by obstructive cholestasis.


Subject(s)
Cholestasis , Cichorium intybus , Animals , Cholestasis/complications , Cholestasis/drug therapy , Ligation , Liver , Plant Extracts/pharmacology , Rats , Rats, Wistar
16.
Antioxidants (Basel) ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369921

ABSTRACT

The assessment of total antioxidant activity seems to have a higher diagnostic value than the evaluation of individual antioxidants separately. Therefore, this is the first study to assess the total antioxidant/oxidant status in morbidly obese patients undergoing bariatric surgery. The study involved 60 patients with Class 3 obesity (BMI > 40 kg/m2) divided into two equal subgroups: morbidly obese patients without and with metabolic syndrome. The analyses were performed in plasma samples collected before surgery as well as 1, 3, 6, and 12 months after a laparoscopic sleeve gastrectomy. Total antioxidant capacity (TAC), ferric-reducing antioxidant power (FRAP), DPPH (2,2'-diphenyl-1-picrylhydrazyl) radical assay, and total oxidant status (TOS) were significantly higher before surgery (as compared to the healthy controls, n = 60) and generally decreased after bariatric treatment. Interestingly, all assessed biomarkers correlated positively with uric acid content. However, the total antioxidant/oxidant potential did not differ between obese patients without metabolic syndrome and those with both obesity and metabolic syndrome. Only DPPH differentiated the two subgroups (p < 0.0001; AUC 0.8) with 73% sensitivity and 77% specificity. Plasma TAC correlated positively with body mass index, waist-hip ratio, serum insulin, and uric acid. Therefore, TAC seems to be the best biomarker to assess the antioxidant status of obese patients.

17.
J Food Sci Technol ; 57(4): 1469-1476, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32180643

ABSTRACT

Present study aimed to investigate the effect of preharvest bagging and bag colour on physico-chemical, nutraceutical quality and consumer acceptability of pomegranate arils. Fruits of 10-years-old Kandhari variety were covered with 15 × 20 cm three colored single layer cellulosic bags (35 µm thickness, 2700 cm3 24 h-1 GTR, WVTR 28.60 cm3 24 h-1) 60 days after flowering. Fruits were harvested 150 days after anthesis (average TSS 13° brix) and fruits were taken to various physical-biochemical parameters. Red colored bagging minimized fruit cracking (66%) and bacterial blight incidence (78%) over control. Ascorbic acid and total anthocyanin content was found maximum with red colour bagged (18.20 ± 0.87 mg 100 g-1 FW; 73.03 ± 3.97 mg 100 g-1 FW) fruits, while total soluble solids, total sugars and total antioxidant capacity were maximum in control fruits. Total phenols were found maximum in fruits which were bagged with blue colour bags (32.12 ± 1.53 mg GAE 100 g-1 FW). Respiration rate was recorded maximum in the red colored bags (17.93 ± 0.22 mL kg-1 h-1) followed by white, blue and control fruits. Overall acceptability was recorded maximum in the fruits which were covered with red colour bags (8.67) whereas sweetness was reported maximum in control fruits (8.30). For harnessing the benefit of bagging in pomegranate, fruit should be bagged 60 days after flowering with red color cellulosic bags. Red color cellulosic bags are much effective in producing quality fruits except compromising on few quality traits like aril Ca and total phenols content.

18.
Heliyon ; 6(1): e03162, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32042955

ABSTRACT

Measurement of the antioxidant potential using in vitro assays is paramount in the assessment of various food products and nutraceuticals. Researchers always attempt to develop more accurate assays which can be performed in unsophisticated conditions. This novel method, Ferric-Bipyridine reducing capacity of total antioxidants (FBRC) is a very simple, accurate assay performed based on the reduction of Fe (III) to Fe (II) by antioxidants with the formation of a colored complex with bipyridine (Bp) i.e, Fe(II)-Bp. The FBRC method thus developed was assessed under carefully adjusted parameters of oxidant concentration, pH, temperature, solvent, light and time in order to fix the optimum conditions for the assay. The spectrophotometric monitoring of Fe(II)-Bp complex was noted by the formation of an intense pink color at room temperature with absorption maxima at 535 nm, pH 4. The analytical performance of this method was fully validated, and the obtained results were satisfactory. It was successfully applied to measure the total antioxidant capacity of standard compounds such as gallic acid, ascorbic acid and butylated hydroxy toluene (BHT), in addition to some plant extracts and oils. The FBRC method is inexpensive, reproducible and simple to perform. In addition, the antioxidant activity of the tested compounds compared to common reference methods showed that the novel FBRC method is superior to the Ferric reducing antioxidant power (FRAP) with regard to its use of realistic pH and faster kinetics. Thus, the FBRC method is convenient for the estimation of total antioxidant in plants extracts, natural products, essential oils and food stuff.

19.
Dent J (Basel) ; 8(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952199

ABSTRACT

OBJECTIVE: To distinguish clinical effects and mechanisms of sodium monofluorophosphate plus xylitol and herbal extracts of Swiss medicinal plants (Chamomilla recutita, Arnica montana, Echinacea purpurea, and Salvia officinalis). MATERIALS AND METHODS: A 2-month-long comparative clinical study of toothpaste containing 1450 ppm sodium monofluorophosphate and xylitol (control, 15 patients) and toothpaste additionally containing extracts of the medicinal herbs (experiment, 35 patients) was performed on patients with gingivitis and the initial stage of periodontitis. Clinical indices of gingivitis/periodontitis were quantified by Loe & Silness's, CPITN, OHI-S, and PMA indexes. The pro-inflammatory and anti-inflammatory interleukins, nitrites/nitrates, total antioxidant activity, and bacterial pattern characteristic for gingivitis and periodontitis were quantified in the gingival crevicular fluid and plaque. In the in vitro tests, direct anti-bacterial effects, inhibition of catalase induction in Staphylococcus aureus, in response to oxidative burst of phagocytes, and intracellular bacterial killing were determined for the toothpastes, individual plant extracts, and their mixture. RESULTS: Experimental toothpaste was more efficient clinically and in the diminishing of bacterial load specific for gingivitis/periodontitis. Although the control toothpaste exerted a direct moderate anti-bacterial effect, herbal extracts provided anti-inflammatory, anti-oxidant, direct, and indirect anti-bacterial actions through inhibition of bacterial defence against phagocytes. CONCLUSIONS: Chemical and plant-derived anti-bacterials to treat gingivitis and periodontitis at the initial stage should be used in combination amid their different mechanisms of action. Plant-derived actives for oral care could substitute toxic chemicals due to multiple modes of positive effects.

20.
J Mol Neurosci ; 70(1): 65-70, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31515707

ABSTRACT

Increasing number of studies indicates that chronic inflammation and oxidative stress play an essential role in pathophysiology and some symptoms of major depressive disorder (MDD). In the present study, the inflammasome activity and oxidative stress status in untreated and antidepressant-treated MDD patients were compared to the healthy group. Blood samples were taken from 20 MDD patients receiving treatment, 20 first-episode MDD patients not receiving treatment, and 20 healthy controls. The expression level of NLRP3 and caspase-1 was measured by real-time PCR and the serum TAC and MDA were examined in the patients and the control groups. The results showed that the mRNA level of NLRP3 and caspase-1 genes was significantly elevated in MDD groups compared with that in the healthy volunteers (P < 0.005). The expression level of NLRP3 and caspase-1 has slightly decreased in the treated group compared with that in the untreated one, but it was not a meaningful decrease. Moreover, the serum MDA was significantly higher and TAC statistically was lower in untreated MDD patients compared with those in the healthy control group (P = 0.001, P = 0.001). It can be concluded that NLRP3 inflammasome is upregulated in MDD patients. Statistically significant reduction in the level of TAC along with increased lipid peroxidation was detectable in MDD patient's plasma. In contrast, there was no significant difference between the treated and non-treated groups in terms of oxidative stress (P = 0.6, P = 0.1). Our results suggested that inflammasome signaling pathway is a therapeutic potential for MDD.


Subject(s)
Depressive Disorder, Major/blood , Lipid Peroxidation , NLR Family, Pyrin Domain-Containing 3 Protein/blood , Adult , Biomarkers/blood , Caspase 1/blood , Cells, Cultured , Depressive Disorder, Major/pathology , Female , Humans , Leukocytes, Mononuclear/metabolism , Male , Malondialdehyde/blood , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL