Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.008
Filter
1.
Article in Spanish | LILACS, BNUY, UY-BNMED | ID: biblio-1568770

ABSTRACT

La evaluación de la marcha en cinta caminadora puede resultar relevante para la toma de decisiones clínicas. No obstante, factores demográficos como la edad y el IMC pueden alterar la interpretación de los resultados. Nuestro objetivo fue obtener variables espacio- temporales, energéticas y costo de transporte durante la velocidad autoseleccionada en cinta caminadora para una muestra representativa de adultos uruguayos (n=28) y evaluar si diferentes rangos de edades e IMC pueden ser factores a tener en cuenta en pruebas clínicas donde se consideren dichas variables. Participaron 17 hombres y 11 mujeres (39,3 ± 14,8 años, 75,9 ± 12,5 kg, 1,74 ± 0,09 m, IMC 25,2 ± 4,06). Se realizó una reconstrucción 3D del movimiento en forma sincronizada con el consumo energético. Se obtuvieron valores de referencia y luego de agrupar los participantes según su IMC y rango de edad se compararon los datos mediante test de t (p≤0.05). Los resultados revelaron discrepancias significativas en las medidas espacio-temporales y energéticas de los adultos uruguayos al caminar en cinta con respecto a la literatura. La marcha difiere entre adultos jóvenes y de mediana edad en su velocidad autoseleccionada (p=0,03), longitud de zancada (p=0,01), trabajo mecánico externo (<0,001) y recuperación de energía mecánica (0,009), destacando la importancia de considerar la edad en evaluaciones clínicas. El IMC no influyó significativamente en estas variables. Estos hallazgos subrayan la necesidad de ajustar las interpretaciones de las pruebas clínicas de la marcha sobre cinta caminadora en adultos uruguayos de mediana edad (45 a 65 años).


Treadmill gait assessment can be relevant for clinical decision-making. However, demographic factors such as age and BMI may alter result interpretation. Our aim was to obtain spatiotemporal, energetic, and cost of transport variables during self-selected treadmill walking speed for a representative sample of Uruguayan adults (n=28) and to assess if different age ranges and BMI could be factors to consider in clinical tests involving these variables. Seventeen men and eleven women participated (39.3 ± 14.8 years, 75.9 ± 12.5 kg, 1.74 ± 0.09 m, BMI 25.2 ± 4.06). A synchronized 3D motion reconstruction was performed with energy consumption. Reference values were obtained and data were compared using t-tests (p≤0.05), after grouping participants by BMI and age range. Results revealed significant discrepancies in spatiotemporal and energetic measures of Uruguayan adults walking on the treadmill, compared to the literature. Gait differed between young and middle-aged adults in their self-selected speed (p=0.03), stride length (p=0.01), external mechanical work (p<0.001), and mechanical energy recovery (0.009), emphasizing the importance of considering age in clinical evaluations. BMI did not significantly influence these variables. These findings underscore the need to adjust interpretations of treadmill gait clinical tests in middle-aged Uruguayan adults (45 to 65 years).


A avaliação da marcha na esteira pode ser relevante para a tomada de decisões clínicas. No entanto, fatores demográficos como idade e IMC podem alterar a interpretação dos resultados. Nosso objetivo foi obter variáveis espaço-temporais, energéticas e custo de transporte durante a velocidade de caminhada autoselecionada na esteira para uma amostra representativa de adultos uruguaios (n = 28) e avaliar se diferentes faixas etárias e IMC podem ser fatores a serem considerados em testes clínicos que envolvam essas variáveis. Dezessete homens e onze mulheres participaram (39,3 ± 14,8 anos, 75,9 ± 12,5 kg, 1,74 ± 0,09 m, IMC 25,2 ± 4,06). Foi realizada uma reconstrução tridimensional do movimento sincronizada com o consumo de energia. Foram obtidos valores de referência e os dados foram comparados usando testes t (p≤0,05), após agrupar os participantes por IMC e faixa etária. Os resultados revelaram discrepâncias significativas nas medidas espaço-temporais e energéticas dos adultos uruguaios ao caminhar na esteira, em comparação com a literatura. A marcha diferiu entre adultos jovens e de meia-idade em sua velocidade autoselecionada (p=0,03), comprimento da passada (p=0,01), trabalho mecânico externo (<0,001) e recuperação de energia mecânica (0,009), destacando a importância de considerar a idade em avaliações clínicas. O IMC não influenciou significativamente essas variáveis. Esses achados destacam a necessidade de ajustar as interpretações dos testes clínicos de marcha na esteira em adultos uruguaios de meia- idade (45 a 65 anos).


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Young Adult , Body Composition/physiology , Walking/physiology , Exercise Test/statistics & numerical data , Body Mass Index , Age Distribution
2.
Int J Med Sci ; 21(12): 2285-2292, 2024.
Article in English | MEDLINE | ID: mdl-39310262

ABSTRACT

Objectives: In this study, we aimed to assess the maximal oxygen uptake (VO2max) of young, healthy, non-athletic Saudi men using maximum graded exercise with instant breath-by-breath analysis and to compare this value to the predicted VO2max by international formulae. Methods: In this cross-sectional study, 88 young non-athletic normal-weight Saudi subjects were recruited from Eastern Province of Saudi Arabia with mean age (21.3 ± 1.5 years), weight: (64.7 ± 7.5 kg), height: (172.3 ± 6.1 cm) and body mass index: (21.8 ± 2.1). All subjects were interviewed and examined for eligibility, after which they performed maximum graded exercise testing on a treadmill to obtain VO2max. The predicted VO2max was also generated using the following formulae (Edvardsen, Fairbarns, FRIENDS, Hansen, and Jones). Results: The mean measured VO2max was 41.9 ± 7.2 ml/kg/min. While the predicted VO2max using the formulae were: Edvardsen = 66.8 ± 7.9, Fairbarns = 64.1 ± 4.7, FRIENDS = 53.5 ± 2.2, Hansen = 42.8 ± 0.54, and Jones = 50.9 ± 5.1 ml/kg/min. There was a significant difference between all the predicted VO2max and the measured one using the paired t-test (P < 0.001), except for the Hansen's predicted value (P = 0.212). The effect size index (Cohen's d) for the comparison of Hansen's VO2max and measured VO2max was trivial and equal to 0.13. The Bland-Altman test showed good agreement between the measured and Hansen's predicted VO2max. Conclusion: This study demonstrated the mean VO2max value of young, healthy, and non-athletic Saudi men. This value was lower than Western values, which might be due to low physical activity or racial differences. Most international formulae overestimate the VO2max in this population, except for the Hansen equation. Therefore, Hansen's predicted VO2max might be the best available reference value for the diagnosis and prognosis of young Saudi individuals undergoing maximum exercise testing.


Subject(s)
Exercise Test , Oxygen Consumption , Humans , Male , Oxygen Consumption/physiology , Saudi Arabia , Exercise Test/methods , Cross-Sectional Studies , Young Adult , Adult , Exercise/physiology , Body Mass Index
3.
J Neuroeng Rehabil ; 21(1): 159, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272129

ABSTRACT

Neurological disorders, such as Parkinson's disease (PD), multiple sclerosis (MS), cerebral palsy (CP) and stroke are well-known causes of gait and balance alterations. Innovative devices (i.e., robotics) are often used to promote motor recovery. As an alternative, anti-gravity treadmills, which were developed by NASA, allow early mobilization, walking with less effort to reduce gait energy costs and fatigue. A systematic search, according to PRISMA guidelines, was conducted for all peer-reviewed articles published from January 2010 through September 2023, using the following databases: PubMed, Scopus, PEDro and IEEE Xplore. After an accurate screening, we selected only 16 articles (e.g., 5 RCTs, 2 clinical trials, 7 pilot studies, 1 prospective study and 1 exploratory study). The evidence collected in this systematic review reported promising results in the field of anti-gravity technology for neurological patients, in terms of improvement in gait and balance outcomes. However, we are not able to provide any clinical recommendation about the dose and parameters of anti-gravity treadmill training, because of the lack of robust high-quality RCT studies and large samples. Registration number CRD42023459665.


Subject(s)
Neurological Rehabilitation , Walking , Humans , Neurological Rehabilitation/methods , Neurological Rehabilitation/instrumentation , Walking/physiology , Exercise Therapy/methods , Exercise Therapy/instrumentation
4.
Hum Mov Sci ; 97: 103273, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39217920

ABSTRACT

BACKGROUND: This study examined (i) adaptations in muscle activity following perturbation-based balance training (PBT) using treadmill belt-accelerations or PBT using walkway trips and (ii) whether adaptations during treadmill PBT transfer to a walkway trip. METHODS: Thirty-eight older people (65+ years) undertook two PBT sessions, including 11 treadmill belt-accelerations and 11 walkway trips. Surface electromyography (EMG) was measured bilaterally on the rectus femoris (RF), tibialis anterior (TA), semitendinosus (ST) and gastrocnemius medial head (GM) during the first (T1) and eleventh (T11) perturbations. Adaptations (within-subjects - 1st vs 11th perturbations for treadmill and walkway PBT) and their transfer (between-subjects - 1st walkway trip after treadmill PBT vs 1st walkway trip with no prior training) effects were examined for the EMG parameters. RESULTS: Treadmill PBT reduced post-perturbation peak muscle activation magnitude (left RF, TA, ST, right RF, ST, GM), onset latency (right TA), time to peak (right RF) and co-contraction index (knee muscles) (P < 0.05). Walkway PBT reduced post-trip onset latencies (right TA, ST), peak magnitude (left ST, right GM), time to peak (right RF, ST) and pre-perturbation muscle activity (right TA) (P < 0.05). Those who undertook treadmill PBT were not different to those without prior training during the first walkway trip (P > 0.05). CONCLUSIONS: Both treadmill and walkway PBT induced earlier initiation and peak activation of right limb muscles responsible for the first recovery step. Treadmill PBT also reduced co-contraction of the knee muscles. Adaptations in muscle activity following treadmill PBT did not transfer to a walkway trip.


Subject(s)
Adaptation, Physiological , Cross-Over Studies , Electromyography , Muscle, Skeletal , Postural Balance , Humans , Aged , Postural Balance/physiology , Male , Female , Adaptation, Physiological/physiology , Muscle, Skeletal/physiology , Walking/physiology , Exercise Test , Acceleration , Aged, 80 and over , Biomechanical Phenomena/physiology
5.
J Neuroeng Rehabil ; 21(1): 161, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285381

ABSTRACT

BACKGROUND: Gait event detection is crucial for assessment, evaluation and provision of biofeedback during rehabilitation of walking. Existing online gait event detection algorithms mostly rely on add-on sensors, limiting their practicality. Instrumented treadmills offer a promising alternative by utilizing the Center of Pressure (CoP) signal for real-time gait event detection. However, current methods have limitations, particularly in detecting cross-step events during perturbed walking conditions. METHODS: We present and validate a CoP-based algorithm to detect gait events and cross-steps in real-time, which combines thresholding and logic techniques. The algorithm was evaluated on CoP datasets from healthy participants (age range 21-61 years), stroke survivors (age range 20-67 years), and people with unilateral transtibial amputation (age range 28-63 years) that underwent perturbation-based balance assessments, encompassing different walking speeds. Detected gait events from a simulated real-time processing operation were compared to offline identified counterparts in order to present related temporal absolute mean errors (AME) and success rate. RESULTS: The proposed algorithm demonstrated high accuracy in detecting gait events during native gait, as well as cross-step events during perturbed walking conditions. It successfully recognized the majority of cross-steps, with a detection success rate of 94%. However, some misclassifications or missed events occurred, mainly due to the complexity of cross-step events. AME for heel strikes (HS) during native gait and cross-step events averaged at 78 ms and 64 ms respectively, while toe off (TO) AME were 126 ms and 111 ms respectively. A statistically significant difference in the algorithm's success rate score in detecting gait events during cross-step intervals was observed across various walking speeds in a sample of 12 healthy participants, while there was no significant difference among groups. CONCLUSION: The proposed algorithm represents an advancement in gait event detection on instrumented treadmills. By leveraging the CoP signal, it successfully identifies gait events and cross-steps in the simulated real-time processing operation, providing valuable insights into human locomotion. The algorithm's ability to accommodate diverse CoP patterns enhance its applicability to a wide range of individuals and gait characteristics. The algorithm's performance was consistent across different populations, suggesting its potential for diverse clinical and research settings, particularly in the domains of gait analysis and rehabilitation practices.


Subject(s)
Algorithms , Humans , Middle Aged , Adult , Aged , Male , Female , Young Adult , Gait/physiology , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Walking/physiology , Postural Balance/physiology , Pressure
6.
PeerJ ; 12: e18096, 2024.
Article in English | MEDLINE | ID: mdl-39301058

ABSTRACT

A symmetric gait pattern in humans reflects near-identical movement in bilateral limbs during walking. However, little is known about how gait symmetry changes on different inclines. This study aimed to address this knowledge gap using the central pattern generator and internal model hypotheses. Eighteen healthy young adults underwent five 2-minute walking trials (inclines of +15%, +8%, 0%, -8%, and -15%). Dependent variables included step time, step length, step width, maximum heel clearance, time to peaks of maximum heel clearance, their corresponding coefficients of variation (CV), and respective symmetry indices (SI). Significant differences were observed in SI of step length (p = .022), step length variability (p < .001), step width variability (p =.001), maximum heel clearance (p < .001), and maximum heel clearance variability (p = .049). Compared to level walking, walking at -8% and -15% inclines increased SI of step length (p = .011, p = .039 respectively) but decreased SI of maximum heel clearance (p = .025, p = .019 respectively). These observations suggested that incline walking affected gait symmetry differently, possibly due to varied internal models used in locomotion. Downhill walking improved vertical gait symmetry but reduced anterior-posterior symmetry compared to level walking. Downhill walking may be a preferable rehabilitation protocol for enhancing gait symmetry, as it activates internal model controls. Even slight downhill inclines could increase active control loading, beneficial for the elderly and those with impaired gait.


Subject(s)
Gait , Walking , Humans , Male , Walking/physiology , Gait/physiology , Female , Young Adult , Adult , Biomechanical Phenomena , Healthy Volunteers
7.
J Athl Train ; 59(9): 906-914, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39320951

ABSTRACT

CONTEXT: It is unclear whether the response in femoral cartilage to running at different intensities is different. OBJECTIVE: To examine the acute patterns of deformation and recovery in femoral cartilage thickness during and after running at different speeds. DESIGN: Crossover study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 17 healthy men (age = 23.9 ± 2.3 years, height = 173.1 ± 5.5 cm, mass = 73.9 ± 8.0 kg). INTERVENTION(S): Participants performed a 40-minute treadmill run at speeds of 7.5 and 8.5 km/h. MAIN OUTCOME MEASURE(S): Ultrasonographic images of femoral cartilage thickness (intercondylar, lateral condyle, and medial condyle) were obtained every 5 minutes during the experiment (40 minutes of running followed by a 60-minute recovery period) at each session. Data were analyzed using analysis of variance and Bonferroni- and Dunnett-adjusted post hoc t tests. To identify patterns of cartilage response, we extracted principal components (PCs) from the cartilage-thickness data using PC analysis, and PC scores were analyzed using t tests. RESULTS: Regardless of time, femoral cartilage thicknesses were greater for the 8.5-km/h run than the 7.5-km/h run (intercondylar: F1,656 = 24.73, P < .001, effect size, 0.15; lateral condyle: F1,649 = 16.60, P < .001, effect size, 0.16; medial condyle: F1,649 = 16.55, P < .001, effect size, 0.12). We observed a time effect in intercondylar thickness (F20,656 = 2.15, P = .003), but the Dunnett-adjusted post hoc t test revealed that none of the time point values differed from the baseline value (P > .38 for all comparisons). Although the PC1 and PC2 captured the magnitudes of cartilage thickness and time shift (eg, earlier versus later response), respectively, t tests showed that the PC scores were not different between 7.5 and 8.5 km/h (intercondylar: P ≥ .32; lateral condyle: P ≥ .78; medial condyle: P ≥ .16). CONCLUSIONS: Although the 40-minute treadmill run with different speeds produced different levels of fatigue, morphologic differences (<3%) in the femoral cartilage at both speeds seemed to be negligible.


Subject(s)
Cartilage, Articular , Cross-Over Studies , Femur , Running , Ultrasonography , Humans , Male , Running/physiology , Femur/diagnostic imaging , Femur/physiology , Femur/anatomy & histology , Cartilage, Articular/physiology , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/anatomy & histology , Young Adult , Adult , Exercise Test
8.
Article in English | MEDLINE | ID: mdl-39284561

ABSTRACT

Cocaine-related contextual cues are a recurrent source of craving and relapse. Extinction of cue-driven cocaine seeking remains a clinical challenge, and the search for adjuvants is ongoing. In this regard, combining physical and cognitive training is emerging as a promising strategy that has shown synergistic benefits on brain structure and function, including enhancement of adult hippocampal neurogenesis (AHN), which has been recently linked to reduced maintenance of maladaptive drug seeking. Here, we examined whether this behavioral approach disrupts cocaine-context associations via improved AHN. To this aim, C57BL/6J mice (N = 37) developed a cocaine-induced conditioned place preference (CPP) and underwent interventions consisting of exercise and/or spatial working memory training. Bromodeoxyuridine (BrdU) was administered during early running sessions to tag a subset of new dentate granule cells (DGCs) reaching a critical window of survival during spatial learning. Once these DGCs became functionally mature (∼ 6 weeks-old), mice received extinction training before testing CPP extinction and reinstatement. We found that single and combined treatments accelerated CPP extinction and prevented reinstatement induced by a low cocaine priming (2 mg/kg). Remarkably, the dual-intervention mice showed a significant decrease of CPP after extinction relative to untreated animals. Moreover, combining the two strategies led to increased number and functional integration of BrdU+ DGCs, which in turn maximized the effect of spatial training (but not exercise) to reduce CPP persistence. Together, our findings suggests that sequencing physical and cognitive training may redound to decreased maintenance of cocaine-context associations, with multi-level stimulation of AHN as a potential underlying mechanism.

9.
Neurol Sci ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39294410

ABSTRACT

INTRODUCTION: Treadmill training (TT) is a gait training technique that has commonly been used in neurorehabilitation, and has positive effects on gait, mobility, and related outcomes in stroke survivors. Transcranial direct current stimulation (tDCS) is a non-invasive approach for modulating brain cortex excitability. AIM: To evaluate the available scientific evidence on the effects of TT combined with tDCS on mobility, motor performance, balance function, and brain-related outcomes in stroke survivors. METHODS: Five databases namely the Cochrane library, PEDro, Web of Science, PubMed, and EMBASE, were searched for relevant studies from inception to March, 2024. Only randomized controlled trials were included, and their methodological quality and risk of bias (ROB) were evaluated using the PEDro scale and Cochrane ROB assessment tool respectively. Qualitative and quantitative syntheses (using fixed effects meta-analysis) were employed to analyze the data. RESULTS: The results revealed that TT combined with active tDCS had significant beneficial effects on some mobility parameters, some gait spatiotemporal parameters, some gait kinematic parameters, gait endurance, gait ability, and corticomotor excitability in stroke survivors, but no significant difference on gait speed (P > 0.05), functional mobility (P > 0.05), motor performance (P > 0.05), or some balance functions (P > 0.05), compared with the control conditions. CONCLUSIONS: TT combined with active tDCS significantly improves some gait/mobility outcomes and corticomotor excitability in stroke survivors.

10.
Front Bioeng Biotechnol ; 12: 1417497, 2024.
Article in English | MEDLINE | ID: mdl-39262630

ABSTRACT

Stroke rehabilitation interventions require multiple training sessions and repeated assessments to evaluate the improvements from training. Biofeedback-based treadmill training often involves 10 or more sessions to determine its effectiveness. The training and assessment process incurs time, labor, and cost to determine whether the training produces positive outcomes. Predicting the effectiveness of gait training based on baseline minimum foot clearance (MFC) data would be highly beneficial, potentially saving resources, costs, and patient time. This work proposes novel features using the Short-term Fourier Transform (STFT)-based magnitude spectrum of MFC data to predict the effectiveness of biofeedback training. This approach enables tracking non-stationary dynamics and capturing stride-to-stride MFC value fluctuations, providing a compact representation for efficient processing compared to time-domain analysis alone. The proposed STFT-based features outperform existing wavelet, histogram, and Poincaré-based features with a maximum accuracy of 95%, F1 score of 96%, sensitivity of 93.33% and specificity of 100%. The proposed features are also statistically significant (p < 0.001) compared to the descriptive statistical features extracted from the MFC series and the tone and entropy features extracted from the MFC percentage index series. The study found that short-term spectral components and the windowed mean value (DC value) possess predictive capabilities regarding the success of biofeedback training. The higher spectral amplitude and lower variance in the lower frequency zone indicate lower chances of improvement, while the lower spectral amplitude and higher variance indicate higher chances of improvement.

11.
J Orthop Res ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217413

ABSTRACT

As we age, reliance on the ankle musculature for push-off during walking reduces and increased reliance on the hip musculature is observed. It is unclear how joint pathology like osteoarthritis may affect this distal-to-proximal redistribution of propulsion. Here, we revisited a proof-of-concept study to study the effect of split-belt treadmill training, designed to reduce step length asymmetry, on forward propulsion during walking. Eleven women with hip osteoarthritis and five age-matched control participants walked on an instrumented split-belt treadmill at their preferred speed (hip osteoarthritis: 0.73 ± 0.11 m/s; controls: 0.59 ± 0.26 m/s). Women with hip osteoarthritis had less ankle power and propulsive force than controls, and greater hip contributions to forward propulsion on their involved limb. Following split-belt treadmill training, propulsive force increased on the involved limb. Five of 11 participants experienced a change in redistribution ratio that was greater than the minimal clinically meaningful difference. These "responders" had greater variability in pre-training redistribution ratio compared to non-responders. Women with hip osteoarthritis had poorer propulsive gait mechanics than controls yet split-belt treadmill training improved propulsive force. Redistribution ratio also changed in participants with high baseline variability. Our results suggest that split-belt treadmill training may be beneficial to people with hip osteoarthritis who have high variability in walking parameters. Further, the age-related shift to increased hip contributions to propulsion across populations of older adults may be due to increased variability during walking.

12.
Int J Sports Physiol Perform ; : 1-5, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231493

ABSTRACT

PURPOSE: We investigated the effects of manipulating running velocity and hypoxic exposure on vastus lateralis muscle oxygenation levels during treadmill running. METHODS: Eleven trained male distance runners performed 7 randomized runs at different velocities (8, 10, 12, 14, 16, 18, and 20 km·h-1), each lasting 45 seconds on an instrumented treadmill in normoxia (fraction of inspired oxygen [FiO2] = 20.9%), moderate hypoxia (FiO2 = 16.1%), high hypoxia (FiO2 = 14.1%), and severe hypoxia (FiO2 = 13.0%). Continuous assessment of Tissue Saturation Index (TSI) in the vastus lateralis muscle was conducted using near-infrared spectroscopy. Subsequently, changes in TSI (ΔTSI) data over the final 20 seconds of each run were compared between velocities and conditions. RESULTS: There was a significant velocity × condition interaction for ΔTSI% (P < .001, ηp2=.19), with a smaller ΔTSI% decline in normoxia compared with high hypoxia and severe hypoxia at 8 km·h-1 (g = 1.30 and 1.91, respectively), 10 km·h-1 (g = 0.75 and 1.43, respectively), and 12 km·h-1 (g = 1.47 and 1.95, respectively) (pooled values for all conditions: P < .037). The ΔTSI% decline increased with each subsequent velocity increment from 8 km·h-1 (-9.2% [3.7%]) to 20 km·h-1 (-22.5% [4.1%]) irrespective of hypoxia severity (pooled values for all conditions: P < .048). CONCLUSIONS: Running at slower velocities in conjunction with high and severe hypoxia reduces vastus lateralis muscle oxygenation levels. Muscle ΔTSI% proves to be a sensitive indicator, underscoring the potential use of near-infrared spectroscopy as a reference index of internal load during treadmill runs.

13.
Sensors (Basel) ; 24(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39275648

ABSTRACT

Elite athletes in speed roller skates perceive skating to be a more demanding exercise for the groin when compared to other cyclic disciplines, increasing their risk of injury. The objective of this study was to monitor the kinematic and electromyographic parameters of roller speed skaters, linearly, on a treadmill, and to compare different skating speeds, one at 20 km/h and one at 32 km/h, at a 1° inclination. The acquisition was carried out by placing an inertial sensor at the level of the first sacral vertebra, and eight surface electromyographic probes on both lower limbs. The kinematic and electromyographic analysis on the treadmill showed that a higher speed requires more muscle activation, in terms of maximum and average values and co-activation, as it not only increases the intrinsic muscle demand in the district, but also the athlete's ability to coordinate the skating technique. The present study allows us to indicate not only how individual muscle districts are activated during skating on a surface different from the road, but also how different speeds affect the overall district load distributions concerning effective force, which is essential for the physiotherapist and kinesiologist for preventive and conditional purposes, while also considering possible variations in the skating technique in linear advancement.


Subject(s)
Electromyography , Skating , Humans , Electromyography/methods , Biomechanical Phenomena/physiology , Skating/physiology , Male , Adult , Exercise Test/methods , Young Adult , Athletes , Muscle, Skeletal/physiology , Female
14.
Gait Posture ; 113: 570-576, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39197418

ABSTRACT

BACKGROUND: This study was designed to evaluate the effect of using maximal cadence criteria cut points established during overground and treadmill walking, on intensity outputs measured during community ambulation. The second aim was to establish the relationship between cardiovascular fitness (predicted VO2 max capacity) and community ambulation intensity performance, in typically developing individuals. RESEARCH QUESTION: What is the effect on intensity measures when using cadence cut point criteria derived from overground and treadmill walking and does predicted VO2 max correlate with exercise related community activity in a typically developing population? METHODS: A group of 37 typically developing participants between 8 and 27 years of age, underwent a graded submaximal VO2 testing protocol followed by a typical week of community ambulation, recorded with a step activity monitor. Maximum cadence criteria established during overground and treadmill walking were applied and the data were compared. The weekly step activity variables included: total steps, total ambulatory time, intensity, duration, and volume. Predicted VO2 Max was calculated, and correlations calculated to step activity outputs. RESULTS: Results showed significant differences (p<0.001) between cadence cut point criteria across all intensity measures except in the amount of time spent in the 30-60 % intensity category (p=0.182). Predicted VO2 max did not significantly correlate with step activity outputs related to exercise (moderate+ intensity and long duration ambulatory bouts; p>0.277). SIGNIFICANCE: This study illustrates the importance of close consideration in applying recommended cut off criteria when assessing intensity outputs from step activity data. Cadence from both overground and treadmill walking were collected in a controlled lab setting, but the influence of the treadmill mechanical and forced cadence criteria must be considered when selecting intensity cut points.


Subject(s)
Exercise Test , Oxygen Consumption , Walking , Humans , Child , Male , Female , Oxygen Consumption/physiology , Adolescent , Walking/physiology , Adult , Young Adult , Cardiorespiratory Fitness/physiology
15.
Curr Biol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39216486

ABSTRACT

To navigate complex environments, walking animals must detect and overcome unexpected perturbations. One technical challenge when investigating adaptive locomotion is measuring behavioral responses to precise perturbations during naturalistic walking; another is that manipulating neural activity in sensorimotor circuits often reduces spontaneous locomotion. To overcome these obstacles, we introduce miniature treadmill systems for coercing locomotion and tracking 3D kinematics of walking Drosophila. By systematically comparing walking in three experimental setups, we show that flies compelled to walk on the linear treadmill have similar stepping kinematics to freely walking flies, while kinematics of tethered walking flies are subtly different. Genetically silencing mechanosensory neurons altered step kinematics of flies walking on the linear treadmill across all speeds. We also discovered that flies can maintain a forward heading on a split-belt treadmill by specifically adapting the step distance of their middle legs. These findings suggest that proprioceptive feedback contributes to leg motor control irrespective of walking speed and that the fly's middle legs play a specialized role in stabilizing locomotion.

16.
Neurorehabil Neural Repair ; 38(9): 680-692, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39104216

ABSTRACT

BACKGROUND: Gait disturbances are exacerbated in people with Parkinson's disease (PD) during dual-task walking (DTW). Transcranial direct current stimulation (tDCS) has been shown to exert beneficial effects on gait performance and cortical excitability in PD; however, its combined effects with treadmill training (TT) remain undetermined. OBJECTIVE: To investigate the effects of tDCS followed by TT on DTW performance and cortical excitability in individuals with PD. METHODS: Thirty-four PD participants were randomized to dorsal lateral prefrontal cortex (DLPFC) tDCS and TT group (DLPFC tDCS + TT group) or sham tDCS and TT group (sham tDCS + TT group) for 50 minutes per session (20 minutes tDCS followed by 30 minutes TT), 12 sessions within 5 weeks (2-3 sessions each week). Outcome measures included cognitive dual-task walking (CDTW), motor dual-task walking (MDTW), usual walking performance, cortical excitability, functional mobility, cognitive function, and quality of life. RESULTS: The DLPFC tDCS + TT group exerted significantly greater improvement in CDTW velocity (P = .046), cadence (P = .043), and stride time (P = .041) compared to sham tDCS + TT group. In addition, DLPFC tDCS + TT group demonstrated a significant increase in resting motor threshold of stimulated hemisphere compared with sham tDCS + TT group (P = .026). However, no significant differences between groups were found in MDTW performance and other outcomes. CONCLUSION: Twelve-session DLPFC tDCS followed by TT significantly improved CDTW performance and decreased cortical excitability more than TT alone in individuals with PD. Applying DLPFC tDCS prior to TT could be suggested for gait rehabilitation in individuals with PD. CLINICAL TRIAL REGISTRATION NUMBER: Australian New Zealand Clinical Trials Registry ACTRN12622000101785.


Subject(s)
Cortical Excitability , Dorsolateral Prefrontal Cortex , Exercise Therapy , Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Parkinson Disease/rehabilitation , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Male , Female , Aged , Middle Aged , Cortical Excitability/physiology , Exercise Therapy/methods , Dorsolateral Prefrontal Cortex/physiology , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Outcome Assessment, Health Care , Gait/physiology , Combined Modality Therapy , Walking/physiology , Psychomotor Performance/physiology
17.
NeuroRehabilitation ; 55(1): 127-136, 2024.
Article in English | MEDLINE | ID: mdl-39213102

ABSTRACT

BACKGROUND: Gait training programs are commonly used to improve gait in children with cerebral palsy (CP). OBJECTIVE: To compared the effects of robotic-gait assistant training (RAGT) and conventional body weight support treadmill training (CBWSTT) on gait parameters among ambulatory children with CP. METHODS: The study is a randomized controlled trial of 36 children (17 in the RAGT group and 19 in the CBWSTT group) aged 5 to 14. Gait training involved 30-to 35-minute sessions three times per week over eight weeks. RESULTS: Mixed ANCOVA showed no main effect of time or group on all gait parameters (P > .05). Gross motor function measure dimensions D (GMFM D) and E (GMFM E) show main effects on step width. Stride length, step length, speed, swing phase, and double support phase interacted with GMFM D and E. There was a negative correlation between motor function level and the change from baseline. Children with lower motor function show a greater change from baseline. CONCLUSION: There were no significant differences between CBWSTT and RAGT for children with CP; however, with gait training interventions, the level of motor function should be considered.


Subject(s)
Cerebral Palsy , Exercise Therapy , Gait Disorders, Neurologic , Robotics , Humans , Cerebral Palsy/rehabilitation , Cerebral Palsy/physiopathology , Child , Male , Female , Robotics/methods , Adolescent , Child, Preschool , Exercise Therapy/methods , Gait Disorders, Neurologic/rehabilitation , Gait Disorders, Neurologic/etiology , Gait/physiology , Treatment Outcome
18.
Front Physiol ; 15: 1409304, 2024.
Article in English | MEDLINE | ID: mdl-39113935

ABSTRACT

Post-stroke gait asymmetry leads to inefficient gait and a higher fall risk, often causing limited home and community ambulation. Two types of treadmills are typically used for training focused on symmetry: split-belt and single belt treadmills, but there is no consensus on which treadmill is superior to improve gait symmetry in individuals with stroke. To comprehensively determine which intervention is superior, we considered multiple spatial and temporal gait parameters (step length, stride time, swing time, and stance time) and their symmetries. Ten individuals with stroke underwent a single session of split-belt treadmill training and single belt treadmill training on separate days. The changes in step length, stride time, swing time, stance time and their respective symmetries were compared to investigate which training improves both spatiotemporal gait parameters and symmetries immediately after the intervention and after 5 min of rest. Both types of treadmill training immediately increased gait velocity (0.08 m/s faster) and shorter step length (4.15 cm longer). However, split-belt treadmill training was more effective at improving step length symmetry (improved by 27.3%) without sacrificing gait velocity or step length. However, this step length symmetry effect diminished after a 5-min rest period. Split-belt treadmill training may have some advantages over single belt treadmill training, when targeting step length symmetry. Future research should focus on comparing the long-term effects of these two types of training and examining the duration of the observed effects to provide clinically applicable information.

19.
Am J Vet Res ; : 1-11, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094616

ABSTRACT

OBJECTIVE: The goal of this study was to compare the accuracy of kinematic measurements obtained using the 2-D video-based kinematic motion analysis (KMA) software Kinovea (version 0.9.5; http://www.kinovea.org) with 3-D KMA in healthy dogs. METHODS: In this prospective study, 3-D marker-based KMA (VICON-Nexus, version 2.12.1, and Procalc, version 1.6; VICON Motion Systems Ltd) was performed on healthy dogs (body weight ≥ 20 kg; height at withers > 50 cm) walking on a treadmill (study period: November 2022). Simultaneously, dogs were video recorded by 1 smartphone (iPhone SE; Apple Inc) at a 1.50-m distance perpendicular to the shoulder (60 frames per second; 1,920 X 1,080 pixels) for KMA using Kinovea. Joint angle and joint angle velocity of the shoulder, elbow, carpus, hip, stifle, and tarsus were calculated for 6 synchronized gait cycles. Each gait cycle was divided into 10 increments. The difference between 3-D KMA and Kinovea was assessed for each parameter using robust linear mixed-effects models. RESULTS: 34 dogs were included. The estimated joint angle difference between 3-D KMA and Kinovea was less than 2° for all shoulder and elbow gait cycle increments. For the carpus, hip, stifle, and tarsus, the difference was less than 2° in 9, 5, 4, and 4 out of 10 gait cycle increments, respectively. CONCLUSIONS: Kinovea provides accurate kinematic data for the shoulder and elbow of healthy dogs. Carpal, hip, stifle, and tarsal kinematics were less accurate. CLINICAL RELEVANCE: The use of Kinovea for clinical and research purposes remains limited. Future Kinovea-based studies are needed to investigate the accuracy of carpal, hip, stifle, and tarsal kinematics.

20.
Animals (Basel) ; 14(16)2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39199927

ABSTRACT

Repeated exposure to water treadmill (WT) exercise could elicit kinematic responses reflecting adaptation to WT exercise. The study's aim was to compare the responses of a group of sport horses to a standardised WT exercise test (WTSET) carried out at three time points, week 0 (n = 48), week 20 (n = 38), and week 40 (n = 29), throughout a normal training programme incorporating WT exercise. Horses were recruited from the existing client populations of two commercial water treadmill venues for the purpose of this longitudinal, observational study. Limb, back, poll, wither, and pelvic kinematics were measured during the WTSET using videography, optical motion capture, and inertial motion sensors. Forelimb and hindlimb protraction increased (p < 0.001 for both), and forelimb and hindlimb retraction decreased (p < 0.001 for both) at week 40 compared to week 0. Caudal thoracic flexion-extension and lateral bend ranges of movement were greater at week 40 compared to week 0 (p < 0.001 and p = 0.009, respectively). Increased training speed was associated with increased craniocaudal poll movement (p = 0.021), decreased forelimb protraction (p = 0.008), and increased forelimb retraction (p = 0.021). In addition to characteristic changes in kinematics due to increasing water depth, regular WT exercise resulted in kinematic adaptation to movement in water. Factors such as the frequency of WT sessions and the type of session used with respect to depth and speed were seen to influence the nature of the adaptation. The results suggest that WT exercise sessions could be designed in accordance with specific training goals when used within a normal sport horse training programme.

SELECTION OF CITATIONS
SEARCH DETAIL